Skip to main content
Top
Published in: Heart Failure Reviews 3/2015

01-05-2015

Transient outward potassium channel: a heart failure mediator

Authors: Qianwen He, Ying Feng, Yanggan Wang

Published in: Heart Failure Reviews | Issue 3/2015

Login to get access

Abstract

Transient outward K+ current (I to) plays a crucial role in shaping the early phase of repolarization and setting the plateau voltage level of action potential. As a result, it extensively affects membrane current flow in the plateau window. A great body of evidence illustrates a transmural gradient of I to within ventricular wall with much higher density in epicardial than endocardial myocytes, which is important for the physiological ventricular repolarization. In heart failure (HF), this gradient is diminished due to a greater reduction of I to in epicardial myocytes. This attenuates the transmural gradient of early repolarization, facilitating conduction of abnormal impulses originated in the epicardium. In addition, I to reduction prolongs action potential duration and increases intercellular Ca2+, thus affecting Ca2+ handling and the excitation–contraction coupling. Furthermore, increased intercellular Ca2+ could activate CaMKII and calcineurin whose role in cardiac hypertrophy and HF development has been well established. Based on the impact of I to reduction on electrical activity, signal conduction, calcium handling and cardiac function, restoration of I to is likely a potential therapeutic strategy for HF. In this review, we summarize the physiological and pathological role of cardiac I to channel and the potential impact of I to restoration on HF therapy with an emphasis of recent novel findings.
Literature
1.
go back to reference Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2014) Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129(3):e28–e292PubMed Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2014) Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129(3):e28–e292PubMed
2.
go back to reference Roger VL, Weston SA, Redfield MM, Hellermann-Homan JP, Killian J, Yawn BP, Jacobsen SJ (2004) Trends in heart failure incidence and survival in a community-based population. JAMA 292(3):344–350PubMed Roger VL, Weston SA, Redfield MM, Hellermann-Homan JP, Killian J, Yawn BP, Jacobsen SJ (2004) Trends in heart failure incidence and survival in a community-based population. JAMA 292(3):344–350PubMed
3.
go back to reference Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, Murabito JM, Vasan RS (2002) Long-term trends in the incidence of and survival with heart failure. N Engl J Med 347(18):1397–1402PubMed Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, Murabito JM, Vasan RS (2002) Long-term trends in the incidence of and survival with heart failure. N Engl J Med 347(18):1397–1402PubMed
4.
go back to reference Suter LG, Li SX, Grady JN, Lin Z, Wang Y, Bhat KR, Turkmani D, Spivack SB, Lindenauer PK, Merrill AR, Drye EE, Krumholz HM, Bernheim SM (2014) National patterns of risk-standardized mortality and readmission after hospitalization for acute myocardial infarction, heart failure, and pneumonia: update on publicly reported outcomes measures based on the 2013 release. J Gen Intern Med 29(10):1333–1340PubMedCentralPubMed Suter LG, Li SX, Grady JN, Lin Z, Wang Y, Bhat KR, Turkmani D, Spivack SB, Lindenauer PK, Merrill AR, Drye EE, Krumholz HM, Bernheim SM (2014) National patterns of risk-standardized mortality and readmission after hospitalization for acute myocardial infarction, heart failure, and pneumonia: update on publicly reported outcomes measures based on the 2013 release. J Gen Intern Med 29(10):1333–1340PubMedCentralPubMed
6.
go back to reference Dudel J, Peper K, Rudel R, Trautwein W (1967) The dynamic chloride component of membrane current in Purkinje fibers. Pflugers Arch Gesamte Physiol Menschen Tiere 295(3):197–212PubMed Dudel J, Peper K, Rudel R, Trautwein W (1967) The dynamic chloride component of membrane current in Purkinje fibers. Pflugers Arch Gesamte Physiol Menschen Tiere 295(3):197–212PubMed
8.
go back to reference Peper K, Trautwein W (1968) A membrane current related to the plateau of the action potential of Purkinje fibers. Pflugers Arch 303(2):108–123PubMed Peper K, Trautwein W (1968) A membrane current related to the plateau of the action potential of Purkinje fibers. Pflugers Arch 303(2):108–123PubMed
9.
go back to reference Josephson IR, Sanchez-Chapula J, Brown AM (1984) Early outward current in rat single ventricular cells. Circ Res 54(2):157–162PubMed Josephson IR, Sanchez-Chapula J, Brown AM (1984) Early outward current in rat single ventricular cells. Circ Res 54(2):157–162PubMed
10.
go back to reference McAllister RE, Noble D, Tsien RW (1975) Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol 251(1):1–59PubMedCentralPubMed McAllister RE, Noble D, Tsien RW (1975) Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol 251(1):1–59PubMedCentralPubMed
11.
go back to reference Giles WR, van Ginneken AC (1985) A transient outward current in isolated cells from the crista terminalis of rabbit heart. J Physiol 368:243–264PubMedCentralPubMed Giles WR, van Ginneken AC (1985) A transient outward current in isolated cells from the crista terminalis of rabbit heart. J Physiol 368:243–264PubMedCentralPubMed
12.
go back to reference Fedida D, Giles WR (1991) Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J Physiol 442:191–209PubMedCentralPubMed Fedida D, Giles WR (1991) Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J Physiol 442:191–209PubMedCentralPubMed
13.
go back to reference Fozzard HA, Hiraoka M (1973) The positive dynamic current and its inactivation properties in cardiac Purkinje fibres. J Physiol 234(3):569–586PubMedCentralPubMed Fozzard HA, Hiraoka M (1973) The positive dynamic current and its inactivation properties in cardiac Purkinje fibres. J Physiol 234(3):569–586PubMedCentralPubMed
14.
go back to reference Coraboeuf E, Carmeliet E (1982) Existence of two transient outward currents in sheep cardiac Purkinje fibers. Pflugers Arch 392(4):352–359PubMed Coraboeuf E, Carmeliet E (1982) Existence of two transient outward currents in sheep cardiac Purkinje fibers. Pflugers Arch 392(4):352–359PubMed
15.
go back to reference Marban E, Tsien RW (1982) Effects of nystatin-mediated intracellular ion substitution on membrane currents in calf purkinje fibres. J Physiol 329:569–587PubMedCentralPubMed Marban E, Tsien RW (1982) Effects of nystatin-mediated intracellular ion substitution on membrane currents in calf purkinje fibres. J Physiol 329:569–587PubMedCentralPubMed
16.
go back to reference Kass RS, Scheuer T, Malloy KJ (1982) Block of outward current in cardiac Purkinje fibers by injection of quaternary ammonium ions. J Gen Physiol 79(6):1041–1063PubMedCentralPubMed Kass RS, Scheuer T, Malloy KJ (1982) Block of outward current in cardiac Purkinje fibers by injection of quaternary ammonium ions. J Gen Physiol 79(6):1041–1063PubMedCentralPubMed
17.
go back to reference Kenyon JL, Gibbons WR (1979) 4-Aminopyridine and the early outward current of sheep cardiac Purkinje fibers. J Gen Physiol 73(2):139–157PubMed Kenyon JL, Gibbons WR (1979) 4-Aminopyridine and the early outward current of sheep cardiac Purkinje fibers. J Gen Physiol 73(2):139–157PubMed
18.
go back to reference Tseng GN, Hoffman BF (1989) Two components of transient outward current in canine ventricular myocytes. Circ Res 64(4):633–647PubMed Tseng GN, Hoffman BF (1989) Two components of transient outward current in canine ventricular myocytes. Circ Res 64(4):633–647PubMed
19.
go back to reference Zygmunt AC, Gibbons WR (1991) Calcium-activated chloride current in rabbit ventricular myocytes. Circ Res 68(2):424–437PubMed Zygmunt AC, Gibbons WR (1991) Calcium-activated chloride current in rabbit ventricular myocytes. Circ Res 68(2):424–437PubMed
20.
go back to reference Apkon M, Nerbonne JM (1991) Characterization of two distinct depolarization-activated K+ currents in isolated adult rat ventricular myocytes. J Gen Physiol 97(5):973–1011PubMed Apkon M, Nerbonne JM (1991) Characterization of two distinct depolarization-activated K+ currents in isolated adult rat ventricular myocytes. J Gen Physiol 97(5):973–1011PubMed
21.
go back to reference Kukushkin NI, Gainullin RZ, Sosunov EA (1983) Transient outward current and rate dependence of action potential duration in rabbit cardiac ventricular muscle. Pflugers Arch 399(2):87–92PubMed Kukushkin NI, Gainullin RZ, Sosunov EA (1983) Transient outward current and rate dependence of action potential duration in rabbit cardiac ventricular muscle. Pflugers Arch 399(2):87–92PubMed
22.
go back to reference Tseng GN, Jiang M, Yao JA (1996) Reverse use dependence of Kv4.2 blockade by 4-aminopyridine. J Pharmacol Exp Ther 279(2):865–876PubMed Tseng GN, Jiang M, Yao JA (1996) Reverse use dependence of Kv4.2 blockade by 4-aminopyridine. J Pharmacol Exp Ther 279(2):865–876PubMed
23.
go back to reference Wettwer E, Amos G, Gath J, Zerkowski HR, Reidemeister JC, Ravens U (1993) Transient outward current in human and rat ventricular myocytes. Cardiovasc Res 27(9):1662–1669PubMed Wettwer E, Amos G, Gath J, Zerkowski HR, Reidemeister JC, Ravens U (1993) Transient outward current in human and rat ventricular myocytes. Cardiovasc Res 27(9):1662–1669PubMed
24.
go back to reference Greenstein JL, Wu R, Po S, Tomaselli GF, Winslow RL (2000) Role of the calcium-independent transient outward current I to1 in shaping action potential morphology and duration. Circ Res 87(11):1026–1033PubMed Greenstein JL, Wu R, Po S, Tomaselli GF, Winslow RL (2000) Role of the calcium-independent transient outward current I to1 in shaping action potential morphology and duration. Circ Res 87(11):1026–1033PubMed
25.
go back to reference Sah R, Ramirez RJ, Oudit GY, Gidrewicz D, Trivieri MG, Zobel C, Backx PH (2003) Regulation of cardiac excitation–contraction coupling by action potential repolarization: role of the transient outward potassium current (I to). J Physiol 546(Pt 1):5–18PubMedCentralPubMed Sah R, Ramirez RJ, Oudit GY, Gidrewicz D, Trivieri MG, Zobel C, Backx PH (2003) Regulation of cardiac excitation–contraction coupling by action potential repolarization: role of the transient outward potassium current (I to). J Physiol 546(Pt 1):5–18PubMedCentralPubMed
26.
go back to reference Schmitt N, Grunnet M, Olesen SP (2014) Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 94(2):609–653PubMed Schmitt N, Grunnet M, Olesen SP (2014) Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 94(2):609–653PubMed
27.
go back to reference Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237(4816):749–753PubMed Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237(4816):749–753PubMed
28.
go back to reference Butler A, Wei AG, Baker K, Salkoff L (1989) A family of putative potassium channel genes in Drosophila. Science 243(4893):943–947PubMed Butler A, Wei AG, Baker K, Salkoff L (1989) A family of putative potassium channel genes in Drosophila. Science 243(4893):943–947PubMed
29.
go back to reference Wei A, Covarrubias M, Butler A, Baker K, Pak M, Salkoff L (1990) K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science 248(4955):599–603PubMed Wei A, Covarrubias M, Butler A, Baker K, Pak M, Salkoff L (1990) K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science 248(4955):599–603PubMed
30.
31.
go back to reference Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77PubMed Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77PubMed
32.
go back to reference Pongs O (1992) Molecular biology of voltage-dependent potassium channels. Physiol Rev 72(4 Suppl):S69–S88PubMed Pongs O (1992) Molecular biology of voltage-dependent potassium channels. Physiol Rev 72(4 Suppl):S69–S88PubMed
33.
go back to reference Oudit GY, Kassiri Z, Sah R, Ramirez RJ, Zobel C, Backx PH (2001) The molecular physiology of the cardiac transient outward potassium current (I to) in normal and diseased myocardium. J Mol Cell Cardiol 33(5):851–872PubMed Oudit GY, Kassiri Z, Sah R, Ramirez RJ, Zobel C, Backx PH (2001) The molecular physiology of the cardiac transient outward potassium current (I to) in normal and diseased myocardium. J Mol Cell Cardiol 33(5):851–872PubMed
34.
go back to reference Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization. Physiol Rev 85(4):1205–1253PubMed Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization. Physiol Rev 85(4):1205–1253PubMed
35.
go back to reference Patel SP, Campbell DL (2005) Transient outward potassium current, ‘I to’, phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. J Physiol 569(Pt 1):7–39PubMedCentralPubMed Patel SP, Campbell DL (2005) Transient outward potassium current, ‘I to’, phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. J Physiol 569(Pt 1):7–39PubMedCentralPubMed
36.
go back to reference van der Heyden MA, Wijnhoven TJ, Opthof T (2006) Molecular aspects of adrenergic modulation of the transient outward current. Cardiovasc Res 71(3):430–442PubMed van der Heyden MA, Wijnhoven TJ, Opthof T (2006) Molecular aspects of adrenergic modulation of the transient outward current. Cardiovasc Res 71(3):430–442PubMed
37.
go back to reference Niwa N, Nerbonne JM (2010) Molecular determinants of cardiac transient outward potassium current (I to) expression and regulation. J Mol Cell Cardiol 48(1):12–25PubMedCentralPubMed Niwa N, Nerbonne JM (2010) Molecular determinants of cardiac transient outward potassium current (I to) expression and regulation. J Mol Cell Cardiol 48(1):12–25PubMedCentralPubMed
38.
go back to reference MacKinnon R (1991) Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350(6315):232–235PubMed MacKinnon R (1991) Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350(6315):232–235PubMed
39.
go back to reference Jan LY, Jan YN (1992) Structural elements involved in specific K+ channel functions. Annu Rev Physiol 54:537–555PubMed Jan LY, Jan YN (1992) Structural elements involved in specific K+ channel functions. Annu Rev Physiol 54:537–555PubMed
40.
go back to reference Snyders DJ (1999) Structure and function of cardiac potassium channels. Cardiovasc Res 42(2):377–390PubMed Snyders DJ (1999) Structure and function of cardiac potassium channels. Cardiovasc Res 42(2):377–390PubMed
41.
go back to reference Fink M, Duprat F, Lesage F, Heurteaux C, Romey G, Barhanin J, Lazdunski M (1996) A new K+ channel β subunit to specifically enhance Kv2.2 (CDRK) expression. J Biol Chem 271(42):26341–26348PubMed Fink M, Duprat F, Lesage F, Heurteaux C, Romey G, Barhanin J, Lazdunski M (1996) A new K+ channel β subunit to specifically enhance Kv2.2 (CDRK) expression. J Biol Chem 271(42):26341–26348PubMed
42.
go back to reference Shi G, Nakahira K, Hammond S, Rhodes KJ, Schechter LE, Trimmer JS (1996) β subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron 16(4):843–852PubMed Shi G, Nakahira K, Hammond S, Rhodes KJ, Schechter LE, Trimmer JS (1996) β subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron 16(4):843–852PubMed
43.
go back to reference Nagaya N, Papazian DM (1997) Potassium channel α and β subunits assemble in the endoplasmic reticulum. J Biol Chem 272(5):3022–3027PubMed Nagaya N, Papazian DM (1997) Potassium channel α and β subunits assemble in the endoplasmic reticulum. J Biol Chem 272(5):3022–3027PubMed
44.
go back to reference Trimmer JS (1998) Regulation of ion channel expression by cytoplasmic subunits. Curr Opin Neurobiol 8(3):370–374PubMed Trimmer JS (1998) Regulation of ion channel expression by cytoplasmic subunits. Curr Opin Neurobiol 8(3):370–374PubMed
45.
go back to reference Yang EK, Alvira MR, Levitan ES, Takimoto K (2001) Kvβ subunits increase expression of Kv4.3 channels by interacting with their C termini. J Biol Chem 276(7):4839–4844PubMed Yang EK, Alvira MR, Levitan ES, Takimoto K (2001) Kvβ subunits increase expression of Kv4.3 channels by interacting with their C termini. J Biol Chem 276(7):4839–4844PubMed
46.
go back to reference Aimond F, Kwak SP, Rhodes KJ, Nerbonne JM (2005) Accessory Kvβ1 subunits differentially modulate the functional expression of voltage-gated K+ channels in mouse ventricular myocytes. Circ Res 96(4):451–458PubMed Aimond F, Kwak SP, Rhodes KJ, Nerbonne JM (2005) Accessory Kvβ1 subunits differentially modulate the functional expression of voltage-gated K+ channels in mouse ventricular myocytes. Circ Res 96(4):451–458PubMed
47.
go back to reference Perez-Garcia MT, Lopez-Lopez JR, Gonzalez C (1999) Kvβ1.2 subunit coexpression in HEK293 cells confers O2 sensitivity to Kv4.2 but not to Shaker channels. J Gen Physiol 113(6):897–907PubMedCentralPubMed Perez-Garcia MT, Lopez-Lopez JR, Gonzalez C (1999) Kvβ1.2 subunit coexpression in HEK293 cells confers O2 sensitivity to Kv4.2 but not to Shaker channels. J Gen Physiol 113(6):897–907PubMedCentralPubMed
48.
go back to reference Peri R, Wible BA, Brown AM (2001) Mutations in the Kvβ2 binding site for NADPH and their effects on Kv1.4. J Biol Chem 276(1):738–741PubMed Peri R, Wible BA, Brown AM (2001) Mutations in the Kvβ2 binding site for NADPH and their effects on Kv1.4. J Biol Chem 276(1):738–741PubMed
49.
go back to reference Deschenes I, Tomaselli GF (2002) Modulation of Kv4.3 current by accessory subunits. FEBS Lett 528(1–3):183–188PubMed Deschenes I, Tomaselli GF (2002) Modulation of Kv4.3 current by accessory subunits. FEBS Lett 528(1–3):183–188PubMed
50.
go back to reference Castellino RC, Morales MJ, Strauss HC, Rasmusson RL (1995) Time- and voltage-dependent modulation of a Kv1.4 channel by a β-subunit (Kvβ3) cloned from ferret ventricle. Am J Physiol 269(1 Pt 2):H385–H391PubMed Castellino RC, Morales MJ, Strauss HC, Rasmusson RL (1995) Time- and voltage-dependent modulation of a Kv1.4 channel by a β-subunit (Kvβ3) cloned from ferret ventricle. Am J Physiol 269(1 Pt 2):H385–H391PubMed
51.
go back to reference Majumder K, De Biasi M, Wang Z, Wible BA (1995) Molecular cloning and functional expression of a novel potassium channel β-subunit from human atrium. FEBS Lett 361(1):13–16PubMed Majumder K, De Biasi M, Wang Z, Wible BA (1995) Molecular cloning and functional expression of a novel potassium channel β-subunit from human atrium. FEBS Lett 361(1):13–16PubMed
52.
go back to reference Morales MJ, Castellino RC, Crews AL, Rasmusson RL, Strauss HC (1995) A novel β subunit increases rate of inactivation of specific voltage-gated potassium channel α subunits. J Biol Chem 270(11):6272–6277PubMed Morales MJ, Castellino RC, Crews AL, Rasmusson RL, Strauss HC (1995) A novel β subunit increases rate of inactivation of specific voltage-gated potassium channel α subunits. J Biol Chem 270(11):6272–6277PubMed
53.
go back to reference Pruunsild P, Timmusk T (2005) Structure, alternative splicing, and expression of the human and mouse KCNIP gene family. Genomics 86(5):581–593PubMed Pruunsild P, Timmusk T (2005) Structure, alternative splicing, and expression of the human and mouse KCNIP gene family. Genomics 86(5):581–593PubMed
54.
go back to reference An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403(6769):553–556PubMed An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403(6769):553–556PubMed
55.
go back to reference Rosati B, Pan Z, Lypen S, Wang HS, Cohen I, Dixon JE, McKinnon D (2001) Regulation of KChIP2 potassium channel β subunit gene expression underlies the gradient of transient outward current in canine and human ventricle. J Physiol 533(Pt 1):119–125PubMedCentralPubMed Rosati B, Pan Z, Lypen S, Wang HS, Cohen I, Dixon JE, McKinnon D (2001) Regulation of KChIP2 potassium channel β subunit gene expression underlies the gradient of transient outward current in canine and human ventricle. J Physiol 533(Pt 1):119–125PubMedCentralPubMed
56.
go back to reference Patel SP, Campbell DL, Morales MJ, Strauss HC (2002) Heterogeneous expression of KChIP2 isoforms in the ferret heart. J Physiol 539(Pt 3):649–656PubMedCentralPubMed Patel SP, Campbell DL, Morales MJ, Strauss HC (2002) Heterogeneous expression of KChIP2 isoforms in the ferret heart. J Physiol 539(Pt 3):649–656PubMedCentralPubMed
57.
go back to reference Deschenes I, DiSilvestre D, Juang GJ, Wu RC, An WF, Tomaselli GF (2002) Regulation of Kv4.3 current by KChIP2 splice variants: a component of native cardiac I to? Circulation 106(4):423–429PubMed Deschenes I, DiSilvestre D, Juang GJ, Wu RC, An WF, Tomaselli GF (2002) Regulation of Kv4.3 current by KChIP2 splice variants: a component of native cardiac I to? Circulation 106(4):423–429PubMed
58.
go back to reference Rosati B, Grau F, Rodriguez S, Li H, Nerbonne JM, McKinnon D (2003) Concordant expression of KChIP2 mRNA, protein and transient outward current throughout the canine ventricle. J Physiol 548(Pt 3):815–822PubMedCentralPubMed Rosati B, Grau F, Rodriguez S, Li H, Nerbonne JM, McKinnon D (2003) Concordant expression of KChIP2 mRNA, protein and transient outward current throughout the canine ventricle. J Physiol 548(Pt 3):815–822PubMedCentralPubMed
59.
go back to reference Calloe K, Soltysinska E, Jespersen T, Lundby A, Antzelevitch C, Olesen SP, Cordeiro JM (2010) Differential effects of the transient outward K+ current activator NS5806 in the canine left ventricle. J Mol Cell Cardiol 48(1):191–200PubMedCentralPubMed Calloe K, Soltysinska E, Jespersen T, Lundby A, Antzelevitch C, Olesen SP, Cordeiro JM (2010) Differential effects of the transient outward K+ current activator NS5806 in the canine left ventricle. J Mol Cell Cardiol 48(1):191–200PubMedCentralPubMed
60.
go back to reference Kuo HC, Cheng CF, Clark RB, Lin JJ, Lin JL, Hoshijima M, Nguyen-Tran VT, Gu Y, Ikeda Y, Chu PH, Ross J, Giles WR, Chien KR (2001) A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I to and confers susceptibility to ventricular tachycardia. Cell 107(6):801–813PubMed Kuo HC, Cheng CF, Clark RB, Lin JJ, Lin JL, Hoshijima M, Nguyen-Tran VT, Gu Y, Ikeda Y, Chu PH, Ross J, Giles WR, Chien KR (2001) A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I to and confers susceptibility to ventricular tachycardia. Cell 107(6):801–813PubMed
61.
go back to reference Foeger NC, Wang W, Mellor RL, Nerbonne JM (2013) Stabilization of Kv4 protein by the accessory K+ channel interacting protein 2 (KChIP2) subunit is required for the generation of native myocardial fast transient outward K+ currents. J Physiol 591(Pt 17):4149–4166PubMedCentralPubMed Foeger NC, Wang W, Mellor RL, Nerbonne JM (2013) Stabilization of Kv4 protein by the accessory K+ channel interacting protein 2 (KChIP2) subunit is required for the generation of native myocardial fast transient outward K+ currents. J Physiol 591(Pt 17):4149–4166PubMedCentralPubMed
62.
go back to reference Grubb S, Speerschneider T, Occhipinti D, Fiset C, Olesen SP, Thomsen MB, Calloe K (2014) Loss of K+ currents in heart failure is accentuated in KChIP2 deficient mice. J Cardiovasc Electrophysiol 25(8):896–904PubMed Grubb S, Speerschneider T, Occhipinti D, Fiset C, Olesen SP, Thomsen MB, Calloe K (2014) Loss of K+ currents in heart failure is accentuated in KChIP2 deficient mice. J Cardiovasc Electrophysiol 25(8):896–904PubMed
63.
go back to reference Bahring R, Dannenberg J, Peters HC, Leicher T, Pongs O, Isbrandt D (2001) Conserved Kv4 N-terminal domain critical for effects of Kv channel-interacting protein 2.2 on channel expression and gating. J Biol Chem 276(26):23888–23894PubMed Bahring R, Dannenberg J, Peters HC, Leicher T, Pongs O, Isbrandt D (2001) Conserved Kv4 N-terminal domain critical for effects of Kv channel-interacting protein 2.2 on channel expression and gating. J Biol Chem 276(26):23888–23894PubMed
64.
go back to reference Decher N, Uyguner O, Scherer CR, Karaman B, Yuksel-Apak M, Busch AE, Steinmeyer K, Wollnik B (2001) hKChIP2 is a functional modifier of hKv4.3 potassium channels: cloning and expression of a short hKChIP2 splice variant. Cardiovasc Res 52(2):255–264PubMed Decher N, Uyguner O, Scherer CR, Karaman B, Yuksel-Apak M, Busch AE, Steinmeyer K, Wollnik B (2001) hKChIP2 is a functional modifier of hKv4.3 potassium channels: cloning and expression of a short hKChIP2 splice variant. Cardiovasc Res 52(2):255–264PubMed
65.
go back to reference Patel SP, Parai R, Parai R, Campbell DL (2004) Regulation of Kv4.3 voltage-dependent gating kinetics by KChIP2 isoforms. J Physiol 557(Pt 1):19–41PubMedCentralPubMed Patel SP, Parai R, Parai R, Campbell DL (2004) Regulation of Kv4.3 voltage-dependent gating kinetics by KChIP2 isoforms. J Physiol 557(Pt 1):19–41PubMedCentralPubMed
66.
go back to reference Kim LA, Furst J, Butler MH, Xu S, Grigorieff N, Goldstein SA (2004) Ito channels are octomeric complexes with four subunits of each Kv4.2 and K+ channel-interacting protein 2. J Biol Chem 279(7):5549–5554PubMed Kim LA, Furst J, Butler MH, Xu S, Grigorieff N, Goldstein SA (2004) Ito channels are octomeric complexes with four subunits of each Kv4.2 and K+ channel-interacting protein 2. J Biol Chem 279(7):5549–5554PubMed
67.
go back to reference Callsen B, Isbrandt D, Sauter K, Hartmann LS, Pongs O, Bahring R (2005) Contribution of N- and C-terminal Kv4.2 channel domains to KChIP interaction [corrected]. J Physiol 568(Pt 2):397–412PubMedCentralPubMed Callsen B, Isbrandt D, Sauter K, Hartmann LS, Pongs O, Bahring R (2005) Contribution of N- and C-terminal Kv4.2 channel domains to KChIP interaction [corrected]. J Physiol 568(Pt 2):397–412PubMedCentralPubMed
68.
go back to reference Liu WJ, Wang HT, Chen WW, Deng JX, Jiang Y, Liu J (2008) Co-expression of KCNE2 and KChIP2c modulates the electrophysiological properties of Kv4.2 current in COS-7 cells. Acta Pharmacol Sin 29(6):653–660PubMed Liu WJ, Wang HT, Chen WW, Deng JX, Jiang Y, Liu J (2008) Co-expression of KCNE2 and KChIP2c modulates the electrophysiological properties of Kv4.2 current in COS-7 cells. Acta Pharmacol Sin 29(6):653–660PubMed
69.
go back to reference Lundby A, Jespersen T, Schmitt N, Grunnet M, Olesen SP, Cordeiro JM, Calloe K (2010) Effect of the I to activator NS5806 on cloned K(V)4 channels depends on the accessory protein KChIP2. Br J Pharmacol 160(8):2028–2044PubMedCentralPubMed Lundby A, Jespersen T, Schmitt N, Grunnet M, Olesen SP, Cordeiro JM, Calloe K (2010) Effect of the I to activator NS5806 on cloned K(V)4 channels depends on the accessory protein KChIP2. Br J Pharmacol 160(8):2028–2044PubMedCentralPubMed
70.
go back to reference Xiao L, Koopmann TT, Ordog B, Postema PG, Verkerk AO, Iyer V, Sampson KJ, Boink GJ, Mamarbachi MA, Varro A, Jordaens L, Res J, Kass RS, Wilde AA, Bezzina CR, Nattel S (2013) Unique cardiac Purkinje fiber transient outward current β-subunit composition: a potential molecular link to idiopathic ventricular fibrillation. Circ Res 112(10):1310–1322PubMed Xiao L, Koopmann TT, Ordog B, Postema PG, Verkerk AO, Iyer V, Sampson KJ, Boink GJ, Mamarbachi MA, Varro A, Jordaens L, Res J, Kass RS, Wilde AA, Bezzina CR, Nattel S (2013) Unique cardiac Purkinje fiber transient outward current β-subunit composition: a potential molecular link to idiopathic ventricular fibrillation. Circ Res 112(10):1310–1322PubMed
71.
go back to reference Decher N, Barth AS, Gonzalez T, Steinmeyer K, Sanguinetti MC (2004) Novel KChIP2 isoforms increase functional diversity of transient outward potassium currents. J Physiol 557(Pt 3):761–772PubMedCentralPubMed Decher N, Barth AS, Gonzalez T, Steinmeyer K, Sanguinetti MC (2004) Novel KChIP2 isoforms increase functional diversity of transient outward potassium currents. J Physiol 557(Pt 3):761–772PubMedCentralPubMed
72.
go back to reference Nadal MS, Ozaita A, Amarillo Y, Vega-Saenz DME, Ma Y, Mo W, Goldberg EM, Misumi Y, Ikehara Y, Neubert TA, Rudy B (2003) The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 37(3):449–461PubMed Nadal MS, Ozaita A, Amarillo Y, Vega-Saenz DME, Ma Y, Mo W, Goldberg EM, Misumi Y, Ikehara Y, Neubert TA, Rudy B (2003) The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 37(3):449–461PubMed
73.
go back to reference Jerng HH, Qian Y, Pfaffinger PJ (2004) Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biophys J 87(4):2380–2396PubMedCentralPubMed Jerng HH, Qian Y, Pfaffinger PJ (2004) Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biophys J 87(4):2380–2396PubMedCentralPubMed
74.
go back to reference Jerng HH, Kunjilwar K, Pfaffinger PJ (2005) Multiprotein assembly of Kv4.2, KChIP3 and DPP10 produces ternary channel complexes with ISA-like properties. J Physiol 568(Pt 3):767–788PubMedCentralPubMed Jerng HH, Kunjilwar K, Pfaffinger PJ (2005) Multiprotein assembly of Kv4.2, KChIP3 and DPP10 produces ternary channel complexes with ISA-like properties. J Physiol 568(Pt 3):767–788PubMedCentralPubMed
75.
go back to reference Ren X, Hayashi Y, Yoshimura N, Takimoto K (2005) Transmembrane interaction mediates complex formation between peptidase homologues and Kv4 channels. Mol Cell Neurosci 29(2):320–332PubMed Ren X, Hayashi Y, Yoshimura N, Takimoto K (2005) Transmembrane interaction mediates complex formation between peptidase homologues and Kv4 channels. Mol Cell Neurosci 29(2):320–332PubMed
76.
go back to reference Zagha E, Ozaita A, Chang SY, Nadal MS, Lin U, Saganich MJ, McCormack T, Akinsanya KO, Qi SY, Rudy B (2005) DPP10 modulates Kv4-mediated A-type potassium channels. J Biol Chem 280(19):18853–18861PubMed Zagha E, Ozaita A, Chang SY, Nadal MS, Lin U, Saganich MJ, McCormack T, Akinsanya KO, Qi SY, Rudy B (2005) DPP10 modulates Kv4-mediated A-type potassium channels. J Biol Chem 280(19):18853–18861PubMed
77.
go back to reference Amarillo Y, De Santiago-Castillo JA, Dougherty K, Maffie J, Kwon E, Covarrubias M, Rudy B (2008) Ternary Kv4.2 channels recapitulate voltage-dependent inactivation kinetics of A-type K+ channels in cerebellar granule neurons. J Physiol 586(8):2093–2106PubMedCentralPubMed Amarillo Y, De Santiago-Castillo JA, Dougherty K, Maffie J, Kwon E, Covarrubias M, Rudy B (2008) Ternary Kv4.2 channels recapitulate voltage-dependent inactivation kinetics of A-type K+ channels in cerebellar granule neurons. J Physiol 586(8):2093–2106PubMedCentralPubMed
78.
go back to reference Kim J, Nadal MS, Clemens AM, Baron M, Jung SC, Misumi Y, Rudy B, Hoffman DA (2008) Kv4 accessory protein DPPX (DPP6) is a critical regulator of membrane excitability in hippocampal CA1 pyramidal neurons. J Neurophysiol 100(4):1835–1847PubMedCentralPubMed Kim J, Nadal MS, Clemens AM, Baron M, Jung SC, Misumi Y, Rudy B, Hoffman DA (2008) Kv4 accessory protein DPPX (DPP6) is a critical regulator of membrane excitability in hippocampal CA1 pyramidal neurons. J Neurophysiol 100(4):1835–1847PubMedCentralPubMed
79.
go back to reference Maffie J, Blenkinsop T, Rudy B (2009) A novel DPP6 isoform (DPP6-E) can account for differences between neuronal and reconstituted A-type K+ channels. Neurosci Lett 449(3):189–194PubMedCentralPubMed Maffie J, Blenkinsop T, Rudy B (2009) A novel DPP6 isoform (DPP6-E) can account for differences between neuronal and reconstituted A-type K+ channels. Neurosci Lett 449(3):189–194PubMedCentralPubMed
80.
go back to reference Foeger NC, Norris AJ, Wren LM, Nerbonne JM (2012) Augmentation of Kv4.2-encoded currents by accessory dipeptidyl peptidase 6 and 10 subunits reflects selective cell surface Kv4.2 protein stabilization. J Biol Chem 287(12):9640–9650PubMedCentralPubMed Foeger NC, Norris AJ, Wren LM, Nerbonne JM (2012) Augmentation of Kv4.2-encoded currents by accessory dipeptidyl peptidase 6 and 10 subunits reflects selective cell surface Kv4.2 protein stabilization. J Biol Chem 287(12):9640–9650PubMedCentralPubMed
81.
go back to reference Nadin BM, Pfaffinger PJ (2010) Dipeptidyl peptidase-like protein 6 is required for normal electrophysiological properties of cerebellar granule cells. J Neurosci 30(25):8551–8565PubMedCentralPubMed Nadin BM, Pfaffinger PJ (2010) Dipeptidyl peptidase-like protein 6 is required for normal electrophysiological properties of cerebellar granule cells. J Neurosci 30(25):8551–8565PubMedCentralPubMed
82.
go back to reference Radicke S, Cotella D, Graf EM, Ravens U, Wettwer E (2005) Expression and function of dipeptidyl-aminopeptidase-like protein 6 as a putative β-subunit of human cardiac transient outward current encoded by Kv4.3. J Physiol 565(Pt 3):751–756PubMedCentralPubMed Radicke S, Cotella D, Graf EM, Ravens U, Wettwer E (2005) Expression and function of dipeptidyl-aminopeptidase-like protein 6 as a putative β-subunit of human cardiac transient outward current encoded by Kv4.3. J Physiol 565(Pt 3):751–756PubMedCentralPubMed
83.
go back to reference Kuryshev YA, Gudz TI, Brown AM, Wible BA (2000) KChAP as a chaperone for specific K+ channels. Am J Physiol Cell Physiol 278(5):C931–C941PubMed Kuryshev YA, Gudz TI, Brown AM, Wible BA (2000) KChAP as a chaperone for specific K+ channels. Am J Physiol Cell Physiol 278(5):C931–C941PubMed
84.
go back to reference Kuryshev YA, Wible BA, Gudz TI, Ramirez AN, Brown AM (2001) KChAP/Kvβ1.2 interactions and their effects on cardiac Kv channel expression. Am J Physiol Cell Physiol 281(1):C290–C299PubMed Kuryshev YA, Wible BA, Gudz TI, Ramirez AN, Brown AM (2001) KChAP/Kvβ1.2 interactions and their effects on cardiac Kv channel expression. Am J Physiol Cell Physiol 281(1):C290–C299PubMed
85.
go back to reference Zhang M, Jiang M, Tseng GN (2001) minK-related peptide 1 associates with Kv4.2 and modulates its gating function: potential role as β subunit of cardiac transient outward channel? Circ Res 88(10):1012–1019PubMed Zhang M, Jiang M, Tseng GN (2001) minK-related peptide 1 associates with Kv4.2 and modulates its gating function: potential role as β subunit of cardiac transient outward channel? Circ Res 88(10):1012–1019PubMed
86.
go back to reference Lundby A, Olesen SP (2006) KCNE3 is an inhibitory subunit of the Kv4.3 potassium channel. Biochem Biophys Res Commun 346(3):958–967PubMed Lundby A, Olesen SP (2006) KCNE3 is an inhibitory subunit of the Kv4.3 potassium channel. Biochem Biophys Res Commun 346(3):958–967PubMed
87.
go back to reference Radicke S, Cotella D, Graf EM, Banse U, Jost N, Varro A, Tseng GN, Ravens U, Wettwer E (2006) Functional modulation of the transient outward current I to by KCNE β-subunits and regional distribution in human non-failing and failing hearts. Cardiovasc Res 71(4):695–703PubMed Radicke S, Cotella D, Graf EM, Banse U, Jost N, Varro A, Tseng GN, Ravens U, Wettwer E (2006) Functional modulation of the transient outward current I to by KCNE β-subunits and regional distribution in human non-failing and failing hearts. Cardiovasc Res 71(4):695–703PubMed
88.
go back to reference Delpon E, Cordeiro JM, Nunez L, Thomsen PE, Guerchicoff A, Pollevick GD, Wu Y, Kanters JK, Larsen CT, Hofman-Bang J, Burashnikov E, Christiansen M, Antzelevitch C (2008) Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circ Arrhythm Electrophysiol 1(3):209–218PubMedCentralPubMed Delpon E, Cordeiro JM, Nunez L, Thomsen PE, Guerchicoff A, Pollevick GD, Wu Y, Kanters JK, Larsen CT, Hofman-Bang J, Burashnikov E, Christiansen M, Antzelevitch C (2008) Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circ Arrhythm Electrophysiol 1(3):209–218PubMedCentralPubMed
89.
go back to reference Nakamura TY, Pountney DJ, Ozaita A, Nandi S, Ueda S, Rudy B, Coetzee WA (2001) A role for frequenin, a Ca2+-binding protein, as a regulator of Kv4 K+-currents. Proc Natl Acad Sci USA 98(22):12808–12813PubMedCentralPubMed Nakamura TY, Pountney DJ, Ozaita A, Nandi S, Ueda S, Rudy B, Coetzee WA (2001) A role for frequenin, a Ca2+-binding protein, as a regulator of Kv4 K+-currents. Proc Natl Acad Sci USA 98(22):12808–12813PubMedCentralPubMed
90.
go back to reference Guo W, Malin SA, Johns DC, Jeromin A, Nerbonne JM (2002) Modulation of Kv4-encoded K+ currents in the mammalian myocardium by neuronal calcium sensor-1. J Biol Chem 277(29):26436–26443PubMed Guo W, Malin SA, Johns DC, Jeromin A, Nerbonne JM (2002) Modulation of Kv4-encoded K+ currents in the mammalian myocardium by neuronal calcium sensor-1. J Biol Chem 277(29):26436–26443PubMed
91.
go back to reference Shimoni Y, Ewart HS, Severson D (1999) Insulin stimulation of rat ventricular K+ currents depends on the integrity of the cytoskeleton. J Physiol 514(Pt 3):735–745PubMedCentralPubMed Shimoni Y, Ewart HS, Severson D (1999) Insulin stimulation of rat ventricular K+ currents depends on the integrity of the cytoskeleton. J Physiol 514(Pt 3):735–745PubMedCentralPubMed
92.
go back to reference Petrecca K, Miller DM, Shrier A (2000) Localization and enhanced current density of the Kv4.2 potassium channel by interaction with the actin-binding protein filamin. J Neurosci 20(23):8736–8744PubMed Petrecca K, Miller DM, Shrier A (2000) Localization and enhanced current density of the Kv4.2 potassium channel by interaction with the actin-binding protein filamin. J Neurosci 20(23):8736–8744PubMed
93.
go back to reference Cukovic D, Lu GW, Wible B, Steele DF, Fedida D (2001) A discrete amino terminal domain of Kv1.5 and Kv1.4 potassium channels interacts with the spectrin repeats of α-actinin-2. FEBS Lett 498(1):87–92PubMed Cukovic D, Lu GW, Wible B, Steele DF, Fedida D (2001) A discrete amino terminal domain of Kv1.5 and Kv1.4 potassium channels interacts with the spectrin repeats of α-actinin-2. FEBS Lett 498(1):87–92PubMed
94.
go back to reference Yang X, Salas PJ, Pham TV, Wasserlauf BJ, Smets MJ, Myerburg RJ, Gelband H, Hoffman BF, Bassett AL (2002) Cytoskeletal actin microfilaments and the transient outward potassium current in hypertrophied rat ventriculocytes. J Physiol 541(Pt 2):411–421PubMedCentralPubMed Yang X, Salas PJ, Pham TV, Wasserlauf BJ, Smets MJ, Myerburg RJ, Gelband H, Hoffman BF, Bassett AL (2002) Cytoskeletal actin microfilaments and the transient outward potassium current in hypertrophied rat ventriculocytes. J Physiol 541(Pt 2):411–421PubMedCentralPubMed
95.
go back to reference Wang Z, Eldstrom JR, Jantzi J, Moore ED, Fedida D (2004) Increased focal Kv4.2 channel expression at the plasma membrane is the result of actin depolymerization. Am J Physiol Heart Circ Physiol 286(2):H749–H759PubMed Wang Z, Eldstrom JR, Jantzi J, Moore ED, Fedida D (2004) Increased focal Kv4.2 channel expression at the plasma membrane is the result of actin depolymerization. Am J Physiol Heart Circ Physiol 286(2):H749–H759PubMed
96.
go back to reference Yamakawa T, Saith S, Li Y, Gao X, Gaisano HY, Tsushima RG (2007) Interaction of syntaxin 1A with the N-terminus of Kv4.2 modulates channel surface expression and gating. Biochemistry 46(38):10942–10949PubMed Yamakawa T, Saith S, Li Y, Gao X, Gaisano HY, Tsushima RG (2007) Interaction of syntaxin 1A with the N-terminus of Kv4.2 modulates channel surface expression and gating. Biochemistry 46(38):10942–10949PubMed
97.
go back to reference El-Haou S, Balse E, Neyroud N, Dilanian G, Gavillet B, Abriel H, Coulombe A, Jeromin A, Hatem SN (2009) Kv4 potassium channels form a tripartite complex with the anchoring protein SAP97 and CaMKII in cardiac myocytes. Circ Res 104(6):758–769PubMed El-Haou S, Balse E, Neyroud N, Dilanian G, Gavillet B, Abriel H, Coulombe A, Jeromin A, Hatem SN (2009) Kv4 potassium channels form a tripartite complex with the anchoring protein SAP97 and CaMKII in cardiac myocytes. Circ Res 104(6):758–769PubMed
98.
go back to reference Varro A, Lathrop DA, Hester SB, Nanasi PP, Papp JG (1993) Ionic currents and action potentials in rabbit, rat, and guinea pig ventricular myocytes. Basic Res Cardiol 88(2):93–102PubMed Varro A, Lathrop DA, Hester SB, Nanasi PP, Papp JG (1993) Ionic currents and action potentials in rabbit, rat, and guinea pig ventricular myocytes. Basic Res Cardiol 88(2):93–102PubMed
99.
go back to reference Yuill KH, Hancox JC (2002) Characteristics of single cells isolated from the atrioventricular node of the adult guinea-pig heart. Pflugers Arch 445(3):311–320PubMed Yuill KH, Hancox JC (2002) Characteristics of single cells isolated from the atrioventricular node of the adult guinea-pig heart. Pflugers Arch 445(3):311–320PubMed
100.
go back to reference Zicha S, Moss I, Allen B, Varro A, Papp J, Dumaine R, Antzelevich C, Nattel S (2003) Molecular basis of species-specific expression of repolarizing K+ currents in the heart. Am J Physiol Heart Circ Physiol 285(4):H1641–H1649PubMed Zicha S, Moss I, Allen B, Varro A, Papp J, Dumaine R, Antzelevich C, Nattel S (2003) Molecular basis of species-specific expression of repolarizing K+ currents in the heart. Am J Physiol Heart Circ Physiol 285(4):H1641–H1649PubMed
101.
go back to reference Li GR, Du XL, Siow YL, Karmin O, Tse HF, Lau CP (2003) Calcium-activated transient outward chloride current and phase 1 repolarization of swine ventricular action potential. Cardiovasc Res 58(1):89–98PubMed Li GR, Du XL, Siow YL, Karmin O, Tse HF, Lau CP (2003) Calcium-activated transient outward chloride current and phase 1 repolarization of swine ventricular action potential. Cardiovasc Res 58(1):89–98PubMed
102.
go back to reference Li GR, Sun H, To J, Tse HF, Lau CP (2004) Demonstration of calcium-activated transient outward chloride current and delayed rectifier potassium currents in Swine atrial myocytes. J Mol Cell Cardiol 36(4):495–504PubMed Li GR, Sun H, To J, Tse HF, Lau CP (2004) Demonstration of calcium-activated transient outward chloride current and delayed rectifier potassium currents in Swine atrial myocytes. J Mol Cell Cardiol 36(4):495–504PubMed
103.
go back to reference Guo W, Li H, Aimond F, Johns DC, Rhodes KJ, Trimmer JS, Nerbonne JM (2002) Role of heteromultimers in the generation of myocardial transient outward K+ currents. Circ Res 90(5):586–593PubMed Guo W, Li H, Aimond F, Johns DC, Rhodes KJ, Trimmer JS, Nerbonne JM (2002) Role of heteromultimers in the generation of myocardial transient outward K+ currents. Circ Res 90(5):586–593PubMed
104.
go back to reference Guo W, Xu H, London B, Nerbonne JM (1999) Molecular basis of transient outward K+ current diversity in mouse ventricular myocytes. J Physiol 521(Pt 3):587–599PubMedCentralPubMed Guo W, Xu H, London B, Nerbonne JM (1999) Molecular basis of transient outward K+ current diversity in mouse ventricular myocytes. J Physiol 521(Pt 3):587–599PubMedCentralPubMed
105.
go back to reference Xu H, Guo W, Nerbonne JM (1999) Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes. J Gen Physiol 113(5):661–678PubMedCentralPubMed Xu H, Guo W, Nerbonne JM (1999) Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes. J Gen Physiol 113(5):661–678PubMedCentralPubMed
106.
go back to reference Xu H, Li H, Nerbonne JM (1999) Elimination of the transient outward current and action potential prolongation in mouse atrial myocytes expressing a dominant negative Kv4 α subunit. J Physiol 519(Pt 1):11–21PubMedCentralPubMed Xu H, Li H, Nerbonne JM (1999) Elimination of the transient outward current and action potential prolongation in mouse atrial myocytes expressing a dominant negative Kv4 α subunit. J Physiol 519(Pt 1):11–21PubMedCentralPubMed
107.
go back to reference Guo W, Li H, London B, Nerbonne JM (2000) Functional consequences of elimination of I to,f and I to,s: early afterdepolarizations, atrioventricular block, and ventricular arrhythmias in mice lacking Kv1.4 and expressing a dominant-negative Kv4 α subunit. Circ Res 87(1):73–79PubMed Guo W, Li H, London B, Nerbonne JM (2000) Functional consequences of elimination of I to,f and I to,s: early afterdepolarizations, atrioventricular block, and ventricular arrhythmias in mice lacking Kv1.4 and expressing a dominant-negative Kv4 α subunit. Circ Res 87(1):73–79PubMed
108.
go back to reference Brunet S, Aimond F, Li H, Guo W, Eldstrom J, Fedida D, Yamada KA, Nerbonne JM (2004) Heterogeneous expression of repolarizing, voltage-gated K+ currents in adult mouse ventricles. J Physiol 559(Pt 1):103–120PubMedCentralPubMed Brunet S, Aimond F, Li H, Guo W, Eldstrom J, Fedida D, Yamada KA, Nerbonne JM (2004) Heterogeneous expression of repolarizing, voltage-gated K+ currents in adult mouse ventricles. J Physiol 559(Pt 1):103–120PubMedCentralPubMed
109.
go back to reference Costantini DL, Arruda EP, Agarwal P, Kim KH, Zhu Y, Zhu W, Lebel M, Cheng CW, Park CY, Pierce SA, Guerchicoff A, Pollevick GD, Chan TY, Kabir MG, Cheng SH, Husain M, Antzelevitch C, Srivastava D, Gross GJ, Hui CC, Backx PH, Bruneau BG (2005) The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell 123(2):347–358PubMedCentralPubMed Costantini DL, Arruda EP, Agarwal P, Kim KH, Zhu Y, Zhu W, Lebel M, Cheng CW, Park CY, Pierce SA, Guerchicoff A, Pollevick GD, Chan TY, Kabir MG, Cheng SH, Husain M, Antzelevitch C, Srivastava D, Gross GJ, Hui CC, Backx PH, Bruneau BG (2005) The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell 123(2):347–358PubMedCentralPubMed
110.
go back to reference Marionneau C, Couette B, Liu J, Li H, Mangoni ME, Nargeot J, Lei M, Escande D, Demolombe S (2005) Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol 562(Pt 1):223–234PubMedCentralPubMed Marionneau C, Couette B, Liu J, Li H, Mangoni ME, Nargeot J, Lei M, Escande D, Demolombe S (2005) Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol 562(Pt 1):223–234PubMedCentralPubMed
111.
go back to reference Rossow CF, Dilly KW, Santana LF (2006) Differential calcineurin/NFATc3 activity contributes to the I to transmural gradient in the mouse heart. Circ Res 98(10):1306–1313PubMed Rossow CF, Dilly KW, Santana LF (2006) Differential calcineurin/NFATc3 activity contributes to the I to transmural gradient in the mouse heart. Circ Res 98(10):1306–1313PubMed
112.
go back to reference Teutsch C, Kondo RP, Dederko DA, Chrast J, Chien KR, Giles WR (2007) Spatial distributions of Kv4 channels and KChip2 isoforms in the murine heart based on laser capture microdissection. Cardiovasc Res 73(4):739–749PubMed Teutsch C, Kondo RP, Dederko DA, Chrast J, Chien KR, Giles WR (2007) Spatial distributions of Kv4 channels and KChip2 isoforms in the murine heart based on laser capture microdissection. Cardiovasc Res 73(4):739–749PubMed
113.
go back to reference Marionneau C, Brunet S, Flagg TP, Pilgram TK, Demolombe S, Nerbonne JM (2008) Distinct cellular and molecular mechanisms underlie functional remodeling of repolarizing K+ currents with left ventricular hypertrophy. Circ Res 102(11):1406–1415PubMedCentralPubMed Marionneau C, Brunet S, Flagg TP, Pilgram TK, Demolombe S, Nerbonne JM (2008) Distinct cellular and molecular mechanisms underlie functional remodeling of repolarizing K+ currents with left ventricular hypertrophy. Circ Res 102(11):1406–1415PubMedCentralPubMed
114.
go back to reference Boyle WA, Nerbonne JM (1991) A novel type of depolarization-activated K+ current in isolated adult rat atrial myocytes. Am J Physiol 260(4 Pt 2):H1236–H1247PubMed Boyle WA, Nerbonne JM (1991) A novel type of depolarization-activated K+ current in isolated adult rat atrial myocytes. Am J Physiol 260(4 Pt 2):H1236–H1247PubMed
115.
go back to reference Boyle WA, Nerbonne JM (1992) Two functionally distinct 4-aminopyridine-sensitive outward K+ currents in rat atrial myocytes. J Gen Physiol 100(6):1041–1067PubMed Boyle WA, Nerbonne JM (1992) Two functionally distinct 4-aminopyridine-sensitive outward K+ currents in rat atrial myocytes. J Gen Physiol 100(6):1041–1067PubMed
116.
go back to reference Clark RB, Bouchard RA, Salinas-Stefanon E, Sanchez-Chapula J, Giles WR (1993) Heterogeneity of action potential waveforms and potassium currents in rat ventricle. Cardiovasc Res 27(10):1795–1799PubMed Clark RB, Bouchard RA, Salinas-Stefanon E, Sanchez-Chapula J, Giles WR (1993) Heterogeneity of action potential waveforms and potassium currents in rat ventricle. Cardiovasc Res 27(10):1795–1799PubMed
117.
go back to reference Dixon JE, McKinnon D (1994) Quantitative analysis of potassium channel mRNA expression in atrial and ventricular muscle of rats. Circ Res 75(2):252–260PubMed Dixon JE, McKinnon D (1994) Quantitative analysis of potassium channel mRNA expression in atrial and ventricular muscle of rats. Circ Res 75(2):252–260PubMed
118.
go back to reference Barry DM, Trimmer JS, Merlie JP, Nerbonne JM (1995) Differential expression of voltage-gated K+ channel subunits in adult rat heart. Relation to functional K+ channels? Circ Res 77(2):361–369PubMed Barry DM, Trimmer JS, Merlie JP, Nerbonne JM (1995) Differential expression of voltage-gated K+ channel subunits in adult rat heart. Relation to functional K+ channels? Circ Res 77(2):361–369PubMed
119.
go back to reference Shimoni Y, Severson D, Giles W (1995) Thyroid status and diabetes modulate regional differences in potassium currents in rat ventricle. J Physiol 488(Pt 3):673–688PubMedCentralPubMed Shimoni Y, Severson D, Giles W (1995) Thyroid status and diabetes modulate regional differences in potassium currents in rat ventricle. J Physiol 488(Pt 3):673–688PubMedCentralPubMed
120.
go back to reference Dixon JE, Shi W, Wang HS, McDonald C, Yu H, Wymore RS, Cohen IS, McKinnon D (1996) Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ Res 79(4):659–668PubMed Dixon JE, Shi W, Wang HS, McDonald C, Yu H, Wymore RS, Cohen IS, McKinnon D (1996) Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ Res 79(4):659–668PubMed
121.
go back to reference Serodio P, Vega-Saenz DME, Rudy B (1996) Cloning of a novel component of A-type K+ channels operating at subthreshold potentials with unique expression in heart and brain. J Neurophysiol 75(5):2174–2179PubMed Serodio P, Vega-Saenz DME, Rudy B (1996) Cloning of a novel component of A-type K+ channels operating at subthreshold potentials with unique expression in heart and brain. J Neurophysiol 75(5):2174–2179PubMed
122.
go back to reference Fiset C, Clark RB, Shimoni Y, Giles WR (1997) Shal-type channels contribute to the Ca2+-independent transient outward K+ current in rat ventricle. J Physiol 500(Pt 1):51–64PubMedCentralPubMed Fiset C, Clark RB, Shimoni Y, Giles WR (1997) Shal-type channels contribute to the Ca2+-independent transient outward K+ current in rat ventricle. J Physiol 500(Pt 1):51–64PubMedCentralPubMed
123.
go back to reference Casis O, Iriarte M, Gallego M, Sanchez-Chapula JA (1998) Differences in regional distribution of K+ current densities in rat ventricle. Life Sci 63(5):391–400PubMed Casis O, Iriarte M, Gallego M, Sanchez-Chapula JA (1998) Differences in regional distribution of K+ current densities in rat ventricle. Life Sci 63(5):391–400PubMed
124.
go back to reference Bou-Abboud E, Nerbonne JM (1999) Molecular correlates of the calcium-independent, depolarization-activated K+ currents in rat atrial myocytes. J Physiol 517(Pt 2):407–420PubMedCentralPubMed Bou-Abboud E, Nerbonne JM (1999) Molecular correlates of the calcium-independent, depolarization-activated K+ currents in rat atrial myocytes. J Physiol 517(Pt 2):407–420PubMedCentralPubMed
125.
go back to reference Bryant SM, Shipsey SJ, Hart G (1999) Normal regional distribution of membrane current density in rat left ventricle is altered in catecholamine-induced hypertrophy. Cardiovasc Res 42(2):391–401PubMed Bryant SM, Shipsey SJ, Hart G (1999) Normal regional distribution of membrane current density in rat left ventricle is altered in catecholamine-induced hypertrophy. Cardiovasc Res 42(2):391–401PubMed
126.
go back to reference Wickenden AD, Jegla TJ, Kaprielian R, Backx PH (1999) Regional contributions of Kv1.4, Kv4.2, and Kv4.3 to transient outward K+ current in rat ventricle. Am J Physiol 276(5 Pt 2):H1599–H1607PubMed Wickenden AD, Jegla TJ, Kaprielian R, Backx PH (1999) Regional contributions of Kv1.4, Kv4.2, and Kv4.3 to transient outward K+ current in rat ventricle. Am J Physiol 276(5 Pt 2):H1599–H1607PubMed
127.
go back to reference Volk T, Nguyen TH, Schultz JH, Faulhaber J, Ehmke H (2001) Regional alterations of repolarizing K+ currents among the left ventricular free wall of rats with ascending aortic stenosis. J Physiol 530(Pt 3):443–455PubMedCentralPubMed Volk T, Nguyen TH, Schultz JH, Faulhaber J, Ehmke H (2001) Regional alterations of repolarizing K+ currents among the left ventricular free wall of rats with ascending aortic stenosis. J Physiol 530(Pt 3):443–455PubMedCentralPubMed
128.
go back to reference Wagner M, Goltz D, Stucke C, Schwoerer AP, Ehmke H, Volk T (2007) Modulation of the transient outward K+ current by inhibition of endothelin-A receptors in normal and hypertrophied rat hearts. Pflugers Arch 454(4):595–604PubMed Wagner M, Goltz D, Stucke C, Schwoerer AP, Ehmke H, Volk T (2007) Modulation of the transient outward K+ current by inhibition of endothelin-A receptors in normal and hypertrophied rat hearts. Pflugers Arch 454(4):595–604PubMed
129.
go back to reference Brahmajothi MV, Morales MJ, Liu S, Rasmusson RL, Campbell DL, Strauss HC (1996) In situ hybridization reveals extensive diversity of K+ channel mRNA in isolated ferret cardiac myocytes. Circ Res 78(6):1083–1089PubMed Brahmajothi MV, Morales MJ, Liu S, Rasmusson RL, Campbell DL, Strauss HC (1996) In situ hybridization reveals extensive diversity of K+ channel mRNA in isolated ferret cardiac myocytes. Circ Res 78(6):1083–1089PubMed
130.
go back to reference Brahmajothi MV, Campbell DL, Rasmusson RL, Morales MJ, Trimmer JS, Nerbonne JM, Strauss HC (1999) Distinct transient outward potassium current (I to) phenotypes and distribution of fast-inactivating potassium channel α subunits in ferret left ventricular myocytes. J Gen Physiol 113(4):581–600PubMedCentralPubMed Brahmajothi MV, Campbell DL, Rasmusson RL, Morales MJ, Trimmer JS, Nerbonne JM, Strauss HC (1999) Distinct transient outward potassium current (I to) phenotypes and distribution of fast-inactivating potassium channel α subunits in ferret left ventricular myocytes. J Gen Physiol 113(4):581–600PubMedCentralPubMed
131.
go back to reference Nakayama T, Kurachi Y, Noma A, Irisawa H (1984) Action potential and membrane currents of single pacemaker cells of the rabbit heart. Pflugers Arch 402(3):248–257PubMed Nakayama T, Kurachi Y, Noma A, Irisawa H (1984) Action potential and membrane currents of single pacemaker cells of the rabbit heart. Pflugers Arch 402(3):248–257PubMed
132.
go back to reference Nakayama T, Irisawa H (1985) Transient outward current carried by potassium and sodium in quiescent atrioventricular node cells of rabbits. Circ Res 57(1):65–73PubMed Nakayama T, Irisawa H (1985) Transient outward current carried by potassium and sodium in quiescent atrioventricular node cells of rabbits. Circ Res 57(1):65–73PubMed
133.
go back to reference Giles WR, Imaizumi Y (1988) Comparison of potassium currents in rabbit atrial and ventricular cells. J Physiol 405:123–145PubMedCentralPubMed Giles WR, Imaizumi Y (1988) Comparison of potassium currents in rabbit atrial and ventricular cells. J Physiol 405:123–145PubMedCentralPubMed
134.
go back to reference Honjo H, Lei M, Boyett MR, Kodama I (1999) Heterogeneity of 4-aminopyridine-sensitive current in rabbit sinoatrial node cells. Am J Physiol 276(4 Pt 2):H1295–H1304PubMed Honjo H, Lei M, Boyett MR, Kodama I (1999) Heterogeneity of 4-aminopyridine-sensitive current in rabbit sinoatrial node cells. Am J Physiol 276(4 Pt 2):H1295–H1304PubMed
135.
go back to reference Mitcheson JS, Hancox JC (1999) Characteristics of a transient outward current (sensitive to 4-aminopyridine) in Ca2+-tolerant myocytes isolated from the rabbit atrioventricular node. Pflugers Arch 438(1):68–78PubMed Mitcheson JS, Hancox JC (1999) Characteristics of a transient outward current (sensitive to 4-aminopyridine) in Ca2+-tolerant myocytes isolated from the rabbit atrioventricular node. Pflugers Arch 438(1):68–78PubMed
136.
go back to reference Uese K, Hagiwara N, Miyawaki T, Kasanuki H (1999) Properties of the transient outward current in rabbit sino-atrial node cells. J Mol Cell Cardiol 31(11):1975–1984PubMed Uese K, Hagiwara N, Miyawaki T, Kasanuki H (1999) Properties of the transient outward current in rabbit sino-atrial node cells. J Mol Cell Cardiol 31(11):1975–1984PubMed
137.
go back to reference Wang Z, Feng J, Shi H, Pond A, Nerbonne JM, Nattel S (1999) Potential molecular basis of different physiological properties of the transient outward K+ current in rabbit and human atrial myocytes. Circ Res 84(5):551–561PubMed Wang Z, Feng J, Shi H, Pond A, Nerbonne JM, Nattel S (1999) Potential molecular basis of different physiological properties of the transient outward K+ current in rabbit and human atrial myocytes. Circ Res 84(5):551–561PubMed
138.
go back to reference Lei M, Honjo H, Kodama I, Boyett MR (2000) Characterisation of the transient outward K+ current in rabbit sinoatrial node cells. Cardiovasc Res 46(3):433–441PubMed Lei M, Honjo H, Kodama I, Boyett MR (2000) Characterisation of the transient outward K+ current in rabbit sinoatrial node cells. Cardiovasc Res 46(3):433–441PubMed
139.
go back to reference Furukawa T, Myerburg RJ, Furukawa N, Bassett AL, Kimura S (1990) Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ Res 67(5):1287–1291PubMed Furukawa T, Myerburg RJ, Furukawa N, Bassett AL, Kimura S (1990) Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ Res 67(5):1287–1291PubMed
140.
go back to reference Furukawa T, Kimura S, Furukawa N, Bassett AL, Myerburg RJ (1992) Potassium rectifier currents differ in myocytes of endocardial and epicardial origin. Circ Res 70(1):91–103PubMed Furukawa T, Kimura S, Furukawa N, Bassett AL, Myerburg RJ (1992) Potassium rectifier currents differ in myocytes of endocardial and epicardial origin. Circ Res 70(1):91–103PubMed
141.
go back to reference Litovsky SH, Antzelevitch C (1988) Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res 62(1):116–126PubMed Litovsky SH, Antzelevitch C (1988) Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res 62(1):116–126PubMed
142.
go back to reference Liu DW, Gintant GA, Antzelevitch C (1993) Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res 72(3):671–687PubMed Liu DW, Gintant GA, Antzelevitch C (1993) Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res 72(3):671–687PubMed
143.
go back to reference Di Diego JM, Sun ZQ, Antzelevitch C (1996) I(to) and action potential notch are smaller in left vs. right canine ventricular epicardium. Am J Physiol 271(2 Pt 2):H548–H561PubMed Di Diego JM, Sun ZQ, Antzelevitch C (1996) I(to) and action potential notch are smaller in left vs. right canine ventricular epicardium. Am J Physiol 271(2 Pt 2):H548–H561PubMed
144.
go back to reference Feng J, Yue L, Wang Z, Nattel S (1998) Ionic mechanisms of regional action potential heterogeneity in the canine right atrium. Circ Res 83(5):541–551PubMed Feng J, Yue L, Wang Z, Nattel S (1998) Ionic mechanisms of regional action potential heterogeneity in the canine right atrium. Circ Res 83(5):541–551PubMed
145.
go back to reference Volders PG, Sipido KR, Carmeliet E, Spatjens RL, Wellens HJ, Vos MA (1999) Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium. Circulation 99(2):206–210PubMed Volders PG, Sipido KR, Carmeliet E, Spatjens RL, Wellens HJ, Vos MA (1999) Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium. Circulation 99(2):206–210PubMed
146.
go back to reference Li GR, Lau CP, Ducharme A, Tardif JC, Nattel S (2002) Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. Am J Physiol Heart Circ Physiol 283(3):H1031–H1041PubMed Li GR, Lau CP, Ducharme A, Tardif JC, Nattel S (2002) Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. Am J Physiol Heart Circ Physiol 283(3):H1031–H1041PubMed
147.
go back to reference Zicha S, Xiao L, Stafford S, Cha TJ, Han W, Varro A, Nattel S (2004) Transmural expression of transient outward potassium current subunits in normal and failing canine and human hearts. J Physiol 561(Pt 3):735–748PubMedCentralPubMed Zicha S, Xiao L, Stafford S, Cha TJ, Han W, Varro A, Nattel S (2004) Transmural expression of transient outward potassium current subunits in normal and failing canine and human hearts. J Physiol 561(Pt 3):735–748PubMedCentralPubMed
148.
go back to reference Varro A, Nanasi PP, Lathrop DA (1993) Potassium currents in isolated human atrial and ventricular cardiocytes. Acta Physiol Scand 149(2):133–142PubMed Varro A, Nanasi PP, Lathrop DA (1993) Potassium currents in isolated human atrial and ventricular cardiocytes. Acta Physiol Scand 149(2):133–142PubMed
149.
go back to reference Wettwer E, Amos GJ, Posival H, Ravens U (1994) Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res 75(3):473–482PubMed Wettwer E, Amos GJ, Posival H, Ravens U (1994) Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res 75(3):473–482PubMed
150.
go back to reference Konarzewska H, Peeters GA, Sanguinetti MC (1995) Repolarizing K+ currents in nonfailing human hearts. Similarities between right septal subendocardial and left subepicardial ventricular myocytes. Circulation 92(5):1179–1187PubMed Konarzewska H, Peeters GA, Sanguinetti MC (1995) Repolarizing K+ currents in nonfailing human hearts. Similarities between right septal subendocardial and left subepicardial ventricular myocytes. Circulation 92(5):1179–1187PubMed
151.
go back to reference Nabauer M, Beuckelmann DJ, Uberfuhr P, Steinbeck G (1996) Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation 93(1):168–177PubMed Nabauer M, Beuckelmann DJ, Uberfuhr P, Steinbeck G (1996) Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation 93(1):168–177PubMed
152.
go back to reference Bertaso F, Sharpe CC, Hendry BM, James AF (2002) Expression of voltage-gated K+ channels in human atrium. Basic Res Cardiol 97(6):424–433PubMed Bertaso F, Sharpe CC, Hendry BM, James AF (2002) Expression of voltage-gated K+ channels in human atrium. Basic Res Cardiol 97(6):424–433PubMed
153.
go back to reference Gaborit N, Le Bouter S, Szuts V, Varro A, Escande D, Nattel S, Demolombe S (2007) Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol 582(Pt 2):675–693PubMedCentralPubMed Gaborit N, Le Bouter S, Szuts V, Varro A, Escande D, Nattel S, Demolombe S (2007) Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol 582(Pt 2):675–693PubMedCentralPubMed
154.
go back to reference Kobayashi T, Yamada Y, Nagashima M, Seki S, Tsutsuura M, Ito Y, Sakuma I, Hamada H, Abe T, Tohse N (2003) Contribution of KChIP2 to the developmental increase in transient outward current of rat cardiomyocytes. J Mol Cell Cardiol 35(9):1073–1082PubMed Kobayashi T, Yamada Y, Nagashima M, Seki S, Tsutsuura M, Ito Y, Sakuma I, Hamada H, Abe T, Tohse N (2003) Contribution of KChIP2 to the developmental increase in transient outward current of rat cardiomyocytes. J Mol Cell Cardiol 35(9):1073–1082PubMed
155.
go back to reference Kilborn MJ, Fedida D (1990) A study of the developmental changes in outward currents of rat ventricular myocytes. J Physiol 430:37–60PubMedCentralPubMed Kilborn MJ, Fedida D (1990) A study of the developmental changes in outward currents of rat ventricular myocytes. J Physiol 430:37–60PubMedCentralPubMed
156.
go back to reference Chouabe C, Ricci E, Amsellem J, Blaineau S, Dalmaz Y, Favier R, Pequignot JM, Bonvallet R (2004) Effects of aging on the cardiac remodeling induced by chronic high-altitude hypoxia in rat. Am J Physiol Heart Circ Physiol 287(3):H1246–H1253PubMed Chouabe C, Ricci E, Amsellem J, Blaineau S, Dalmaz Y, Favier R, Pequignot JM, Bonvallet R (2004) Effects of aging on the cardiac remodeling induced by chronic high-altitude hypoxia in rat. Am J Physiol Heart Circ Physiol 287(3):H1246–H1253PubMed
157.
go back to reference Walker KE, Lakatta EG, Houser SR (1993) Age associated changes in membrane currents in rat ventricular myocytes. Cardiovasc Res 27(11):1968–1977PubMed Walker KE, Lakatta EG, Houser SR (1993) Age associated changes in membrane currents in rat ventricular myocytes. Cardiovasc Res 27(11):1968–1977PubMed
158.
go back to reference Liu SJ, Wyeth RP, Melchert RB, Kennedy RH (2000) Aging-associated changes in whole cell K+ and L-type Ca2+ currents in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 279(3):H889–H900PubMed Liu SJ, Wyeth RP, Melchert RB, Kennedy RH (2000) Aging-associated changes in whole cell K+ and L-type Ca2+ currents in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 279(3):H889–H900PubMed
159.
go back to reference Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415(6868):198–205PubMed Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415(6868):198–205PubMed
160.
go back to reference Beuckelmann DJ, Nabauer M, Erdmann E (1993) Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 73(2):379–385PubMed Beuckelmann DJ, Nabauer M, Erdmann E (1993) Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 73(2):379–385PubMed
161.
go back to reference Kaab S, Nuss HB, Chiamvimonvat N, O’Rourke B, Pak PH, Kass DA, Marban E, Tomaselli GF (1996) Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res 78(2):262–273PubMed Kaab S, Nuss HB, Chiamvimonvat N, O’Rourke B, Pak PH, Kass DA, Marban E, Tomaselli GF (1996) Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res 78(2):262–273PubMed
162.
go back to reference Kaab S, Dixon J, Duc J, Ashen D, Nabauer M, Beuckelmann DJ, Steinbeck G, McKinnon D, Tomaselli GF (1998) Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 98(14):1383–1393PubMed Kaab S, Dixon J, Duc J, Ashen D, Nabauer M, Beuckelmann DJ, Steinbeck G, McKinnon D, Tomaselli GF (1998) Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 98(14):1383–1393PubMed
163.
go back to reference Tsuji Y, Opthof T, Kamiya K, Yasui K, Liu W, Lu Z, Kodama I (2000) Pacing-induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbit ventricle. Cardiovasc Res 48(2):300–309PubMed Tsuji Y, Opthof T, Kamiya K, Yasui K, Liu W, Lu Z, Kodama I (2000) Pacing-induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbit ventricle. Cardiovasc Res 48(2):300–309PubMed
164.
go back to reference Li GR, Lau CP, Leung TK, Nattel S (2004) Ionic current abnormalities associated with prolonged action potentials in cardiomyocytes from diseased human right ventricles. Heart Rhythm 1(4):460–468PubMed Li GR, Lau CP, Leung TK, Nattel S (2004) Ionic current abnormalities associated with prolonged action potentials in cardiomyocytes from diseased human right ventricles. Heart Rhythm 1(4):460–468PubMed
165.
go back to reference Sah R, Oudit GY, Nguyen TT, Lim HW, Wickenden AD, Wilson GJ, Molkentin JD, Backx PH (2002) Inhibition of calcineurin and sarcolemmal Ca2+ influx protects cardiac morphology and ventricular function in K(v)4.2 N transgenic mice. Circulation 105(15):1850–1856PubMed Sah R, Oudit GY, Nguyen TT, Lim HW, Wickenden AD, Wilson GJ, Molkentin JD, Backx PH (2002) Inhibition of calcineurin and sarcolemmal Ca2+ influx protects cardiac morphology and ventricular function in K(v)4.2 N transgenic mice. Circulation 105(15):1850–1856PubMed
166.
go back to reference Kassiri Z, Zobel C, Nguyen TT, Molkentin JD, Backx PH (2002) Reduction of I to causes hypertrophy in neonatal rat ventricular myocytes. Circ Res 90(5):578–585PubMed Kassiri Z, Zobel C, Nguyen TT, Molkentin JD, Backx PH (2002) Reduction of I to causes hypertrophy in neonatal rat ventricular myocytes. Circ Res 90(5):578–585PubMed
167.
go back to reference Wickenden AD, Lee P, Sah R, Huang Q, Fishman GI, Backx PH (1999) Targeted expression of a dominant-negative K(v)4.2 K+ channel subunit in the mouse heart. Circ Res 85(11):1067–1076PubMed Wickenden AD, Lee P, Sah R, Huang Q, Fishman GI, Backx PH (1999) Targeted expression of a dominant-negative K(v)4.2 K+ channel subunit in the mouse heart. Circ Res 85(11):1067–1076PubMed
168.
go back to reference Sah R, Ramirez RJ, Backx PH (2002) Modulation of Ca2+ release in cardiac myocytes by changes in repolarization rate: role of phase-1 action potential repolarization in excitation–contraction coupling. Circ Res 90(2):165–173PubMed Sah R, Ramirez RJ, Backx PH (2002) Modulation of Ca2+ release in cardiac myocytes by changes in repolarization rate: role of phase-1 action potential repolarization in excitation–contraction coupling. Circ Res 90(2):165–173PubMed
169.
go back to reference Anderson ME, Brown JH, Bers DM (2011) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51(4):468–473PubMedCentralPubMed Anderson ME, Brown JH, Bers DM (2011) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51(4):468–473PubMedCentralPubMed
170.
go back to reference Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93(2):215–228PubMed Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93(2):215–228PubMed
171.
go back to reference Keskanokwong T, Lim HJ, Zhang P, Cheng J, Xu L, Lai D, Wang Y (2011) Dynamic Kv4.3–CaMKII unit in heart: an intrinsic negative regulator for CaMKII activation. Eur Heart J 32(3):305–315PubMedCentralPubMed Keskanokwong T, Lim HJ, Zhang P, Cheng J, Xu L, Lai D, Wang Y (2011) Dynamic Kv4.3–CaMKII unit in heart: an intrinsic negative regulator for CaMKII activation. Eur Heart J 32(3):305–315PubMedCentralPubMed
172.
go back to reference Grueter CE, Colbran RJ, Anderson ME (2007) CaMKII, an emerging molecular driver for calcium homeostasis, arrhythmias, and cardiac dysfunction. J Mol Med (Berl) 85(1):5–14 Grueter CE, Colbran RJ, Anderson ME (2007) CaMKII, an emerging molecular driver for calcium homeostasis, arrhythmias, and cardiac dysfunction. J Mol Med (Berl) 85(1):5–14
173.
go back to reference Mattiazzi A, Kranias EG (2014) The role of CaMKII regulation of phospholamban activity in heart disease. Front Pharmacol 5:5PubMedCentralPubMed Mattiazzi A, Kranias EG (2014) The role of CaMKII regulation of phospholamban activity in heart disease. Front Pharmacol 5:5PubMedCentralPubMed
174.
go back to reference Ramirez MT, Zhao XL, Schulman H, Brown JH (1997) The nuclear δB isoform of Ca2+/calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes. J Biol Chem 272(49):31203–31208PubMed Ramirez MT, Zhao XL, Schulman H, Brown JH (1997) The nuclear δB isoform of Ca2+/calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes. J Biol Chem 272(49):31203–31208PubMed
175.
go back to reference Zhang T, Johnson EN, Gu Y, Morissette MR, Sah VP, Gigena MS, Belke DD, Dillmann WH, Rogers TB, Schulman H, Ross J Jr, Brown JH (2002) The cardiac-specific nuclear δ(B) isoform of Ca2+/calmodulin-dependent protein kinase II induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity. J Biol Chem 277(2):1261–1267PubMed Zhang T, Johnson EN, Gu Y, Morissette MR, Sah VP, Gigena MS, Belke DD, Dillmann WH, Rogers TB, Schulman H, Ross J Jr, Brown JH (2002) The cardiac-specific nuclear δ(B) isoform of Ca2+/calmodulin-dependent protein kinase II induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity. J Biol Chem 277(2):1261–1267PubMed
176.
go back to reference Ronkainen JJ, Vuolteenaho O, Tavi P (2007) Calcium-calmodulin kinase II is the common factor in calcium-dependent cardiac expression and secretion of A- and B-type natriuretic peptides. Endocrinology 148(6):2815–2820PubMed Ronkainen JJ, Vuolteenaho O, Tavi P (2007) Calcium-calmodulin kinase II is the common factor in calcium-dependent cardiac expression and secretion of A- and B-type natriuretic peptides. Endocrinology 148(6):2815–2820PubMed
177.
go back to reference Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN (2006) CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest 116(7):1853–1864PubMedCentralPubMed Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN (2006) CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest 116(7):1853–1864PubMedCentralPubMed
178.
go back to reference Little GH, Bai Y, Williams T, Poizat C (2007) Nuclear calcium/calmodulin-dependent protein kinase IIδ preferentially transmits signals to histone deacetylase 4 in cardiac cells. J Biol Chem 282(10):7219–7231PubMed Little GH, Bai Y, Williams T, Poizat C (2007) Nuclear calcium/calmodulin-dependent protein kinase IIδ preferentially transmits signals to histone deacetylase 4 in cardiac cells. J Biol Chem 282(10):7219–7231PubMed
179.
go back to reference Zhang T, Kohlhaas M, Backs J, Mishra S, Phillips W, Dybkova N, Chang S, Ling H, Bers DM, Maier LS, Olson EN, Brown JH (2007) CaMKIIδ isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J Biol Chem 282(48):35078–35087PubMed Zhang T, Kohlhaas M, Backs J, Mishra S, Phillips W, Dybkova N, Chang S, Ling H, Bers DM, Maier LS, Olson EN, Brown JH (2007) CaMKIIδ isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J Biol Chem 282(48):35078–35087PubMed
180.
go back to reference Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J Jr, Bers DM, Brown JH (2003) The δC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res 92(8):912–919PubMed Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J Jr, Bers DM, Brown JH (2003) The δC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res 92(8):912–919PubMed
181.
go back to reference Hardingham GE, Arnold FJ, Bading H (2001) Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci 4(3):261–267PubMed Hardingham GE, Arnold FJ, Bading H (2001) Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci 4(3):261–267PubMed
182.
go back to reference Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olson EN, Chen J, Brown JH, Bers DM (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation–transcription coupling. J Clin Invest 116(3):675–682PubMedCentralPubMed Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olson EN, Chen J, Brown JH, Bers DM (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation–transcription coupling. J Clin Invest 116(3):675–682PubMedCentralPubMed
183.
go back to reference Bootman MD, Fearnley C, Smyrnias I, MacDonald F, Roderick HL (2009) An update on nuclear calcium signalling. J Cell Sci 122(Pt 14):2337–2350PubMed Bootman MD, Fearnley C, Smyrnias I, MacDonald F, Roderick HL (2009) An update on nuclear calcium signalling. J Cell Sci 122(Pt 14):2337–2350PubMed
184.
go back to reference Wagner S, Hacker E, Grandi E, Weber SL, Dybkova N, Sossalla S, Sowa T, Fabritz L, Kirchhof P, Bers DM, Maier LS (2009) Ca/calmodulin kinase II differentially modulates potassium currents. Circ Arrhythm Electrophysiol 2(3):285–294PubMedCentralPubMed Wagner S, Hacker E, Grandi E, Weber SL, Dybkova N, Sossalla S, Sowa T, Fabritz L, Kirchhof P, Bers DM, Maier LS (2009) Ca/calmodulin kinase II differentially modulates potassium currents. Circ Arrhythm Electrophysiol 2(3):285–294PubMedCentralPubMed
185.
go back to reference Roeper J, Lorra C, Pongs O (1997) Frequency-dependent inactivation of mammalian A-type K+ channel KV1.4 regulated by Ca2+/calmodulin-dependent protein kinase. J Neurosci 17(10):3379–3391PubMed Roeper J, Lorra C, Pongs O (1997) Frequency-dependent inactivation of mammalian A-type K+ channel KV1.4 regulated by Ca2+/calmodulin-dependent protein kinase. J Neurosci 17(10):3379–3391PubMed
186.
go back to reference Sergeant GP, Ohya S, Reihill JA, Perrino BA, Amberg GC, Imaizumi Y, Horowitz B, Sanders KM, Koh SD (2005) Regulation of Kv4.3 currents by Ca2+/calmodulin-dependent protein kinase II. Am J Physiol Cell Physiol 288(2):C304–C313PubMed Sergeant GP, Ohya S, Reihill JA, Perrino BA, Amberg GC, Imaizumi Y, Horowitz B, Sanders KM, Koh SD (2005) Regulation of Kv4.3 currents by Ca2+/calmodulin-dependent protein kinase II. Am J Physiol Cell Physiol 288(2):C304–C313PubMed
187.
go back to reference Varga AW, Yuan LL, Anderson AE, Schrader LA, Wu GY, Gatchel JR, Johnston D, Sweatt JD (2004) Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression and upregulates neuronal A-type potassium currents. J Neurosci 24(14):3643–3654PubMed Varga AW, Yuan LL, Anderson AE, Schrader LA, Wu GY, Gatchel JR, Johnston D, Sweatt JD (2004) Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression and upregulates neuronal A-type potassium currents. J Neurosci 24(14):3643–3654PubMed
188.
go back to reference Colinas O, Gallego M, Setien R, Lopez-Lopez JR, Perez-Garcia MT, Casis O (2006) Differential modulation of Kv4.2 and Kv4.3 channels by calmodulin-dependent protein kinase II in rat cardiac myocytes. Am J Physiol Heart Circ Physiol 291(4):H1978–H1987PubMed Colinas O, Gallego M, Setien R, Lopez-Lopez JR, Perez-Garcia MT, Casis O (2006) Differential modulation of Kv4.2 and Kv4.3 channels by calmodulin-dependent protein kinase II in rat cardiac myocytes. Am J Physiol Heart Circ Physiol 291(4):H1978–H1987PubMed
189.
go back to reference Li J, Marionneau C, Zhang R, Shah V, Hell JW, Nerbonne JM, Anderson ME (2006) Calmodulin kinase II inhibition shortens action potential duration by upregulation of K+ currents. Circ Res 99(10):1092–1099PubMed Li J, Marionneau C, Zhang R, Shah V, Hell JW, Nerbonne JM, Anderson ME (2006) Calmodulin kinase II inhibition shortens action potential duration by upregulation of K+ currents. Circ Res 99(10):1092–1099PubMed
190.
go back to reference Tessier S, Karczewski P, Krause EG, Pansard Y, Acar C, Lang-Lazdunski M, Mercadier JJ, Hatem SN (1999) Regulation of the transient outward K+ current by Ca2+/calmodulin-dependent protein kinases II in human atrial myocytes. Circ Res 85(9):810–819PubMed Tessier S, Karczewski P, Krause EG, Pansard Y, Acar C, Lang-Lazdunski M, Mercadier JJ, Hatem SN (1999) Regulation of the transient outward K+ current by Ca2+/calmodulin-dependent protein kinases II in human atrial myocytes. Circ Res 85(9):810–819PubMed
191.
go back to reference Xiao L, Coutu P, Villeneuve LR, Tadevosyan A, Maguy A, Le Bouter S, Allen BG, Nattel S (2008) Mechanisms underlying rate-dependent remodeling of transient outward potassium current in canine ventricular myocytes. Circ Res 103(7):733–742PubMed Xiao L, Coutu P, Villeneuve LR, Tadevosyan A, Maguy A, Le Bouter S, Allen BG, Nattel S (2008) Mechanisms underlying rate-dependent remodeling of transient outward potassium current in canine ventricular myocytes. Circ Res 103(7):733–742PubMed
192.
go back to reference Zobel C, Kassiri Z, Nguyen TT, Meng Y, Backx PH (2002) Prevention of hypertrophy by overexpression of Kv4.2 in cultured neonatal cardiomyocytes. Circulation 106(18):2385–2391PubMed Zobel C, Kassiri Z, Nguyen TT, Meng Y, Backx PH (2002) Prevention of hypertrophy by overexpression of Kv4.2 in cultured neonatal cardiomyocytes. Circulation 106(18):2385–2391PubMed
193.
go back to reference Lebeche D, Kaprielian R, Hajjar R (2006) Modulation of action potential duration on myocyte hypertrophic pathways. J Mol Cell Cardiol 40(5):725–735PubMed Lebeche D, Kaprielian R, Hajjar R (2006) Modulation of action potential duration on myocyte hypertrophic pathways. J Mol Cell Cardiol 40(5):725–735PubMed
194.
go back to reference Lebeche D, Kaprielian R, Del MF, Tomaselli G, Gwathmey JK, Schwartz A, Hajjar RJ (2004) In vivo cardiac gene transfer of Kv4.3 abrogates the hypertrophic response in rats after aortic stenosis. Circulation 110(22):3435–3443PubMed Lebeche D, Kaprielian R, Del MF, Tomaselli G, Gwathmey JK, Schwartz A, Hajjar RJ (2004) In vivo cardiac gene transfer of Kv4.3 abrogates the hypertrophic response in rats after aortic stenosis. Circulation 110(22):3435–3443PubMed
195.
go back to reference Molkentin JD (2004) Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res 63(3):467–475PubMed Molkentin JD (2004) Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res 63(3):467–475PubMed
196.
go back to reference Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7(8):589–600PubMed Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7(8):589–600PubMed
197.
go back to reference Hallhuber M, Burkard N, Wu R, Buch MH, Engelhardt S, Hein L, Neyses L, Schuh K, Ritter O (2006) Inhibition of nuclear import of calcineurin prevents myocardial hypertrophy. Circ Res 99(6):626–635PubMed Hallhuber M, Burkard N, Wu R, Buch MH, Engelhardt S, Hein L, Neyses L, Schuh K, Ritter O (2006) Inhibition of nuclear import of calcineurin prevents myocardial hypertrophy. Circ Res 99(6):626–635PubMed
198.
go back to reference Chow CW, Rincon M, Cavanagh J, Dickens M, Davis RJ (1997) Nuclear accumulation of NFAT4 opposed by the JNK signal transduction pathway. Science 278(5343):1638–1641PubMed Chow CW, Rincon M, Cavanagh J, Dickens M, Davis RJ (1997) Nuclear accumulation of NFAT4 opposed by the JNK signal transduction pathway. Science 278(5343):1638–1641PubMed
199.
go back to reference Zhu J, Shibasaki F, Price R, Guillemot JC, Yano T, Dotsch V, Wagner G, Ferrara P, McKeon F (1998) Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 93(5):851–861PubMed Zhu J, Shibasaki F, Price R, Guillemot JC, Yano T, Dotsch V, Wagner G, Ferrara P, McKeon F (1998) Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 93(5):851–861PubMed
200.
go back to reference Zhu J, McKeon F (1999) NF-AT activation requires suppression of Crm1-dependent export by calcineurin. Nature 398(6724):256–260PubMed Zhu J, McKeon F (1999) NF-AT activation requires suppression of Crm1-dependent export by calcineurin. Nature 398(6724):256–260PubMed
201.
go back to reference Tandan S, Wang Y, Wang TT, Jiang N, Hall DD, Hell JW, Luo X, Rothermel BA, Hill JA (2009) Physical and functional interaction between calcineurin and the cardiac L-type Ca2+ channel. Circ Res 105(1):51–60PubMedCentralPubMed Tandan S, Wang Y, Wang TT, Jiang N, Hall DD, Hell JW, Luo X, Rothermel BA, Hill JA (2009) Physical and functional interaction between calcineurin and the cardiac L-type Ca2+ channel. Circ Res 105(1):51–60PubMedCentralPubMed
202.
go back to reference Yatani A, Honda R, Tymitz KM, Lalli MJ, Molkentin JD (2001) Enhanced Ca2+ channel currents in cardiac hypertrophy induced by activation of calcineurin-dependent pathway. J Mol Cell Cardiol 33(2):249–259PubMed Yatani A, Honda R, Tymitz KM, Lalli MJ, Molkentin JD (2001) Enhanced Ca2+ channel currents in cardiac hypertrophy induced by activation of calcineurin-dependent pathway. J Mol Cell Cardiol 33(2):249–259PubMed
203.
go back to reference Munch G, Bolck B, Karczewski P, Schwinger RH (2002) Evidence for calcineurin-mediated regulation of SERCA 2a activity in human myocardium. J Mol Cell Cardiol 34(3):321–334PubMed Munch G, Bolck B, Karczewski P, Schwinger RH (2002) Evidence for calcineurin-mediated regulation of SERCA 2a activity in human myocardium. J Mol Cell Cardiol 34(3):321–334PubMed
204.
go back to reference Dong D, Duan Y, Guo J, Roach DE, Swirp SL, Wang L, Lees-Miller JP, Sheldon RS, Molkentin JD, Duff HJ (2003) Overexpression of calcineurin in mouse causes sudden cardiac death associated with decreased density of K+ channels. Cardiovasc Res 57(2):320–332PubMed Dong D, Duan Y, Guo J, Roach DE, Swirp SL, Wang L, Lees-Miller JP, Sheldon RS, Molkentin JD, Duff HJ (2003) Overexpression of calcineurin in mouse causes sudden cardiac death associated with decreased density of K+ channels. Cardiovasc Res 57(2):320–332PubMed
205.
go back to reference Petrashevskaya NN, Bodi I, Rubio M, Molkentin JD, Schwartz A (2002) Cardiac function and electrical remodeling of the calcineurin-overexpressed transgenic mouse. Cardiovasc Res 54(1):117–132PubMed Petrashevskaya NN, Bodi I, Rubio M, Molkentin JD, Schwartz A (2002) Cardiac function and electrical remodeling of the calcineurin-overexpressed transgenic mouse. Cardiovasc Res 54(1):117–132PubMed
206.
go back to reference Gong N, Bodi I, Zobel C, Schwartz A, Molkentin JD, Backx PH (2006) Calcineurin increases cardiac transient outward K+ currents via transcriptional up-regulation of Kv4.2 channel subunits. J Biol Chem 281(50):38498–38506PubMed Gong N, Bodi I, Zobel C, Schwartz A, Molkentin JD, Backx PH (2006) Calcineurin increases cardiac transient outward K+ currents via transcriptional up-regulation of Kv4.2 channel subunits. J Biol Chem 281(50):38498–38506PubMed
207.
go back to reference Deng L, Huang B, Qin D, Ganguly K, El-Sherif N (2001) Calcineurin inhibition ameliorates structural, contractile, and electrophysiologic consequences of postinfarction remodeling. J Cardiovasc Electrophysiol 12(9):1055–1061PubMed Deng L, Huang B, Qin D, Ganguly K, El-Sherif N (2001) Calcineurin inhibition ameliorates structural, contractile, and electrophysiologic consequences of postinfarction remodeling. J Cardiovasc Electrophysiol 12(9):1055–1061PubMed
208.
go back to reference Rossow CF, Minami E, Chase EG, Murry CE, Santana LF (2004) NFATc3-induced reductions in voltage-gated K+ currents after myocardial infarction. Circ Res 94(10):1340–1350PubMed Rossow CF, Minami E, Chase EG, Murry CE, Santana LF (2004) NFATc3-induced reductions in voltage-gated K+ currents after myocardial infarction. Circ Res 94(10):1340–1350PubMed
209.
go back to reference Perrier E, Perrier R, Richard S, Benitah JP (2004) Ca2+ controls functional expression of the cardiac K+ transient outward current via the calcineurin pathway. J Biol Chem 279(39):40634–40639PubMed Perrier E, Perrier R, Richard S, Benitah JP (2004) Ca2+ controls functional expression of the cardiac K+ transient outward current via the calcineurin pathway. J Biol Chem 279(39):40634–40639PubMed
210.
go back to reference Dilly KW, Rossow CF, Votaw VS, Meabon JS, Cabarrus JL, Santana LF (2006) Mechanisms underlying variations in excitation–contraction coupling across the mouse left ventricular free wall. J Physiol 572(Pt 1):227–241PubMedCentralPubMed Dilly KW, Rossow CF, Votaw VS, Meabon JS, Cabarrus JL, Santana LF (2006) Mechanisms underlying variations in excitation–contraction coupling across the mouse left ventricular free wall. J Physiol 572(Pt 1):227–241PubMedCentralPubMed
211.
go back to reference Rossow CF, Dilly KW, Yuan C, Nieves-Cintron M, Cabarrus JL, Santana LF (2009) NFATc3-dependent loss of I to gradient across the left ventricular wall during chronic β adrenergic stimulation. J Mol Cell Cardiol 46(2):249–256PubMedCentralPubMed Rossow CF, Dilly KW, Yuan C, Nieves-Cintron M, Cabarrus JL, Santana LF (2009) NFATc3-dependent loss of I to gradient across the left ventricular wall during chronic β adrenergic stimulation. J Mol Cell Cardiol 46(2):249–256PubMedCentralPubMed
212.
go back to reference Gaertner TR, Kolodziej SJ, Wang D, Kobayashi R, Koomen JM, Stoops JK, Waxham MN (2004) Comparative analyses of the three-dimensional structures and enzymatic properties of α, β, γ and δ isoforms of Ca2+-calmodulin-dependent protein kinase II. J Biol Chem 279(13):12484–12494PubMed Gaertner TR, Kolodziej SJ, Wang D, Kobayashi R, Koomen JM, Stoops JK, Waxham MN (2004) Comparative analyses of the three-dimensional structures and enzymatic properties of α, β, γ and δ isoforms of Ca2+-calmodulin-dependent protein kinase II. J Biol Chem 279(13):12484–12494PubMed
213.
go back to reference Quintana AR, Wang D, Forbes JE, Waxham MN (2005) Kinetics of calmodulin binding to calcineurin. Biochem Biophys Res Commun 334(2):674–680PubMed Quintana AR, Wang D, Forbes JE, Waxham MN (2005) Kinetics of calmodulin binding to calcineurin. Biochem Biophys Res Commun 334(2):674–680PubMed
214.
go back to reference Khoo MS, Li J, Singh MV, Yang Y, Kannankeril P, Wu Y, Grueter CE, Guan X, Oddis CV, Zhang R, Mendes L, Ni G, Madu EC, Yang J, Bass M, Gomez RJ, Wadzinski BE, Olson EN, Colbran RJ, Anderson ME (2006) Death, cardiac dysfunction, and arrhythmias are increased by calmodulin kinase II in calcineurin cardiomyopathy. Circulation 114(13):1352–1359PubMed Khoo MS, Li J, Singh MV, Yang Y, Kannankeril P, Wu Y, Grueter CE, Guan X, Oddis CV, Zhang R, Mendes L, Ni G, Madu EC, Yang J, Bass M, Gomez RJ, Wadzinski BE, Olson EN, Colbran RJ, Anderson ME (2006) Death, cardiac dysfunction, and arrhythmias are increased by calmodulin kinase II in calcineurin cardiomyopathy. Circulation 114(13):1352–1359PubMed
215.
go back to reference Kubokawa M, Kojo T, Komagiri Y, Nakamura K (2009) Role of calcineurin-mediated dephosphorylation in modulation of an inwardly rectifying K+ channel in human proximal tubule cells. J Membr Biol 231(2–3):79–92PubMed Kubokawa M, Kojo T, Komagiri Y, Nakamura K (2009) Role of calcineurin-mediated dephosphorylation in modulation of an inwardly rectifying K+ channel in human proximal tubule cells. J Membr Biol 231(2–3):79–92PubMed
216.
go back to reference Ahn SM, Choe ES (2010) Alterations in GluR2 AMPA receptor phosphorylation at serine 880 following group I metabotropic glutamate receptor stimulation in the rat dorsal striatum. J Neurosci Res 88(5):992–999PubMed Ahn SM, Choe ES (2010) Alterations in GluR2 AMPA receptor phosphorylation at serine 880 following group I metabotropic glutamate receptor stimulation in the rat dorsal striatum. J Neurosci Res 88(5):992–999PubMed
217.
go back to reference Hashimoto Y, King MM, Soderling TR (1988) Regulatory interactions of calmodulin-binding proteins: phosphorylation of calcineurin by autophosphorylated Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci USA 85(18):7001–7005PubMedCentralPubMed Hashimoto Y, King MM, Soderling TR (1988) Regulatory interactions of calmodulin-binding proteins: phosphorylation of calcineurin by autophosphorylated Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci USA 85(18):7001–7005PubMedCentralPubMed
218.
go back to reference Martensen TM, Martin BM, Kincaid RL (1989) Identification of the site on calcineurin phosphorylated by Ca2+/CaM-dependent kinase II: modification of the CaM-binding domain. Biochemistry 28(24):9243–9247PubMed Martensen TM, Martin BM, Kincaid RL (1989) Identification of the site on calcineurin phosphorylated by Ca2+/CaM-dependent kinase II: modification of the CaM-binding domain. Biochemistry 28(24):9243–9247PubMed
219.
go back to reference MacDonnell SM, Weisser-Thomas J, Kubo H, Hanscome M, Liu Q, Jaleel N, Berretta R, Chen X, Brown JH, Sabri AK, Molkentin JD, Houser SR (2009) CaMKII negatively regulates calcineurin-NFAT signaling in cardiac myocytes. Circ Res 105(4):316–325PubMedCentralPubMed MacDonnell SM, Weisser-Thomas J, Kubo H, Hanscome M, Liu Q, Jaleel N, Berretta R, Chen X, Brown JH, Sabri AK, Molkentin JD, Houser SR (2009) CaMKII negatively regulates calcineurin-NFAT signaling in cardiac myocytes. Circ Res 105(4):316–325PubMedCentralPubMed
220.
go back to reference Lu YM, Shioda N, Yamamoto Y, Han F, Fukunaga K (2010) Transcriptional upregulation of calcineurin Aβ by endothelin-1 is partially mediated by calcium/calmodulin-dependent protein kinase IIδ3 in rat cardiomyocytes. Biochim Biophys Acta 1799(5–6):429–441PubMed Lu YM, Shioda N, Yamamoto Y, Han F, Fukunaga K (2010) Transcriptional upregulation of calcineurin Aβ by endothelin-1 is partially mediated by calcium/calmodulin-dependent protein kinase IIδ3 in rat cardiomyocytes. Biochim Biophys Acta 1799(5–6):429–441PubMed
221.
go back to reference Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The δ isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci USA 106(7):2342–2347PubMedCentralPubMed Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The δ isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci USA 106(7):2342–2347PubMedCentralPubMed
222.
go back to reference Ling H, Zhang T, Pereira L, Means CK, Cheng H, Gu Y, Dalton ND, Peterson KL, Chen J, Bers D, Brown JH (2009) Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest 119(5):1230–1240PubMedCentralPubMed Ling H, Zhang T, Pereira L, Means CK, Cheng H, Gu Y, Dalton ND, Peterson KL, Chen J, Bers D, Brown JH (2009) Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest 119(5):1230–1240PubMedCentralPubMed
223.
go back to reference Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM (2005) Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 97(12):1314–1322PubMed Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM (2005) Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 97(12):1314–1322PubMed
224.
go back to reference Fischer TH, Herting J, Tirilomis T, Renner A, Neef S, Toischer K, Ellenberger D, Forster A, Schmitto JD, Gummert J, Schondube FA, Hasenfuss G, Maier LS, Sossalla S (2013) Ca2 +/calmodulin-dependent protein kinase II and protein kinase A differentially regulate sarcoplasmic reticulum Ca2+ leak in human cardiac pathology. Circulation 128(9):970–981PubMed Fischer TH, Herting J, Tirilomis T, Renner A, Neef S, Toischer K, Ellenberger D, Forster A, Schmitto JD, Gummert J, Schondube FA, Hasenfuss G, Maier LS, Sossalla S (2013) Ca2 +/calmodulin-dependent protein kinase II and protein kinase A differentially regulate sarcoplasmic reticulum Ca2+ leak in human cardiac pathology. Circulation 128(9):970–981PubMed
225.
go back to reference Sossalla S, Fluschnik N, Schotola H, Ort KR, Neef S, Schulte T, Wittkopper K, Renner A, Schmitto JD, Gummert J, El-Armouche A, Hasenfuss G, Maier LS (2010) Inhibition of elevated Ca2 +/calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circ Res 107(9):1150–1161PubMed Sossalla S, Fluschnik N, Schotola H, Ort KR, Neef S, Schulte T, Wittkopper K, Renner A, Schmitto JD, Gummert J, El-Armouche A, Hasenfuss G, Maier LS (2010) Inhibition of elevated Ca2 +/calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circ Res 107(9):1150–1161PubMed
226.
go back to reference Cheng J, Xu L, Lai D, Guilbert A, Lim HJ, Keskanokwong T, Wang Y (2012) CaMKII inhibition in heart failure, beneficial, harmful, or both. Am J Physiol Heart Circ Physiol 302(7):H1454–H1465PubMedCentralPubMed Cheng J, Xu L, Lai D, Guilbert A, Lim HJ, Keskanokwong T, Wang Y (2012) CaMKII inhibition in heart failure, beneficial, harmful, or both. Am J Physiol Heart Circ Physiol 302(7):H1454–H1465PubMedCentralPubMed
227.
go back to reference Guilbert A, Cheng J, Wang Y (2012) Kv4.3 expression improves cardiac function in heart failure mice. Circulation 126:A19641 Guilbert A, Cheng J, Wang Y (2012) Kv4.3 expression improves cardiac function in heart failure mice. Circulation 126:A19641
Metadata
Title
Transient outward potassium channel: a heart failure mediator
Authors
Qianwen He
Ying Feng
Yanggan Wang
Publication date
01-05-2015
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 3/2015
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-015-9474-y

Other articles of this Issue 3/2015

Heart Failure Reviews 3/2015 Go to the issue