Skip to main content
Top
Published in: Heart Failure Reviews 3/2015

01-05-2015

Exosome and its roles in cardiovascular diseases

Authors: Wang Zhao, Xi-Long Zheng, Shui-Ping Zhao

Published in: Heart Failure Reviews | Issue 3/2015

Login to get access

Abstract

Exosomes are nanosized vesicles secreted by cells, which are capable of carrying signaling molecules in the forms of protein, mRNA and miRNA to serve as the platforms for complex intercellular communications. During the past few years, increasing efforts have been devoted to exosome research, and tremendous progress has been made in terms of identifying the molecular composition, elucidating the mechanisms and regulations of biogenesis and characterizing the functions in a variety of physiological and pathological settings including cardiovascular diseases, a leading cause of morbidity and mortality in modern society. This review provides an update on exosome research and summarizes the roles of exosomes in cardiovascular diseases.
Literature
1.
go back to reference Jhund PS, McMurray JJ (2008) Heart failure after acute myocardial infarction: a lost battle in the war on heart failure? Circulation 118(20):2019–2021PubMed Jhund PS, McMurray JJ (2008) Heart failure after acute myocardial infarction: a lost battle in the war on heart failure? Circulation 118(20):2019–2021PubMed
2.
go back to reference Malliaras K et al (2014) Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol 63(2):110–122PubMedCentralPubMed Malliaras K et al (2014) Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol 63(2):110–122PubMedCentralPubMed
3.
go back to reference Ibrahim AG, Cheng K, Marban E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports 2(5):606–619PubMedCentralPubMed Ibrahim AG, Cheng K, Marban E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports 2(5):606–619PubMedCentralPubMed
4.
go back to reference Ratajczak J et al (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20(9):1487–1495PubMed Ratajczak J et al (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20(9):1487–1495PubMed
6.
go back to reference Boulanger CM (2010) Microparticles, vascular function and hypertension. Curr Opin Nephrol Hypertens 19(2):177–180PubMed Boulanger CM (2010) Microparticles, vascular function and hypertension. Curr Opin Nephrol Hypertens 19(2):177–180PubMed
7.
go back to reference Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51PubMed Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51PubMed
8.
go back to reference Dignat-George F, Boulanger CM (2011) The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 31(1):27–33PubMed Dignat-George F, Boulanger CM (2011) The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 31(1):27–33PubMed
9.
go back to reference Lai RC et al (2013) Exosomes for drug delivery—a novel application for the mesenchymal stem cell. Biotechnol Adv 31(5):543–551PubMed Lai RC et al (2013) Exosomes for drug delivery—a novel application for the mesenchymal stem cell. Biotechnol Adv 31(5):543–551PubMed
10.
go back to reference Morel O et al (2011) Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol 31(1):15–26PubMed Morel O et al (2011) Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol 31(1):15–26PubMed
11.
go back to reference Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359PubMedCentralPubMed Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359PubMedCentralPubMed
12.
go back to reference Heijnen HF et al (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11):3791–3799PubMed Heijnen HF et al (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11):3791–3799PubMed
13.
go back to reference Rozmyslowicz T et al (2003) Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. AIDS 17(1):33–42PubMed Rozmyslowicz T et al (2003) Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. AIDS 17(1):33–42PubMed
14.
go back to reference Thery C (2011) Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 2011 3:15 Thery C (2011) Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 2011 3:15
15.
go back to reference Chargaff E, West R (1946) The biological significance of the thromboplastic protein of blood. J Biol Chem 166(1):189–197PubMed Chargaff E, West R (1946) The biological significance of the thromboplastic protein of blood. J Biol Chem 166(1):189–197PubMed
16.
go back to reference Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13(3):269–288PubMed Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13(3):269–288PubMed
17.
go back to reference Dalton AJ (1975) Microvesicles and vesicles of multivesicular bodies versus “virus-like” particles. J Natl Cancer Inst 54(5):1137–1148PubMed Dalton AJ (1975) Microvesicles and vesicles of multivesicular bodies versus “virus-like” particles. J Natl Cancer Inst 54(5):1137–1148PubMed
18.
go back to reference Johnstone RM et al (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262(19):9412–9420PubMed Johnstone RM et al (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262(19):9412–9420PubMed
19.
go back to reference Johnstone RM, Bianchini A, Teng K (1989) Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood 74(5):1844–1851PubMed Johnstone RM, Bianchini A, Teng K (1989) Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood 74(5):1844–1851PubMed
20.
go back to reference Johnstone RM et al (1991) Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J Cell Physiol 147(1):27–36PubMed Johnstone RM et al (1991) Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J Cell Physiol 147(1):27–36PubMed
21.
go back to reference Grdisa M, Mathew A, Johnstone RM (1993) Expression and loss of the transferrin receptor in growing and differentiating HD3 cells. J Cell Physiol 155(2):349–357PubMed Grdisa M, Mathew A, Johnstone RM (1993) Expression and loss of the transferrin receptor in growing and differentiating HD3 cells. J Cell Physiol 155(2):349–357PubMed
22.
go back to reference Johnstone RM (1992) The Jeanne Manery-Fisher Memorial Lecture 1991. Maturation of reticulocytes: formation of exosomes as a mechanism for shedding membrane proteins. Biochem Cell Biol 70(3–4):179–190PubMed Johnstone RM (1992) The Jeanne Manery-Fisher Memorial Lecture 1991. Maturation of reticulocytes: formation of exosomes as a mechanism for shedding membrane proteins. Biochem Cell Biol 70(3–4):179–190PubMed
24.
go back to reference Raimondo F et al (2011) Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics 11(4):709–720PubMed Raimondo F et al (2011) Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics 11(4):709–720PubMed
25.
go back to reference Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659PubMed Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659PubMed
26.
go back to reference Hong BS et al (2009) Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genom 10:556 Hong BS et al (2009) Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genom 10:556
27.
go back to reference Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476PubMedCentralPubMed Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476PubMedCentralPubMed
28.
go back to reference Deregibus MC et al (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110(7):2440–2448PubMed Deregibus MC et al (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110(7):2440–2448PubMed
29.
go back to reference Ratajczak J et al (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20(5):847–856PubMed Ratajczak J et al (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20(5):847–856PubMed
30.
go back to reference Kogure T et al (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54(4):1237–1248PubMedCentralPubMed Kogure T et al (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54(4):1237–1248PubMedCentralPubMed
31.
go back to reference Gibbings DJ et al (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11(9):1143–1149PubMed Gibbings DJ et al (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11(9):1143–1149PubMed
32.
go back to reference Balaj L et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180PubMedCentralPubMed Balaj L et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180PubMedCentralPubMed
33.
go back to reference Wubbolts R et al (2003) Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 278(13):10963–10972PubMed Wubbolts R et al (2003) Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 278(13):10963–10972PubMed
34.
go back to reference Laulagnier K et al (2004) Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 380(Pt 1):161–171PubMedCentralPubMed Laulagnier K et al (2004) Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 380(Pt 1):161–171PubMedCentralPubMed
35.
go back to reference Subra C et al (2007) Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89(2):205–212PubMed Subra C et al (2007) Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89(2):205–212PubMed
36.
go back to reference Escola JM et al (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273(32):20121–20127PubMed Escola JM et al (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273(32):20121–20127PubMed
37.
go back to reference Mittelbrunn M et al (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282PubMedCentralPubMed Mittelbrunn M et al (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282PubMedCentralPubMed
38.
go back to reference Montecalvo A et al (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119(3):756–766PubMedCentralPubMed Montecalvo A et al (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119(3):756–766PubMedCentralPubMed
39.
go back to reference Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21(1):77–91PubMed Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21(1):77–91PubMed
40.
go back to reference Hanson PI, Shim S, Merrill SA (2009) Cell biology of the ESCRT machinery. Curr Opin Cell Biol 21(4):568–574PubMed Hanson PI, Shim S, Merrill SA (2009) Cell biology of the ESCRT machinery. Curr Opin Cell Biol 21(4):568–574PubMed
42.
go back to reference Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458(7237):445–452PubMed Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458(7237):445–452PubMed
43.
go back to reference Thery C et al (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166(12):7309–7318PubMed Thery C et al (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166(12):7309–7318PubMed
44.
go back to reference Mathivanan S, Simpson RJ (2009) ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9(21):4997–5000PubMed Mathivanan S, Simpson RJ (2009) ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9(21):4997–5000PubMed
45.
go back to reference Tamai K et al (2010) Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem Biophys Res Commun 399(3):384–390PubMed Tamai K et al (2010) Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem Biophys Res Commun 399(3):384–390PubMed
46.
go back to reference Colombo M et al (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126(Pt 24):5553–5565PubMed Colombo M et al (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126(Pt 24):5553–5565PubMed
47.
go back to reference Baietti MF et al (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14(7):677–685PubMed Baietti MF et al (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14(7):677–685PubMed
48.
go back to reference Odorizzi G (2006) The multiple personalities of Alix. J Cell Sci 119(Pt 15):3025–3032PubMed Odorizzi G (2006) The multiple personalities of Alix. J Cell Sci 119(Pt 15):3025–3032PubMed
49.
go back to reference Stuffers S et al (2009) Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10(7):925–937PubMed Stuffers S et al (2009) Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10(7):925–937PubMed
50.
go back to reference Trajkovic K et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247PubMed Trajkovic K et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247PubMed
51.
go back to reference Yuyama K et al (2012) Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. J Biol Chem 287(14):10977–10989PubMedCentralPubMed Yuyama K et al (2012) Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. J Biol Chem 287(14):10977–10989PubMedCentralPubMed
52.
go back to reference Kosaka N et al (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285(23):17442–17452PubMedCentralPubMed Kosaka N et al (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285(23):17442–17452PubMedCentralPubMed
53.
go back to reference Kajimoto T et al (2013) Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat Commun 4:2712PubMed Kajimoto T et al (2013) Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat Commun 4:2712PubMed
54.
go back to reference Laulagnier K et al (2004) PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS Lett 572(1–3):11–14PubMed Laulagnier K et al (2004) PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS Lett 572(1–3):11–14PubMed
55.
go back to reference Parolini I et al (1996) Signal transduction and glycophosphatidylinositol-linked proteins (lyn, lck, CD4, CD45, G proteins, and CD55) selectively localize in Triton-insoluble plasma membrane domains of human leukemic cell lines and normal granulocytes. Blood 87(9):3783–3794PubMed Parolini I et al (1996) Signal transduction and glycophosphatidylinositol-linked proteins (lyn, lck, CD4, CD45, G proteins, and CD55) selectively localize in Triton-insoluble plasma membrane domains of human leukemic cell lines and normal granulocytes. Blood 87(9):3783–3794PubMed
56.
go back to reference Salzer U, Prohaska R (2001) Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood 97(4):1141–1143PubMed Salzer U, Prohaska R (2001) Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood 97(4):1141–1143PubMed
57.
go back to reference Snyers L, Umlauf E, Prohaska R (1998) Oligomeric nature of the integral membrane protein stomatin. J Biol Chem 273(27):17221–17226PubMed Snyers L, Umlauf E, Prohaska R (1998) Oligomeric nature of the integral membrane protein stomatin. J Biol Chem 273(27):17221–17226PubMed
58.
go back to reference de Gassart A et al (2003) Lipid raft-associated protein sorting in exosomes. Blood 102(13):4336–4344PubMed de Gassart A et al (2003) Lipid raft-associated protein sorting in exosomes. Blood 102(13):4336–4344PubMed
59.
go back to reference Fang Y et al (2007) Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 5(6):e158PubMedCentralPubMed Fang Y et al (2007) Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 5(6):e158PubMedCentralPubMed
60.
go back to reference Vidal M, Mangeat P, Hoekstra D (1997) Aggregation reroutes molecules from a recycling to a vesicle-mediated secretion pathway during reticulocyte maturation. J Cell Sci 110(Pt 16):1867–1877PubMed Vidal M, Mangeat P, Hoekstra D (1997) Aggregation reroutes molecules from a recycling to a vesicle-mediated secretion pathway during reticulocyte maturation. J Cell Sci 110(Pt 16):1867–1877PubMed
61.
go back to reference Zhu H et al (2013) Mutation of SIMPLE in Charcot-Marie-Tooth 1C alters production of exosomes. Mol Biol Cell 24(11):1619–1637, S1–S3 Zhu H et al (2013) Mutation of SIMPLE in Charcot-Marie-Tooth 1C alters production of exosomes. Mol Biol Cell 24(11):1619–1637, S1–S3
62.
go back to reference Yu X, Harris SL, Levine AJ (2006) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66(9):4795–4801PubMed Yu X, Harris SL, Levine AJ (2006) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66(9):4795–4801PubMed
63.
go back to reference Ghossoub R et al (2014) Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun 5:3477PubMed Ghossoub R et al (2014) Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun 5:3477PubMed
64.
go back to reference Halkein J et al (2013) MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest 123(5):2143–2154PubMedCentralPubMed Halkein J et al (2013) MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest 123(5):2143–2154PubMedCentralPubMed
65.
go back to reference Hergenreider E et al (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14(3):249–256PubMed Hergenreider E et al (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14(3):249–256PubMed
66.
go back to reference Montecalvo A et al (2008) Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol 180(5):3081–3090PubMed Montecalvo A et al (2008) Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol 180(5):3081–3090PubMed
67.
68.
go back to reference Nolte-’t Hoen EN et al (2012) Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res 40(18):9272–9285PubMedCentralPubMed Nolte-’t Hoen EN et al (2012) Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res 40(18):9272–9285PubMedCentralPubMed
69.
go back to reference Zhang Y et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39(1):133–144PubMed Zhang Y et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39(1):133–144PubMed
70.
go back to reference Pigati L et al (2010) Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One 5(10):e13515PubMedCentralPubMed Pigati L et al (2010) Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One 5(10):e13515PubMedCentralPubMed
71.
go back to reference Villarroya-Beltri C et al (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980PubMedCentralPubMed Villarroya-Beltri C et al (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980PubMedCentralPubMed
72.
go back to reference Munro TP et al (1999) Mutational analysis of a heterogeneous nuclear ribonucleoprotein A2 response element for RNA trafficking. J Biol Chem 274(48):34389–34395PubMed Munro TP et al (1999) Mutational analysis of a heterogeneous nuclear ribonucleoprotein A2 response element for RNA trafficking. J Biol Chem 274(48):34389–34395PubMed
73.
go back to reference Hoek KS et al (1998) hnRNP A2 selectively binds the cytoplasmic transport sequence of myelin basic protein mRNA. Biochemistry 37(19):7021–7029PubMed Hoek KS et al (1998) hnRNP A2 selectively binds the cytoplasmic transport sequence of myelin basic protein mRNA. Biochemistry 37(19):7021–7029PubMed
74.
go back to reference Levesque K et al (2006) Trafficking of HIV-1 RNA is mediated by heterogeneous nuclear ribonucleoprotein A2 expression and impacts on viral assembly. Traffic 7(9):1177–1193PubMed Levesque K et al (2006) Trafficking of HIV-1 RNA is mediated by heterogeneous nuclear ribonucleoprotein A2 expression and impacts on viral assembly. Traffic 7(9):1177–1193PubMed
75.
go back to reference Beriault V et al (2004) A late role for the association of hnRNP A2 with the HIV-1 hnRNP A2 response elements in genomic RNA, Gag, and Vpr localization. J Biol Chem 279(42):44141–44153PubMed Beriault V et al (2004) A late role for the association of hnRNP A2 with the HIV-1 hnRNP A2 response elements in genomic RNA, Gag, and Vpr localization. J Biol Chem 279(42):44141–44153PubMed
76.
go back to reference Filipenko NR et al (2004) Annexin A2 is a novel RNA-binding protein. J Biol Chem 279(10):8723–8731PubMed Filipenko NR et al (2004) Annexin A2 is a novel RNA-binding protein. J Biol Chem 279(10):8723–8731PubMed
77.
go back to reference Hollas H et al (2006) Annexin A2 recognises a specific region in the 3′-UTR of its cognate messenger RNA. Biochim Biophys Acta 1763(11):1325–1334PubMed Hollas H et al (2006) Annexin A2 recognises a specific region in the 3′-UTR of its cognate messenger RNA. Biochim Biophys Acta 1763(11):1325–1334PubMed
78.
go back to reference Mickleburgh I et al (2005) Annexin A2 binds to the localization signal in the 3′ untranslated region of c-myc mRNA. FEBS J 272(2):413–421PubMed Mickleburgh I et al (2005) Annexin A2 binds to the localization signal in the 3′ untranslated region of c-myc mRNA. FEBS J 272(2):413–421PubMed
79.
go back to reference Parolini I et al (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284(49):34211–34222PubMedCentralPubMed Parolini I et al (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284(49):34211–34222PubMedCentralPubMed
80.
go back to reference Hedlund M et al (2011) Thermal- and oxidative stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. PLoS One 6(2):e16899PubMedCentralPubMed Hedlund M et al (2011) Thermal- and oxidative stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. PLoS One 6(2):e16899PubMedCentralPubMed
81.
go back to reference Eldh M et al (2010) Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One 5(12):e15353PubMedCentralPubMed Eldh M et al (2010) Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One 5(12):e15353PubMedCentralPubMed
82.
go back to reference King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12:421PubMedCentralPubMed King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12:421PubMedCentralPubMed
83.
go back to reference Raposo G et al (1997) Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell 8(12):2631–2645PubMedCentralPubMed Raposo G et al (1997) Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell 8(12):2631–2645PubMedCentralPubMed
84.
go back to reference Savina A et al (2005) Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6(2):131–143PubMed Savina A et al (2005) Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6(2):131–143PubMed
85.
go back to reference Faure J et al (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31(4):642–648PubMed Faure J et al (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31(4):642–648PubMed
86.
go back to reference Blanchard N et al (2002) TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol 168(7):3235–3241PubMed Blanchard N et al (2002) TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol 168(7):3235–3241PubMed
87.
go back to reference Malik ZA et al (2013) Cardiac myocyte exosomes: stability, HSP60, and proteomics. Am J Physiol Heart Circ Physiol 304(7):H954–H965PubMedCentralPubMed Malik ZA et al (2013) Cardiac myocyte exosomes: stability, HSP60, and proteomics. Am J Physiol Heart Circ Physiol 304(7):H954–H965PubMedCentralPubMed
88.
go back to reference Genneback N et al (2013) Growth factor stimulation of cardiomyocytes induces changes in the transcriptional contents of secreted exosomes. J Extracell Vesicles. doi:10.3402/jev.v2i0.20167 Genneback N et al (2013) Growth factor stimulation of cardiomyocytes induces changes in the transcriptional contents of secreted exosomes. J Extracell Vesicles. doi:10.​3402/​jev.​v2i0.​20167
89.
go back to reference Waldenstrom A et al (2012) Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One 7(4):e34653PubMedCentralPubMed Waldenstrom A et al (2012) Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One 7(4):e34653PubMedCentralPubMed
90.
go back to reference Manole CG et al (2011) Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. J Cell Mol Med 15(11):2284–2296PubMed Manole CG et al (2011) Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. J Cell Mol Med 15(11):2284–2296PubMed
91.
go back to reference Barile L et al (2012) Ultrastructural evidence of exosomes secretion by progenitor cells in adult mouse myocardium and adult human cardiospheres. J Biomed Biotechnol 2012:354605PubMedCentralPubMed Barile L et al (2012) Ultrastructural evidence of exosomes secretion by progenitor cells in adult mouse myocardium and adult human cardiospheres. J Biomed Biotechnol 2012:354605PubMedCentralPubMed
92.
go back to reference Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525PubMed Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525PubMed
93.
go back to reference Sonnichsen B et al (2000) Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol 149(4):901–914PubMedCentralPubMed Sonnichsen B et al (2000) Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol 149(4):901–914PubMedCentralPubMed
94.
go back to reference Hsu C et al (2010) Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 189(2):223–232PubMedCentralPubMed Hsu C et al (2010) Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 189(2):223–232PubMedCentralPubMed
95.
go back to reference Koles K et al (2012) Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J Biol Chem 287(20):16820–16834PubMedCentralPubMed Koles K et al (2012) Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J Biol Chem 287(20):16820–16834PubMedCentralPubMed
96.
go back to reference Savina A, Vidal M, Colombo MI (2002) The exosome pathway in K562 cells is regulated by Rab11. J Cell Sci 115(Pt 12):2505–2515PubMed Savina A, Vidal M, Colombo MI (2002) The exosome pathway in K562 cells is regulated by Rab11. J Cell Sci 115(Pt 12):2505–2515PubMed
97.
go back to reference Amzallag N et al (2004) TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem 279(44):46104–46112PubMed Amzallag N et al (2004) TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem 279(44):46104–46112PubMed
98.
go back to reference Nazarenko I et al (2010) Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 70(4):1668–1678PubMed Nazarenko I et al (2010) Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 70(4):1668–1678PubMed
99.
go back to reference Hwang I, Shen X, Sprent J (2003) Direct stimulation of naive T cells by membrane vesicles from antigen-presenting cells: distinct roles for CD54 and B7 molecules. Proc Natl Acad Sci USA 100(11):6670–6675PubMedCentralPubMed Hwang I, Shen X, Sprent J (2003) Direct stimulation of naive T cells by membrane vesicles from antigen-presenting cells: distinct roles for CD54 and B7 molecules. Proc Natl Acad Sci USA 100(11):6670–6675PubMedCentralPubMed
100.
go back to reference Morelli AE et al (2004) Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104(10):3257–3266PubMed Morelli AE et al (2004) Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104(10):3257–3266PubMed
101.
go back to reference Miyanishi M et al (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450(7168):435–439PubMed Miyanishi M et al (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450(7168):435–439PubMed
102.
103.
go back to reference Barres C et al (2010) Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood 115(3):696–705PubMed Barres C et al (2010) Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood 115(3):696–705PubMed
104.
go back to reference Svensson KJ et al (2013) Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 288(24):17713–17724PubMedCentralPubMed Svensson KJ et al (2013) Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 288(24):17713–17724PubMedCentralPubMed
105.
go back to reference Gallo A et al (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 7(3):e30679PubMedCentralPubMed Gallo A et al (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 7(3):e30679PubMedCentralPubMed
106.
go back to reference Gupta S, Knowlton AA (2007) HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol 292(6):H3052–H3056PubMed Gupta S, Knowlton AA (2007) HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol 292(6):H3052–H3056PubMed
107.
go back to reference Quaini F et al (1994) End-stage cardiac failure in humans is coupled with the induction of proliferating cell nuclear antigen and nuclear mitotic division in ventricular myocytes. Circ Res 75(6):1050–1063PubMed Quaini F et al (1994) End-stage cardiac failure in humans is coupled with the induction of proliferating cell nuclear antigen and nuclear mitotic division in ventricular myocytes. Circ Res 75(6):1050–1063PubMed
108.
go back to reference Yu X et al (2012) Mechanism of TNF-alpha autocrine effects in hypoxic cardiomyocytes: initiated by hypoxia inducible factor 1alpha, presented by exosomes. J Mol Cell Cardiol 53(6):848–857PubMed Yu X et al (2012) Mechanism of TNF-alpha autocrine effects in hypoxic cardiomyocytes: initiated by hypoxia inducible factor 1alpha, presented by exosomes. J Mol Cell Cardiol 53(6):848–857PubMed
109.
go back to reference Zhang X et al (2012) Hsp20 functions as a novel cardiokine in promoting angiogenesis via activation of VEGFR2. PLoS One 7(3):e32765PubMedCentralPubMed Zhang X et al (2012) Hsp20 functions as a novel cardiokine in promoting angiogenesis via activation of VEGFR2. PLoS One 7(3):e32765PubMedCentralPubMed
110.
go back to reference Kuwabara Y et al (2011) Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4(4):446–454PubMed Kuwabara Y et al (2011) Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4(4):446–454PubMed
111.
go back to reference Cheng Y et al (2012) A translational study of urine miRNAs in acute myocardial infarction. J Mol Cell Cardiol 53(5):668–676PubMed Cheng Y et al (2012) A translational study of urine miRNAs in acute myocardial infarction. J Mol Cell Cardiol 53(5):668–676PubMed
112.
go back to reference Aurora AB et al (2012) MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca(2)(+) overload and cell death. J Clin Invest 122(4):1222–1232PubMedCentralPubMed Aurora AB et al (2012) MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca(2)(+) overload and cell death. J Clin Invest 122(4):1222–1232PubMedCentralPubMed
113.
go back to reference van Balkom BW et al (2013) Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121(19):3997–4006, S1–S15 van Balkom BW et al (2013) Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121(19):3997–4006, S1–S15
114.
go back to reference Lu HQ et al (2013) Circulating miR-214 is associated with the severity of coronary artery disease. J Geriatr Cardiol 10(1):34–38PubMedCentralPubMed Lu HQ et al (2013) Circulating miR-214 is associated with the severity of coronary artery disease. J Geriatr Cardiol 10(1):34–38PubMedCentralPubMed
115.
go back to reference Feng Y et al (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 9(2):e88685PubMedCentralPubMed Feng Y et al (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 9(2):e88685PubMedCentralPubMed
116.
go back to reference Zampetaki A et al (2012) Prospective study on circulating MicroRNAs and risk of myocardial infarction. J Am Coll Cardiol 60(4):290–299PubMed Zampetaki A et al (2012) Prospective study on circulating MicroRNAs and risk of myocardial infarction. J Am Coll Cardiol 60(4):290–299PubMed
117.
go back to reference Rautou PE et al (2011) Microparticles, vascular function, and atherothrombosis. Circ Res 109(5):593–606PubMed Rautou PE et al (2011) Microparticles, vascular function, and atherothrombosis. Circ Res 109(5):593–606PubMed
118.
go back to reference Sahoo S et al (2011) Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res 109(7):724–728PubMedCentralPubMed Sahoo S et al (2011) Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res 109(7):724–728PubMedCentralPubMed
119.
go back to reference Mocharla P et al (2013) AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood 121(1):226–236PubMed Mocharla P et al (2013) AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood 121(1):226–236PubMed
120.
go back to reference De Rosa S et al (2011) Transcoronary concentration gradients of circulating microRNAs. Circulation 124(18):1936–1944PubMed De Rosa S et al (2011) Transcoronary concentration gradients of circulating microRNAs. Circulation 124(18):1936–1944PubMed
121.
go back to reference Chen J et al (2013) mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res 112(12):1557–1566PubMedCentralPubMed Chen J et al (2013) mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res 112(12):1557–1566PubMedCentralPubMed
122.
go back to reference Huang ZP et al (2013) MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res 112(9):1234–1243PubMedCentralPubMed Huang ZP et al (2013) MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res 112(9):1234–1243PubMedCentralPubMed
123.
go back to reference Eulalio A et al (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492(7429):376–381PubMed Eulalio A et al (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492(7429):376–381PubMed
124.
go back to reference Sayed D et al (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100(3):416–424PubMed Sayed D et al (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100(3):416–424PubMed
125.
go back to reference Busk PK, Cirera S (2010) MicroRNA profiling in early hypertrophic growth of the left ventricle in rats. Biochem Biophys Res Commun 396(4):989–993PubMed Busk PK, Cirera S (2010) MicroRNA profiling in early hypertrophic growth of the left ventricle in rats. Biochem Biophys Res Commun 396(4):989–993PubMed
127.
go back to reference Wei C et al (2013) NF-kappaB mediated miR-26a regulation in cardiac fibrosis. J Cell Physiol 228(7):1433–1442PubMed Wei C et al (2013) NF-kappaB mediated miR-26a regulation in cardiac fibrosis. J Cell Physiol 228(7):1433–1442PubMed
129.
go back to reference Boon RA et al (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495(7439):107–110PubMed Boon RA et al (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495(7439):107–110PubMed
130.
go back to reference Fiedler J, Thum T (2013) MicroRNAs in myocardial infarction. Arterioscler Thromb Vasc Biol 33(2):201–205PubMed Fiedler J, Thum T (2013) MicroRNAs in myocardial infarction. Arterioscler Thromb Vasc Biol 33(2):201–205PubMed
131.
go back to reference Bang C et al (2014) Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 124(5):2136–2146PubMedCentralPubMed Bang C et al (2014) Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 124(5):2136–2146PubMedCentralPubMed
133.
go back to reference Timmers L et al (2007) Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res 1(2):129–137PubMed Timmers L et al (2007) Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res 1(2):129–137PubMed
134.
go back to reference Lai RC et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222PubMed Lai RC et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222PubMed
135.
go back to reference Arslan F et al (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3 K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10(3):301–312PubMed Arslan F et al (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3 K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10(3):301–312PubMed
136.
go back to reference Chimenti I et al (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106(5):971–980PubMedCentralPubMed Chimenti I et al (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106(5):971–980PubMedCentralPubMed
137.
go back to reference Crisostomo PR et al (2008) Embryonic stem cells attenuate myocardial dysfunction and inflammation after surgical global ischemia via paracrine actions. Am J Physiol Heart Circ Physiol 295(4):H1726–H1735PubMedCentralPubMed Crisostomo PR et al (2008) Embryonic stem cells attenuate myocardial dysfunction and inflammation after surgical global ischemia via paracrine actions. Am J Physiol Heart Circ Physiol 295(4):H1726–H1735PubMedCentralPubMed
138.
go back to reference Gnecchi M et al (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20(6):661–669PubMed Gnecchi M et al (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20(6):661–669PubMed
139.
go back to reference Salomon C et al (2013) Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One 8(7):e68451PubMedCentralPubMed Salomon C et al (2013) Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One 8(7):e68451PubMedCentralPubMed
140.
go back to reference Vrijsen KR et al (2010) Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. J Cell Mol Med 14(5):1064–1070PubMed Vrijsen KR et al (2010) Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. J Cell Mol Med 14(5):1064–1070PubMed
141.
go back to reference Xu Q et al (2012) Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease. J Am Coll Cardiol 59(23):2107–2117PubMed Xu Q et al (2012) Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease. J Am Coll Cardiol 59(23):2107–2117PubMed
142.
go back to reference Jakob P et al (2012) Loss of angiomiR-126 and 130a in angiogenic early outgrowth cells from patients with chronic heart failure: role for impaired in vivo neovascularization and cardiac repair capacity. Circulation 126(25):2962–2975PubMed Jakob P et al (2012) Loss of angiomiR-126 and 130a in angiogenic early outgrowth cells from patients with chronic heart failure: role for impaired in vivo neovascularization and cardiac repair capacity. Circulation 126(25):2962–2975PubMed
143.
go back to reference Tano N, Kim HW, Ashraf M (2011) microRNA-150 regulates mobilization and migration of bone marrow-derived mononuclear cells by targeting Cxcr4. PLoS One 6(10):e23114PubMedCentralPubMed Tano N, Kim HW, Ashraf M (2011) microRNA-150 regulates mobilization and migration of bone marrow-derived mononuclear cells by targeting Cxcr4. PLoS One 6(10):e23114PubMedCentralPubMed
145.
go back to reference Malliaras K et al (2013) Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med 5(2):191–209PubMedCentralPubMed Malliaras K et al (2013) Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med 5(2):191–209PubMedCentralPubMed
146.
go back to reference Asahara T et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228PubMed Asahara T et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228PubMed
147.
go back to reference Linke A et al (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA 102(25):8966–8971PubMedCentralPubMed Linke A et al (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA 102(25):8966–8971PubMedCentralPubMed
148.
go back to reference Jujo K et al (2010) CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proc Natl Acad Sci USA 107(24):11008–11013PubMedCentralPubMed Jujo K et al (2010) CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proc Natl Acad Sci USA 107(24):11008–11013PubMedCentralPubMed
149.
go back to reference Barile L et al (2011) Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heart. J Cell Mol Med 15(1):63–71PubMed Barile L et al (2011) Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heart. J Cell Mol Med 15(1):63–71PubMed
150.
go back to reference Leri A, Kajstura J, Anversa P (2011) Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res 109(8):941–961PubMedCentralPubMed Leri A, Kajstura J, Anversa P (2011) Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res 109(8):941–961PubMedCentralPubMed
151.
go back to reference Yoon CH et al (2005) Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 112(11):1618–1627PubMed Yoon CH et al (2005) Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 112(11):1618–1627PubMed
152.
go back to reference Losordo DW et al (2011) Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res 109(4):428–436PubMedCentralPubMed Losordo DW et al (2011) Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res 109(4):428–436PubMedCentralPubMed
153.
go back to reference Bolli R et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857PubMedCentralPubMed Bolli R et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857PubMedCentralPubMed
154.
go back to reference Chugh AR et al (2012) Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 126(11 Suppl 1):S54–S64PubMedCentralPubMed Chugh AR et al (2012) Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 126(11 Suppl 1):S54–S64PubMedCentralPubMed
155.
go back to reference Williams AR et al (2013) Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127(2):213–223PubMedCentralPubMed Williams AR et al (2013) Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127(2):213–223PubMedCentralPubMed
156.
go back to reference Leistner DM et al (2011) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): final 5-year results suggest long-term safety and efficacy. Clin Res Cardiol 100(10):925–934PubMed Leistner DM et al (2011) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): final 5-year results suggest long-term safety and efficacy. Clin Res Cardiol 100(10):925–934PubMed
157.
go back to reference Makkar RR et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379(9819):895–904PubMedCentralPubMed Makkar RR et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379(9819):895–904PubMedCentralPubMed
158.
go back to reference Wollert KC, Drexler H (2010) Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat Rev Cardiol 7(4):204–215PubMed Wollert KC, Drexler H (2010) Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat Rev Cardiol 7(4):204–215PubMed
159.
go back to reference Tongers J, Losordo DW, Landmesser U (2011) Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur Heart J 32(10):1197–1206PubMedCentralPubMed Tongers J, Losordo DW, Landmesser U (2011) Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur Heart J 32(10):1197–1206PubMedCentralPubMed
160.
go back to reference Ratajczak MZ et al (2012) Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia 26(6):1166–1173PubMed Ratajczak MZ et al (2012) Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia 26(6):1166–1173PubMed
162.
go back to reference Wyrick DL, Smith SD, Dassinger MS (2014) Surgeon as educator: bedside ultrasound in hypertrophic pyloric stenosis. J Surg Educ 71(6):896–898PubMed Wyrick DL, Smith SD, Dassinger MS (2014) Surgeon as educator: bedside ultrasound in hypertrophic pyloric stenosis. J Surg Educ 71(6):896–898PubMed
163.
go back to reference Li TS et al (2012) Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol 59(10):942–953PubMedCentralPubMed Li TS et al (2012) Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol 59(10):942–953PubMedCentralPubMed
165.
go back to reference Marban E (2014) Breakthroughs in cell therapy for heart disease: focus on cardiosphere-derived cells. Mayo Clin Proc 89(6):850–858PubMed Marban E (2014) Breakthroughs in cell therapy for heart disease: focus on cardiosphere-derived cells. Mayo Clin Proc 89(6):850–858PubMed
166.
go back to reference Mackie AR et al (2012) Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circ Res 111(3):312–321PubMedCentralPubMed Mackie AR et al (2012) Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circ Res 111(3):312–321PubMedCentralPubMed
167.
go back to reference Lee C et al (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126(22):2601–2611PubMedCentralPubMed Lee C et al (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126(22):2601–2611PubMedCentralPubMed
168.
go back to reference Sahoo S, Losordo DW (2014) Exosomes and cardiac repair after myocardial infarction. Circ Res 114(2):333–344PubMed Sahoo S, Losordo DW (2014) Exosomes and cardiac repair after myocardial infarction. Circ Res 114(2):333–344PubMed
169.
go back to reference Chen L et al (2013) Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun 431(3):566–571PubMedCentralPubMed Chen L et al (2013) Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun 431(3):566–571PubMedCentralPubMed
170.
go back to reference Matsumoto S et al (2013) Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res 113(3):322–326PubMed Matsumoto S et al (2013) Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res 113(3):322–326PubMed
171.
go back to reference Gray WD et al (2014) Identification of therapeutic covariant microRNA clusters in hypoxia treated cardiac progenitor cell exosomes using systems biology. Circ Res. pii: CIRCRESAHA.114.304360 Gray WD et al (2014) Identification of therapeutic covariant microRNA clusters in hypoxia treated cardiac progenitor cell exosomes using systems biology. Circ Res. pii: CIRCRESAHA.114.304360
172.
go back to reference Barile L et al (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103(4):530–541PubMed Barile L et al (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103(4):530–541PubMed
Metadata
Title
Exosome and its roles in cardiovascular diseases
Authors
Wang Zhao
Xi-Long Zheng
Shui-Ping Zhao
Publication date
01-05-2015
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 3/2015
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-014-9469-0

Other articles of this Issue 3/2015

Heart Failure Reviews 3/2015 Go to the issue