Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2011

01-12-2011

Essential fatty acids and their metabolites as modulators of stem cell biology with reference to inflammation, cancer, and metastasis

Author: Undurti N. Das

Published in: Cancer and Metastasis Reviews | Issue 3-4/2011

Login to get access

Abstract

Stem cells are pluripotent and expected to be of benefit in the management of coronary heart disease, stroke, diabetes mellitus, cancer, and Alzheimer’s disease in which pro-inflammatory cytokines are increased. Identifying endogenous bioactive molecules that have a regulatory role in stem cell survival, proliferation, and differentiation may aid in the use of stem cells in various diseases including cancer. Essential fatty acids form precursors to both pro- and anti-inflammatory molecules have been shown to regulate gene expression, enzyme activity, modulate inflammation and immune response, gluconeogenesis via direct and indirect pathways, function directly as agonists of a number of G protein-coupled receptors, activate phosphatidylinositol 3-kinase/Akt and p44/42 mitogen-activated protein kinases, and stimulate cell proliferation via Ca2+, phospholipase C/protein kinase, events that are also necessary for stem cell survival, proliferation, and differentiation. Hence, it is likely that bioactive lipids play a significant role in various diseases by modulating the proliferation and differentiation of embryonic stem cells in addition to their capacity to suppress inflammation. Ephrin Bs and reelin, adhesion molecules, and microRNAs regulate neuronal migration and cancer cell metastasis. Polyunsaturated fatty acids and their products seem to modulate the expression of ephrin Bs and reelin and several adhesion molecules and microRNAs suggesting that bioactive lipids participate in neuronal regeneration and stem cell proliferation, migration, and cancer cell metastasis. Thus, there appears to be a close interaction among essential fatty acids, their bioactive products, and inflammation and cancer growth and its metastasis.
Literature
1.
go back to reference Wu, D. C., Boyd, A. S., & Wood, K. J. (2007). Embryonic stem cell transplantation: potential applicability in cell replacement therapy and regenerative medicine. Frontiers in Bioscience, 12, 4525–4535.PubMed Wu, D. C., Boyd, A. S., & Wood, K. J. (2007). Embryonic stem cell transplantation: potential applicability in cell replacement therapy and regenerative medicine. Frontiers in Bioscience, 12, 4525–4535.PubMed
2.
go back to reference Christoforou, N., & Gearhart, J. D. (2007). Stem cells and their potential in cell-based cardiac therapies. Progress in Cardiovascular Diseases, 49, 396–413.PubMed Christoforou, N., & Gearhart, J. D. (2007). Stem cells and their potential in cell-based cardiac therapies. Progress in Cardiovascular Diseases, 49, 396–413.PubMed
3.
go back to reference James, D., Levine, A. J., Besser, D., & Hemmati-Brivanlou, A. (2005). TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 132, 1273–1282.PubMed James, D., Levine, A. J., Besser, D., & Hemmati-Brivanlou, A. (2005). TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 132, 1273–1282.PubMed
4.
go back to reference Beattie, G. M., Lopez, A. D., Bucay, N., Hinton, A., Firpo, M. T., et al. (2005). Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells, 23, 489–495.PubMed Beattie, G. M., Lopez, A. D., Bucay, N., Hinton, A., Firpo, M. T., et al. (2005). Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells, 23, 489–495.PubMed
5.
go back to reference Xiao, L., Yuan, X., & Sharkis, S. J. (2006). Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells, 24, 1476–1486.PubMed Xiao, L., Yuan, X., & Sharkis, S. J. (2006). Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells, 24, 1476–1486.PubMed
6.
go back to reference Vallier, L., Reynolds, D., & Pedersen, R. A. (2004). Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Developmental Biology, 275, 403–421.PubMed Vallier, L., Reynolds, D., & Pedersen, R. A. (2004). Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Developmental Biology, 275, 403–421.PubMed
7.
go back to reference Vallier, L., Alexander, M., & Pedersen, R. A. (2005). Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. Journal of Cell Science, 118, 4495–4509.PubMed Vallier, L., Alexander, M., & Pedersen, R. A. (2005). Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. Journal of Cell Science, 118, 4495–4509.PubMed
8.
go back to reference Tesar, P. J., Chenoweth, J. G., Brook, F. A., Davies, T. J., Evans, E. P., et al. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 448, 196–199.PubMed Tesar, P. J., Chenoweth, J. G., Brook, F. A., Davies, T. J., Evans, E. P., et al. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 448, 196–199.PubMed
9.
go back to reference Brons, I. G., Smithers, L. E., Trotter, M. W., Rugg-Gunn, P., Sun, B., et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448, 191–195.PubMed Brons, I. G., Smithers, L. E., Trotter, M. W., Rugg-Gunn, P., Sun, B., et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448, 191–195.PubMed
10.
go back to reference Davidson, K. C., Jamshidi, P., Daly, R., Hearn, M. T., Pera, M. F., & Dottori, M. (2007). Wnt3a regulates survival, expansion, and maintenance of neural progenitors derived from human embryonic stem cells. Molecular and Cellular Neuroscience, 36, 408–415.PubMed Davidson, K. C., Jamshidi, P., Daly, R., Hearn, M. T., Pera, M. F., & Dottori, M. (2007). Wnt3a regulates survival, expansion, and maintenance of neural progenitors derived from human embryonic stem cells. Molecular and Cellular Neuroscience, 36, 408–415.PubMed
11.
go back to reference Liu, N., Lu, M., Tian, X., & Han, Z. (2007). Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells. Journal of Cellular Physiology, 211, 279–286.PubMed Liu, N., Lu, M., Tian, X., & Han, Z. (2007). Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells. Journal of Cellular Physiology, 211, 279–286.PubMed
12.
go back to reference Vicente López, M. A., Vázquez García, M. N., Entrena, A., Olmedillas Lopez, S., García-Arranz, M., García-Olmo, D., et al. (2011). Low doses of bone morphogenetic protein 4 increase the survival of human adipose-derived stem cells maintaining their stemness and multipotency. Stem Cells and Development, 20(6), 1011.PubMed Vicente López, M. A., Vázquez García, M. N., Entrena, A., Olmedillas Lopez, S., García-Arranz, M., García-Olmo, D., et al. (2011). Low doses of bone morphogenetic protein 4 increase the survival of human adipose-derived stem cells maintaining their stemness and multipotency. Stem Cells and Development, 20(6), 1011.PubMed
13.
go back to reference Gidåli, J., & Feher, I. (1977). The effect of E type prostaglandins on the proliferation of haemopoietic stem cells in vivo. Cell and Tissue Kinetics, 10, 365–373.PubMed Gidåli, J., & Feher, I. (1977). The effect of E type prostaglandins on the proliferation of haemopoietic stem cells in vivo. Cell and Tissue Kinetics, 10, 365–373.PubMed
14.
go back to reference Chung, J. W., Kim, G. Y., Mun, Y. C., Ahn, J. Y., Seong, C. M., & Kim, J. H. (2005). Leukotriene B4 pathway regulates the fate of the hematopoietic stem cells. Experimental & Molecular Medicine, 37, 45–50. Chung, J. W., Kim, G. Y., Mun, Y. C., Ahn, J. Y., Seong, C. M., & Kim, J. H. (2005). Leukotriene B4 pathway regulates the fate of the hematopoietic stem cells. Experimental & Molecular Medicine, 37, 45–50.
15.
go back to reference Goessling, W., North, T. E., Loewer, S., Lord, A. M., Lee, S., Stoick-Cooper, C. L., et al. (2009). Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell, 136, 1136–1147.PubMed Goessling, W., North, T. E., Loewer, S., Lord, A. M., Lee, S., Stoick-Cooper, C. L., et al. (2009). Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell, 136, 1136–1147.PubMed
16.
go back to reference Evans, T. (2009). Fishing for a WNT-PGE2 link: beta-catenin is caught in the stem cell net-work. Cell Stem Cell, 4, 280–282.PubMed Evans, T. (2009). Fishing for a WNT-PGE2 link: beta-catenin is caught in the stem cell net-work. Cell Stem Cell, 4, 280–282.PubMed
17.
go back to reference Xu, R. H., Chen, X., Li, D. S., Li, R., Addicks, G. C., et al. (2002). BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nature Biotechnology, 20, 1261–1264.PubMed Xu, R. H., Chen, X., Li, D. S., Li, R., Addicks, G. C., et al. (2002). BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nature Biotechnology, 20, 1261–1264.PubMed
18.
go back to reference Pera, M. F., Andrade, J., Houssami, S., Reubinoff, B., Trounson, A., et al. (2004). Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. Journal of Cell Science, 117, 1269–1280.PubMed Pera, M. F., Andrade, J., Houssami, S., Reubinoff, B., Trounson, A., et al. (2004). Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. Journal of Cell Science, 117, 1269–1280.PubMed
19.
go back to reference Kee, K., Gonsalves, J. M., Clark, A. T., & Pera, R. A. (2006). Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells and Development, 15, 831–837.PubMed Kee, K., Gonsalves, J. M., Clark, A. T., & Pera, R. A. (2006). Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells and Development, 15, 831–837.PubMed
20.
go back to reference Bendall, S. C., Stewart, M. H., Menendez, P., George, D., Vijayaragavan, K., et al. (2007). IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature, 448, 1015–1021.PubMed Bendall, S. C., Stewart, M. H., Menendez, P., George, D., Vijayaragavan, K., et al. (2007). IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature, 448, 1015–1021.PubMed
21.
go back to reference Xu, R. H., Peck, R. M., Li, D. S., Feng, X., Ludwig, T., et al. (2005). Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nature Methods, 2, 185–190.PubMed Xu, R. H., Peck, R. M., Li, D. S., Feng, X., Ludwig, T., et al. (2005). Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nature Methods, 2, 185–190.PubMed
22.
go back to reference Xu, C., Rosler, E., Jiang, J., Lebkowski, J. S., Gold, J. D., et al. (2005). Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells, 23, 315–323.PubMed Xu, C., Rosler, E., Jiang, J., Lebkowski, J. S., Gold, J. D., et al. (2005). Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells, 23, 315–323.PubMed
23.
go back to reference Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., & Brivanlou, A. H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Medicine, 10, 55–63.PubMed Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., & Brivanlou, A. H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Medicine, 10, 55–63.PubMed
24.
go back to reference Hao, J., Li, T. G., Qi, X., Zhao, D. F., & Zhao, G. Q. (2006). WNT/beta-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Developmental Biology, 290, 81–91.PubMed Hao, J., Li, T. G., Qi, X., Zhao, D. F., & Zhao, G. Q. (2006). WNT/beta-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Developmental Biology, 290, 81–91.PubMed
25.
go back to reference Cartwright, P., McLean, C., Sheppard, A., Rivett, D., Jones, K., & Dalton, S. (2005). LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development, 132, 885–896.PubMed Cartwright, P., McLean, C., Sheppard, A., Rivett, D., Jones, K., & Dalton, S. (2005). LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development, 132, 885–896.PubMed
26.
go back to reference Kristensen, D. M., Kalisz, M., & Nielsen, J. H. (2005). Cytokine signalling in embryonic stem cells. APMIS, 113, 756–772.PubMed Kristensen, D. M., Kalisz, M., & Nielsen, J. H. (2005). Cytokine signalling in embryonic stem cells. APMIS, 113, 756–772.PubMed
27.
go back to reference Wang, L., Schulz, T. C., Sherrer, E. S., Dauphin, D. S., Shin, S., et al. (2007). Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ErbB2 receptor signaling. Blood, 110, 4111–4119.PubMed Wang, L., Schulz, T. C., Sherrer, E. S., Dauphin, D. S., Shin, S., et al. (2007). Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ErbB2 receptor signaling. Blood, 110, 4111–4119.PubMed
28.
go back to reference Pebay, A., Wong, R. C., Pitson, S. M., Wolvetang, E. J., Peh, G. S., et al. (2005). Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells, 23, 1541–1548.PubMed Pebay, A., Wong, R. C., Pitson, S. M., Wolvetang, E. J., Peh, G. S., et al. (2005). Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells, 23, 1541–1548.PubMed
29.
go back to reference Finstad, H. S., Kolset, S. O., Holme, J. A., Wiger, R., Farrants, A. K., Blomhoff, R., et al. (1994). Effect of n-3 and n-6 fatty acids on proliferation and differentiation of promyelocytic leukemic HL-60 cells. Blood, 84, 3799–3809.PubMed Finstad, H. S., Kolset, S. O., Holme, J. A., Wiger, R., Farrants, A. K., Blomhoff, R., et al. (1994). Effect of n-3 and n-6 fatty acids on proliferation and differentiation of promyelocytic leukemic HL-60 cells. Blood, 84, 3799–3809.PubMed
30.
go back to reference Das, U. N. (1988). Effect of phorbolmyristate acetate on fatty acid uptake and distribution in human promyelocytic leukemia (HL-60) cells in vitro. Biochemical and Biophysical Research Communications, 157, 639–647.PubMed Das, U. N. (1988). Effect of phorbolmyristate acetate on fatty acid uptake and distribution in human promyelocytic leukemia (HL-60) cells in vitro. Biochemical and Biophysical Research Communications, 157, 639–647.PubMed
31.
go back to reference Das, U. N., Ells, G., & Begin, M. E. (1992). Fatty acid changes during the induction of differentiation of human promyelocytic leukemia (HL-60) cells by phorbolmyristate acetate. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 46, 235–239.PubMed Das, U. N., Ells, G., & Begin, M. E. (1992). Fatty acid changes during the induction of differentiation of human promyelocytic leukemia (HL-60) cells by phorbolmyristate acetate. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 46, 235–239.PubMed
32.
go back to reference Kawakita, E., Hashimoto, M., & Shido, O. (2006). Docosahexaenoic acid promotes neurogenesis in vitro and in vivo. Neuroscience, 139, 991–997.PubMed Kawakita, E., Hashimoto, M., & Shido, O. (2006). Docosahexaenoic acid promotes neurogenesis in vitro and in vivo. Neuroscience, 139, 991–997.PubMed
33.
go back to reference da Costa, K. A., Rai, K. S., Craciunescu, C. N., Parikh, K., Mehedint, M. G., Sanders, L. M., et al. (2010). Dietary docosahexaenoic acid supplementation modulates hippocampal development in the Pemt−/− mouse. Journal of Biological Chemistry, 285, 1008–1015.PubMed da Costa, K. A., Rai, K. S., Craciunescu, C. N., Parikh, K., Mehedint, M. G., Sanders, L. M., et al. (2010). Dietary docosahexaenoic acid supplementation modulates hippocampal development in the Pemt−/− mouse. Journal of Biological Chemistry, 285, 1008–1015.PubMed
34.
go back to reference Varney, M. E., Hardman, W. E., & Sollars, V. E. (2009). Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation. Lipids in Health and Disease, 8, 9.PubMed Varney, M. E., Hardman, W. E., & Sollars, V. E. (2009). Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation. Lipids in Health and Disease, 8, 9.PubMed
35.
go back to reference Das, U. N. (2011). Influence of polyunsaturated fatty acids and their metabolites on stem cell biology. Nutrition, 27, 21–25.PubMed Das, U. N. (2011). Influence of polyunsaturated fatty acids and their metabolites on stem cell biology. Nutrition, 27, 21–25.PubMed
36.
go back to reference Das, U. N. (2006). Essential fatty acids—a review. Current Pharmaceutical Biotechnology, 7, 467–482.PubMed Das, U. N. (2006). Essential fatty acids—a review. Current Pharmaceutical Biotechnology, 7, 467–482.PubMed
37.
go back to reference Das, U. N. (2006). Essential fatty acids: biochemistry, physiology, and pathology. Biotechnology Journal, 1, 420–439.PubMed Das, U. N. (2006). Essential fatty acids: biochemistry, physiology, and pathology. Biotechnology Journal, 1, 420–439.PubMed
38.
go back to reference Das, U. N. (2008). Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids in Health and Disease, 7, 37.PubMed Das, U. N. (2008). Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids in Health and Disease, 7, 37.PubMed
39.
go back to reference Das, U. N. (2008). Beneficial actions of polyunsaturated fatty acids in cardiovascular diseases: but, how and why? Current Nutrition Food Science, 4, 2–31. Das, U. N. (2008). Beneficial actions of polyunsaturated fatty acids in cardiovascular diseases: but, how and why? Current Nutrition Food Science, 4, 2–31.
40.
go back to reference Das, U. N. (2010). Lipoxins, resolvins, protectins, maresins and nitrolipids: connecting lipids, inflammation, and cardiovascular disease risk. Current Cardiovascular Risk Reports, 4, 24–31. Das, U. N. (2010). Lipoxins, resolvins, protectins, maresins and nitrolipids: connecting lipids, inflammation, and cardiovascular disease risk. Current Cardiovascular Risk Reports, 4, 24–31.
41.
go back to reference Das, U. N. (2002). A perinatal strategy for preventing adult diseases: the role of long-chain polyunsaturated fatty acids. Boston: Kluwer. Das, U. N. (2002). A perinatal strategy for preventing adult diseases: the role of long-chain polyunsaturated fatty acids. Boston: Kluwer.
42.
go back to reference Das, U. N. (2010). Metabolic syndrome pathophysiology: the role of essential fatty acids and their metabolites. Ames: Wiley. Das, U. N. (2010). Metabolic syndrome pathophysiology: the role of essential fatty acids and their metabolites. Ames: Wiley.
43.
go back to reference Das, U. N. (2011). Molecular basis of health and disease. New York: Springer. Das, U. N. (2011). Molecular basis of health and disease. New York: Springer.
44.
go back to reference Lafourcade, M., Larrieu, T., Mato, S., Duffaud, A., Sepers, M., Matias, I., et al. (2011). Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nature Neuroscience, 14, 345–350.PubMed Lafourcade, M., Larrieu, T., Mato, S., Duffaud, A., Sepers, M., Matias, I., et al. (2011). Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nature Neuroscience, 14, 345–350.PubMed
45.
go back to reference Notarnicola, M., Messa, C., Refolo, M. G., Tutino, V., Miccolis, A., & Caruso, M. G. (2011). Polyunsaturated fatty acids reduce fatty acid synthase and hydroxy-methyl-glutaryl CoA-reductase gene expression and promote apoptosis in HepG2 cell line. Lipids in Health and Disease, 10, 10.PubMed Notarnicola, M., Messa, C., Refolo, M. G., Tutino, V., Miccolis, A., & Caruso, M. G. (2011). Polyunsaturated fatty acids reduce fatty acid synthase and hydroxy-methyl-glutaryl CoA-reductase gene expression and promote apoptosis in HepG2 cell line. Lipids in Health and Disease, 10, 10.PubMed
46.
go back to reference Rajasagi, N. K., Reddy, P. B., Suryawanshi, A., Mulik, S., Gjorstrup, P., & Rouse, B. T. (2011). Controlling herpes simplex virus-induced ocular inflammatory lesions with the lipid-derived mediator resolvin E1. The Journal of Immunology, 186, 1735–1746.PubMed Rajasagi, N. K., Reddy, P. B., Suryawanshi, A., Mulik, S., Gjorstrup, P., & Rouse, B. T. (2011). Controlling herpes simplex virus-induced ocular inflammatory lesions with the lipid-derived mediator resolvin E1. The Journal of Immunology, 186, 1735–1746.PubMed
47.
go back to reference Yang, X., Sheng, W., Sun, G. Y., & Lee, J. C. (2011). Effects of fatty acid unsaturation numbers on membrane fluidity and α-secretase-dependent amyloid precursor protein processing. Neurochemistry International, 58, 321–329.PubMed Yang, X., Sheng, W., Sun, G. Y., & Lee, J. C. (2011). Effects of fatty acid unsaturation numbers on membrane fluidity and α-secretase-dependent amyloid precursor protein processing. Neurochemistry International, 58, 321–329.PubMed
48.
go back to reference Recchiuti, A., Krishnamoorthy, S., Fredman, G., Chiang, N., & Serhan, C. N. (2011). MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits. The FASEB Journal, 25, 544–560.PubMed Recchiuti, A., Krishnamoorthy, S., Fredman, G., Chiang, N., & Serhan, C. N. (2011). MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits. The FASEB Journal, 25, 544–560.PubMed
49.
go back to reference Krishnamoorthy, S., Recchiuti, A., Chiang, N., Yacoubian, S., Lee, C. H., Yang, R., et al. (2010). Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proceedings of the National Academy of Sciences of the United States of America, 107, 1660–1665.PubMed Krishnamoorthy, S., Recchiuti, A., Chiang, N., Yacoubian, S., Lee, C. H., Yang, R., et al. (2010). Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proceedings of the National Academy of Sciences of the United States of America, 107, 1660–1665.PubMed
50.
go back to reference Lima, E. S., Bonini, M. G., Augusto, O., Barbeiro, H. V., Souza, H. P., & Abdalla, D. S. (2005). Nitrated lipids decompose to nitric oxide and lipid radicals and cause vasorelaxation. Free Radical Biology & Medicine, 39, 532–539. Lima, E. S., Bonini, M. G., Augusto, O., Barbeiro, H. V., Souza, H. P., & Abdalla, D. S. (2005). Nitrated lipids decompose to nitric oxide and lipid radicals and cause vasorelaxation. Free Radical Biology & Medicine, 39, 532–539.
51.
go back to reference Lim, D. G., Sweeney, S., Bloodsworth, A., White, C. R., Chumley, P. H., Krishna, N. R., et al. (2002). Nitrolinoleate, a nitric oxide-derived mediator of cell function: synthesis, characterization, and vasomotor activity. Proceedings of the National Academy of Sciences of the United States of America, 99, 15941–15946.PubMed Lim, D. G., Sweeney, S., Bloodsworth, A., White, C. R., Chumley, P. H., Krishna, N. R., et al. (2002). Nitrolinoleate, a nitric oxide-derived mediator of cell function: synthesis, characterization, and vasomotor activity. Proceedings of the National Academy of Sciences of the United States of America, 99, 15941–15946.PubMed
52.
go back to reference Wang, H., Liu, H., Jia, Z., Olsen, C., Litwin, S., Guan, G., et al. (2010). Nitro-oleic acid protects against endotoxin-induced endotoxemia and multiorgan injury in mice. American Journal of Physiology. Renal Physiology, 298, F754–F762.PubMed Wang, H., Liu, H., Jia, Z., Olsen, C., Litwin, S., Guan, G., et al. (2010). Nitro-oleic acid protects against endotoxin-induced endotoxemia and multiorgan injury in mice. American Journal of Physiology. Renal Physiology, 298, F754–F762.PubMed
53.
go back to reference Wang, H., Liu, H., Jia, Z., Guan, G., & Yang, T. (2010). Effects of endogenous PPAR agonist nitro-oleic acid on metabolic syndrome in obese Zucker rats. PPAR Research, 2010, 601562.PubMed Wang, H., Liu, H., Jia, Z., Guan, G., & Yang, T. (2010). Effects of endogenous PPAR agonist nitro-oleic acid on metabolic syndrome in obese Zucker rats. PPAR Research, 2010, 601562.PubMed
54.
go back to reference Brock, T. G. (2008). Capturing proteins that bind polyunsaturated fatty acids: demonstration using arachidonic acid and eicosanoids. Lipids, 43, 161–169.PubMed Brock, T. G. (2008). Capturing proteins that bind polyunsaturated fatty acids: demonstration using arachidonic acid and eicosanoids. Lipids, 43, 161–169.PubMed
55.
go back to reference Lengqvist, J., Mata De Urquiza, A., Bergman, A. C., Willson, T. M., Sjövall, J., Perlmann, T., et al. (2004). Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Molecular & Cellular Proteomics, 3, 692–703. Lengqvist, J., Mata De Urquiza, A., Bergman, A. C., Willson, T. M., Sjövall, J., Perlmann, T., et al. (2004). Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Molecular & Cellular Proteomics, 3, 692–703.
56.
go back to reference Norris, A. W., & Spector, A. A. (2002). Very long chain n-3 and n-6 polyunsaturated fatty acids bind strongly to liver fatty acid-binding protein. Journal of Lipid Research, 43, 646–653.PubMed Norris, A. W., & Spector, A. A. (2002). Very long chain n-3 and n-6 polyunsaturated fatty acids bind strongly to liver fatty acid-binding protein. Journal of Lipid Research, 43, 646–653.PubMed
57.
go back to reference Kang, L. T., & Vanderhoek, J. Y. (1998). Mono (S) hydroxy fatty acids: novel ligands for cytosolic actin. Journal of Lipid Research, 39, 1476–1482.PubMed Kang, L. T., & Vanderhoek, J. Y. (1998). Mono (S) hydroxy fatty acids: novel ligands for cytosolic actin. Journal of Lipid Research, 39, 1476–1482.PubMed
58.
go back to reference Ek-Von Mentzer, B. A., Zhang, F., & Hamilton, J. A. (2001). Binding of 13-HODE and 15-HETE to phospholipid bilayers, albumin, and intracellular fatty acid binding proteins. Implications for transmembrane and intracellular transport and for protection from lipid peroxidation. Journal of Biological Chemistry, 276, 15575–15580.PubMed Ek-Von Mentzer, B. A., Zhang, F., & Hamilton, J. A. (2001). Binding of 13-HODE and 15-HETE to phospholipid bilayers, albumin, and intracellular fatty acid binding proteins. Implications for transmembrane and intracellular transport and for protection from lipid peroxidation. Journal of Biological Chemistry, 276, 15575–15580.PubMed
59.
go back to reference Oh, D. Y., Talukdar, S., Bae, E. J., Imamura, T., Morinaga, H., Fan, W. Q., et al. (2010). GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell, 142, 672–674. Oh, D. Y., Talukdar, S., Bae, E. J., Imamura, T., Morinaga, H., Fan, W. Q., et al. (2010). GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell, 142, 672–674.
60.
go back to reference Das, U. N. (1999). Essential fatty acids, lipid peroxidation and apoptosis. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 61, 157–164.PubMed Das, U. N. (1999). Essential fatty acids, lipid peroxidation and apoptosis. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 61, 157–164.PubMed
61.
go back to reference Leroy, J. L., Vanholder, T., Mateusen, B., Christophe, A., Opsomer, G., de Kruif, A., et al. (2005). Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction, 130, 485–495.PubMed Leroy, J. L., Vanholder, T., Mateusen, B., Christophe, A., Opsomer, G., de Kruif, A., et al. (2005). Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction, 130, 485–495.PubMed
62.
go back to reference Thangavelu, G., Colazo, M. G., Ambrose, D. J., Oba, M., Okine, E. K., & Dyek, M. K. (2007). Diets enriched in unsaturated fatty acids enhance early embryonic development in lactating Holstein cows. Theriogenology, 68, 949–957.PubMed Thangavelu, G., Colazo, M. G., Ambrose, D. J., Oba, M., Okine, E. K., & Dyek, M. K. (2007). Diets enriched in unsaturated fatty acids enhance early embryonic development in lactating Holstein cows. Theriogenology, 68, 949–957.PubMed
63.
go back to reference Wonnacott, K. E., Kwong, W. Y., Hughes, J., Salter, A. M., Lea, R. G., Garnsworthy, P. C., et al. (2010). Dietary omega-3 and -6 polyunsaturated fatty acids affect the composition and development of sheep granulosa cells, oocytes and embryos. Reproduction, 139, 57–69.PubMed Wonnacott, K. E., Kwong, W. Y., Hughes, J., Salter, A. M., Lea, R. G., Garnsworthy, P. C., et al. (2010). Dietary omega-3 and -6 polyunsaturated fatty acids affect the composition and development of sheep granulosa cells, oocytes and embryos. Reproduction, 139, 57–69.PubMed
64.
go back to reference Hughes, J., Kwong, W. Y., Li, D., Salter, A. M., Lea, R. G., & Sinclair, K. D. (2011). Effects of omega-3 and -6 polyunsaturated fatty acids on ovine follicular cell steroidogenesis, embryo development and molecular markers of fatty acid metabolism. Reproduction, 141, 105–118.PubMed Hughes, J., Kwong, W. Y., Li, D., Salter, A. M., Lea, R. G., & Sinclair, K. D. (2011). Effects of omega-3 and -6 polyunsaturated fatty acids on ovine follicular cell steroidogenesis, embryo development and molecular markers of fatty acid metabolism. Reproduction, 141, 105–118.PubMed
65.
go back to reference Wakefield, S. L., Lane, M., Schulz, S. J., Hebart, M. L., Thompson, J. G., & Mitchell, M. (2008). Maternal supply of omega-3 polyunsaturated fatty acids alter mechanisms involved in oocyte and early embryo development in the mouse. American Journal of Physiology, Endocrinology and Metabolism, 294, E425–E434. Wakefield, S. L., Lane, M., Schulz, S. J., Hebart, M. L., Thompson, J. G., & Mitchell, M. (2008). Maternal supply of omega-3 polyunsaturated fatty acids alter mechanisms involved in oocyte and early embryo development in the mouse. American Journal of Physiology, Endocrinology and Metabolism, 294, E425–E434.
66.
go back to reference Kim, J. S., Chae, J. I., Song, B. S., Lee, K. S., Choo, Y. K., Chang, K. T., et al. (2010). Iloprost, a prostacyclin analogue, stimulates meiotic maturation and early embryonic development in pigs. Reproduction, Fertility, and Development, 22, 437–447.PubMed Kim, J. S., Chae, J. I., Song, B. S., Lee, K. S., Choo, Y. K., Chang, K. T., et al. (2010). Iloprost, a prostacyclin analogue, stimulates meiotic maturation and early embryonic development in pigs. Reproduction, Fertility, and Development, 22, 437–447.PubMed
67.
go back to reference Xiong, J., Zeng, P., & Ye, D. (2011). Lipoxins: a novel regulator in embryo implantation. The Scientific World Journal, 11, 235–241. Xiong, J., Zeng, P., & Ye, D. (2011). Lipoxins: a novel regulator in embryo implantation. The Scientific World Journal, 11, 235–241.
68.
go back to reference Kim, M. H., Kim, M. O., Kim, Y. H., Kim, J. S., & Han, H. J. (2009). Linoleic acid induces mouse embryonic stem cell proliferation via Ca2+/PKC, PI3K/Akt, and MAPKs. Cellular Physiology and Biochemistry, 23, 53–64.PubMed Kim, M. H., Kim, M. O., Kim, Y. H., Kim, J. S., & Han, H. J. (2009). Linoleic acid induces mouse embryonic stem cell proliferation via Ca2+/PKC, PI3K/Akt, and MAPKs. Cellular Physiology and Biochemistry, 23, 53–64.PubMed
69.
go back to reference Hurley, M. S., Flux, C., Salter, A. M., & Brameld, J. M. (2006). Effects of fatty acids on skeletal muscle cell differentiation in vitro. The British Journal of Nutrition, 95, 623–630.PubMed Hurley, M. S., Flux, C., Salter, A. M., & Brameld, J. M. (2006). Effects of fatty acids on skeletal muscle cell differentiation in vitro. The British Journal of Nutrition, 95, 623–630.PubMed
70.
go back to reference Kurland, J. I., Broxmeyer, H. E., Pelus, L. M., & Moore, M. A. S. (1978). Role of monocytemacrophage-derived colony-stimulating factor and prostaglandin E in the positive and negative feedback control of myeloid stem cell proliferation. Blood, 52, 388–407.PubMed Kurland, J. I., Broxmeyer, H. E., Pelus, L. M., & Moore, M. A. S. (1978). Role of monocytemacrophage-derived colony-stimulating factor and prostaglandin E in the positive and negative feedback control of myeloid stem cell proliferation. Blood, 52, 388–407.PubMed
71.
go back to reference Jiang, D., & Schwarz, H. (2010). Regulation of granulocyte and macrophage populations of murine bone marrow cells by G-CSF and CD137 protein. PLoS One, 5, e15565.PubMed Jiang, D., & Schwarz, H. (2010). Regulation of granulocyte and macrophage populations of murine bone marrow cells by G-CSF and CD137 protein. PLoS One, 5, e15565.PubMed
72.
go back to reference Kimura, A., Rieger, M. A., Simone, J. M., Chen, W., Wickre, M. C., Zhu, B. M., et al. (2009). The transcription factors STAT5A/B regulate GM-CSF-mediated granulopoiesis. Blood, 114, 4721–4728.PubMed Kimura, A., Rieger, M. A., Simone, J. M., Chen, W., Wickre, M. C., Zhu, B. M., et al. (2009). The transcription factors STAT5A/B regulate GM-CSF-mediated granulopoiesis. Blood, 114, 4721–4728.PubMed
73.
go back to reference Kurland, J. I., Bockman, R. S., Broxmeyer, H. E., & Moore, M. A. (1978). Limitation of excessive myelopoiesis by the intrinsic modulation of macrophage-derived prostaglandin E. Science, 199, 552–555.PubMed Kurland, J. I., Bockman, R. S., Broxmeyer, H. E., & Moore, M. A. (1978). Limitation of excessive myelopoiesis by the intrinsic modulation of macrophage-derived prostaglandin E. Science, 199, 552–555.PubMed
74.
go back to reference Taetle, R., Guittard, J. P., & Mendelsohn, J. M. (1980). Abnormal modulation of granulocyte/macrophage progenitor proliferation by prostaglandin E in chronic myeloproliferative disorders. Experimental Hematology, 8, 1190–1201.PubMed Taetle, R., Guittard, J. P., & Mendelsohn, J. M. (1980). Abnormal modulation of granulocyte/macrophage progenitor proliferation by prostaglandin E in chronic myeloproliferative disorders. Experimental Hematology, 8, 1190–1201.PubMed
75.
go back to reference Motomura, S., & Dexter, T. M. (1980). The effect of prostaglandin E1 on hemopoiesis in long-term bone marrow cultures. Experimental Hematology, 8, 298–303.PubMed Motomura, S., & Dexter, T. M. (1980). The effect of prostaglandin E1 on hemopoiesis in long-term bone marrow cultures. Experimental Hematology, 8, 298–303.PubMed
76.
go back to reference Tsao, C. J., Ozawa, K., Hosoi, T., Urabe, A., & Takaku, F. (1986). In-vitro effects of antineoplastic prostaglandins on human leukemic cell growth and normal myelopoiesis. Leukemia Research, 10, 527–532.PubMed Tsao, C. J., Ozawa, K., Hosoi, T., Urabe, A., & Takaku, F. (1986). In-vitro effects of antineoplastic prostaglandins on human leukemic cell growth and normal myelopoiesis. Leukemia Research, 10, 527–532.PubMed
77.
go back to reference Tang, L. Y., Kimmel, D. B., Jee, W. S., & Yee, J. A. (1996). Functional characterization of prostaglandin E2 inducible osteogenic colony forming units in cultures of cells isolated from the neonatal rat calvarium. Journal of Cellular Physiology, 166, 76–83.PubMed Tang, L. Y., Kimmel, D. B., Jee, W. S., & Yee, J. A. (1996). Functional characterization of prostaglandin E2 inducible osteogenic colony forming units in cultures of cells isolated from the neonatal rat calvarium. Journal of Cellular Physiology, 166, 76–83.PubMed
78.
go back to reference Roux, S., Pichaud, F., Quinn, J., Lalande, A., Morieux, C., Jullienne, A., et al. (1997). Effects of prostaglandins on human hematopoietic osteoclast precursors. Endocrinology, 138, 1476–1482.PubMed Roux, S., Pichaud, F., Quinn, J., Lalande, A., Morieux, C., Jullienne, A., et al. (1997). Effects of prostaglandins on human hematopoietic osteoclast precursors. Endocrinology, 138, 1476–1482.PubMed
79.
go back to reference Cohn, S. M., Schloemann, S., Tessner, T., Seibert, K., & Stenson, W. F. (1997). Crypt stem cell survival in the mouse intestinal epithelium is regulated by prostaglandins synthesized through cyclooxygenase-1. The Journal of Clinical Investigation, 99, 1367–1379.PubMed Cohn, S. M., Schloemann, S., Tessner, T., Seibert, K., & Stenson, W. F. (1997). Crypt stem cell survival in the mouse intestinal epithelium is regulated by prostaglandins synthesized through cyclooxygenase-1. The Journal of Clinical Investigation, 99, 1367–1379.PubMed
80.
go back to reference Pelus, L. M., Gold, E., Saletan, S., & Coleman, M. (1983). Restoration of responsiveness of chronic myeloid leukemia granulocyte-macrophage colony-forming cells to growth regulation in vitro following preincubation with prostaglandin E. Blood, 62, 158–165.PubMed Pelus, L. M., Gold, E., Saletan, S., & Coleman, M. (1983). Restoration of responsiveness of chronic myeloid leukemia granulocyte-macrophage colony-forming cells to growth regulation in vitro following preincubation with prostaglandin E. Blood, 62, 158–165.PubMed
81.
go back to reference Ziboh, V. A., Wong, T., Wu, M. C., & Yunis, A. A. (1986). Modulation of colony stimulating factor-induced murine myeloid colony formation by S-peptido-lipoxygenase products. Cancer Research, 46, 600–603.PubMed Ziboh, V. A., Wong, T., Wu, M. C., & Yunis, A. A. (1986). Modulation of colony stimulating factor-induced murine myeloid colony formation by S-peptido-lipoxygenase products. Cancer Research, 46, 600–603.PubMed
82.
go back to reference Stenke, L., Mansour, M., Reizenstein, P., & Lindgren, J. A. (1993). Stimulation of human myelopoiesis by leukotrienes B4 and C4: interactions with granulocyte-macrophage colony-stimulating factor. Blood, 81, 352–356.PubMed Stenke, L., Mansour, M., Reizenstein, P., & Lindgren, J. A. (1993). Stimulation of human myelopoiesis by leukotrienes B4 and C4: interactions with granulocyte-macrophage colony-stimulating factor. Blood, 81, 352–356.PubMed
83.
go back to reference Pasquale, D., & Chikkappa, G. (1993). Lipoxygenase products regulate proliferation of granulocyte-macrophage progenitors. Experimental Hematology, 21, 1361–1365.PubMed Pasquale, D., & Chikkappa, G. (1993). Lipoxygenase products regulate proliferation of granulocyte-macrophage progenitors. Experimental Hematology, 21, 1361–1365.PubMed
84.
go back to reference Stenke, L., Reizenstein, P., & Lindgren, J. A. (1994). Leukotrienes and lipoxins—new potential performers in the regulation of human myelopoiesis. Leukemia Research, 18, 727–732.PubMed Stenke, L., Reizenstein, P., & Lindgren, J. A. (1994). Leukotrienes and lipoxins—new potential performers in the regulation of human myelopoiesis. Leukemia Research, 18, 727–732.PubMed
85.
go back to reference Wada, K., Arita, M., Nakajima, A., Katayama, K., Kudo, C., Kamisaki, Y., et al. (2006). Leukotriene B4 and lipoxin A4 are regulatory signals for neural stem cell proliferation and differentiation. The FASEB Journal, 20, 1785–1792.PubMed Wada, K., Arita, M., Nakajima, A., Katayama, K., Kudo, C., Kamisaki, Y., et al. (2006). Leukotriene B4 and lipoxin A4 are regulatory signals for neural stem cell proliferation and differentiation. The FASEB Journal, 20, 1785–1792.PubMed
86.
go back to reference Kim, M. H., Lee, Y. J., Kim, M. O., Kim, J. S., & Han, H. J. (2010). Effect of leukotriene D4 on mouse embryonic stem cell migration and proliferation: involvement of PI3K/Akt as well as GSK-3β/β-catenin signaling pathways. Journal of Cellular Biochemistry, 111, 686–698.PubMed Kim, M. H., Lee, Y. J., Kim, M. O., Kim, J. S., & Han, H. J. (2010). Effect of leukotriene D4 on mouse embryonic stem cell migration and proliferation: involvement of PI3K/Akt as well as GSK-3β/β-catenin signaling pathways. Journal of Cellular Biochemistry, 111, 686–698.PubMed
87.
go back to reference Finkensieper, A., Kieser, S., Bekhite, M. M., Richter, M., Mueller, J. P., Graebner, R., et al. (2010). The 5-lipoxygenase pathway regulates vasculogenesis in differentiating mouse embryonic stem cells. Cardiovascular Research, 86, 37–44.PubMed Finkensieper, A., Kieser, S., Bekhite, M. M., Richter, M., Mueller, J. P., Graebner, R., et al. (2010). The 5-lipoxygenase pathway regulates vasculogenesis in differentiating mouse embryonic stem cells. Cardiovascular Research, 86, 37–44.PubMed
88.
go back to reference Sun, R., Ba, X., Cui, L., Xue, Y., & Zeng, X. (2009). Leukotriene B4 regulates proliferation and differentiation of cultured rat myoblasts via the BLT1 pathway. Molecules and Cells, 27, 403–408.PubMed Sun, R., Ba, X., Cui, L., Xue, Y., & Zeng, X. (2009). Leukotriene B4 regulates proliferation and differentiation of cultured rat myoblasts via the BLT1 pathway. Molecules and Cells, 27, 403–408.PubMed
89.
go back to reference Yun, D. H., Song, H. Y., Lee, M. J., Kim, M. R., Kim, M. Y., Lee, J. S., et al. (2009). Thromboxane A2 modulates proliferation and differentiation of adipose tissue-derived mesenchymal stem cells. Experimental & Molecular Medicine, 41, 17–24. Yun, D. H., Song, H. Y., Lee, M. J., Kim, M. R., Kim, M. Y., Lee, J. S., et al. (2009). Thromboxane A2 modulates proliferation and differentiation of adipose tissue-derived mesenchymal stem cells. Experimental & Molecular Medicine, 41, 17–24.
90.
go back to reference Glasgow, W. C., Afshari, C. A., Barrett, J. C., & Eling, T. E. (1992). Modulation of the epidermal growth factor mitogenic response by metabolites of linoleic and arachidonic acid in Syrian hamster embryo fibroblasts. Differential effects in tumor suppressor gene (+) and (−) phenotypes. Journal of Biological Chemistry, 267, 10771–10779.PubMed Glasgow, W. C., Afshari, C. A., Barrett, J. C., & Eling, T. E. (1992). Modulation of the epidermal growth factor mitogenic response by metabolites of linoleic and arachidonic acid in Syrian hamster embryo fibroblasts. Differential effects in tumor suppressor gene (+) and (−) phenotypes. Journal of Biological Chemistry, 267, 10771–10779.PubMed
91.
go back to reference Kim, Y. H., & Han, H. J. (2008). High-glucose–induced prostaglandin E(2) and peroxisome proliferator-activated receptor delta promote mouse embryonic stem cell proliferation. Stem Cells, 26, 745–755.PubMed Kim, Y. H., & Han, H. J. (2008). High-glucose–induced prostaglandin E(2) and peroxisome proliferator-activated receptor delta promote mouse embryonic stem cell proliferation. Stem Cells, 26, 745–755.PubMed
92.
go back to reference Lee, S. H., Na, S. I., Heo, J. S., Kim, M. H., Kim, Y. H., Lee, M. Y., et al. (2009). Arachidonic acid release by H2O2-mediated proliferation of mouse embryonic stem cells: involvement of Ca2þ/PKC and MAPKs-induced EGFR transactivation. Journal of Cellular Biochemistry, 106, 787–797.PubMed Lee, S. H., Na, S. I., Heo, J. S., Kim, M. H., Kim, Y. H., Lee, M. Y., et al. (2009). Arachidonic acid release by H2O2-mediated proliferation of mouse embryonic stem cells: involvement of Ca2þ/PKC and MAPKs-induced EGFR transactivation. Journal of Cellular Biochemistry, 106, 787–797.PubMed
93.
go back to reference Lee, S. H., Kim, M. H., & Han, H. J. (2009). Arachidonic acid potentiates hypoxia-induced VEGF expression in mouse embryonic stem cells: involvement of Notch, Wnt, and HIF-1alpha. American Journal of Physiology. Cell Physiology, 297, C207–C216.PubMed Lee, S. H., Kim, M. H., & Han, H. J. (2009). Arachidonic acid potentiates hypoxia-induced VEGF expression in mouse embryonic stem cells: involvement of Notch, Wnt, and HIF-1alpha. American Journal of Physiology. Cell Physiology, 297, C207–C216.PubMed
94.
go back to reference Hoggatt, J., Singh, P., Sampath, J., & Pelus, L. M. (2009). Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood, 113, 5444–5455.PubMed Hoggatt, J., Singh, P., Sampath, J., & Pelus, L. M. (2009). Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood, 113, 5444–5455.PubMed
95.
go back to reference Yun, S. P., Lee, M. Y., Ryu, J. M., & Han, H. J. (2009). Interaction between PGE2 and EGF receptor through MAPKs in mouse embryonic stem cell proliferation. Cellular and Molecular Life Sciences, 66, 1603–1616.PubMed Yun, S. P., Lee, M. Y., Ryu, J. M., & Han, H. J. (2009). Interaction between PGE2 and EGF receptor through MAPKs in mouse embryonic stem cell proliferation. Cellular and Molecular Life Sciences, 66, 1603–1616.PubMed
96.
go back to reference Goessling, W., North, T. E., Loewer, S., Lord, A. M., Lee, S., Stoick-Cooper, C. L., et al. (2009). Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell, 136, 1136–1147.PubMed Goessling, W., North, T. E., Loewer, S., Lord, A. M., Lee, S., Stoick-Cooper, C. L., et al. (2009). Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell, 136, 1136–1147.PubMed
97.
go back to reference Lee, J. H., Tachibana, H., Morinaga, Y., Fujimura, Y., & Yamada, K. (2009). Modulation of proliferation and differentiation of C2C12 skeletal muscle cells by fatty acids. Life Sciences, 84, 415–420.PubMed Lee, J. H., Tachibana, H., Morinaga, Y., Fujimura, Y., & Yamada, K. (2009). Modulation of proliferation and differentiation of C2C12 skeletal muscle cells by fatty acids. Life Sciences, 84, 415–420.PubMed
98.
go back to reference Hagberg, C. E., Falkevall, A., Wang, X., Larsson, E., Huusko, J., Nilsson, I., et al. (2010). Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature, 464, 917–921.PubMed Hagberg, C. E., Falkevall, A., Wang, X., Larsson, E., Huusko, J., Nilsson, I., et al. (2010). Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature, 464, 917–921.PubMed
99.
go back to reference Yang, S. P., Morita, I., & Murota, S. (1998). Eicosapentaenoic acid attenuates vascular endothelial growth factor-induced proliferation via inhibiting Flk-1 receptor expression in bovine carotid artery endothelial cells. Journal of Cellular Physiology, 176, 342–349.PubMed Yang, S. P., Morita, I., & Murota, S. (1998). Eicosapentaenoic acid attenuates vascular endothelial growth factor-induced proliferation via inhibiting Flk-1 receptor expression in bovine carotid artery endothelial cells. Journal of Cellular Physiology, 176, 342–349.PubMed
100.
go back to reference Stockmann, C., Doedens, A., Weidemann, A., Zhangi, N., Takeda, N., Greenberg, J. I., et al. (2008). Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature, 456, 814–819.PubMed Stockmann, C., Doedens, A., Weidemann, A., Zhangi, N., Takeda, N., Greenberg, J. I., et al. (2008). Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature, 456, 814–819.PubMed
101.
go back to reference Zhang, X., Morham, S. G., Langenbach, R., Baggs, R. B., & Young, D. A. (2000). Lack of cyclooxygenase-2 inhibits growth of teratocarcinomas in mice. Experimental Cell Research, 254, 232–240.PubMed Zhang, X., Morham, S. G., Langenbach, R., Baggs, R. B., & Young, D. A. (2000). Lack of cyclooxygenase-2 inhibits growth of teratocarcinomas in mice. Experimental Cell Research, 254, 232–240.PubMed
102.
go back to reference Das, U. N., & Puskas, L. G. (2009). Transgenic fat-1 mouse as a model to study the pathophysiology of various clinical conditions with particular reference to cardiovascular and neurological and psychiatric disorders. Lipids in Health and Disease, 8, 61.PubMed Das, U. N., & Puskas, L. G. (2009). Transgenic fat-1 mouse as a model to study the pathophysiology of various clinical conditions with particular reference to cardiovascular and neurological and psychiatric disorders. Lipids in Health and Disease, 8, 61.PubMed
103.
go back to reference Naidu, M. R. C., Das, U. N., & Kishan, A. (1992). Intratumoral gamma-linolenic acid therapy of human gliomas. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 45, 181–184.PubMed Naidu, M. R. C., Das, U. N., & Kishan, A. (1992). Intratumoral gamma-linolenic acid therapy of human gliomas. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 45, 181–184.PubMed
104.
go back to reference Das, U. N., Prasad, V. S. S. V., & Reddy, D. R. (1995). Local application of gamma-linolenic acid in the treatment of human gliomas. Cancer Letters, 94, 147–155.PubMed Das, U. N., Prasad, V. S. S. V., & Reddy, D. R. (1995). Local application of gamma-linolenic acid in the treatment of human gliomas. Cancer Letters, 94, 147–155.PubMed
105.
go back to reference Bakshi, A., Mukherjee, D., Bakshi, A., Banerji, A. K., & Das, U. N. (2003). Gamma-linolenic acid therapy of human gliomas. Nutrition, 19, 305–309.PubMed Bakshi, A., Mukherjee, D., Bakshi, A., Banerji, A. K., & Das, U. N. (2003). Gamma-linolenic acid therapy of human gliomas. Nutrition, 19, 305–309.PubMed
106.
go back to reference Fujitani, Y., Aritake, K., Kanaoka, Y., Goto, T., Takahashi, N., Fujimori, K., et al. (2010). Pronounced adipogenesis and increased insulin sensitivity caused by overproduction of prostaglandin D2 in vivo. FEBS Journal, 277, 1410–1419.PubMed Fujitani, Y., Aritake, K., Kanaoka, Y., Goto, T., Takahashi, N., Fujimori, K., et al. (2010). Pronounced adipogenesis and increased insulin sensitivity caused by overproduction of prostaglandin D2 in vivo. FEBS Journal, 277, 1410–1419.PubMed
107.
go back to reference Anderson, S. G., Sanders, T. A., & Cruickshank, J. K. (2009). Plasma fatty acid composition as a predictor of arterial stiffness and mortality. Hypertension, 53, 839–845.PubMed Anderson, S. G., Sanders, T. A., & Cruickshank, J. K. (2009). Plasma fatty acid composition as a predictor of arterial stiffness and mortality. Hypertension, 53, 839–845.PubMed
108.
go back to reference Marlière, S., Cracowski, J. L., Hakim, A., Stanke-Labesque, F., Hoffmann, P., & Bessard, G. (2005). Vascular effects of 15-F2t-isoprostane in spontaneously hypertensive rats. Canadian Journal of Physiology and Pharmacology, 83, 453–458.PubMed Marlière, S., Cracowski, J. L., Hakim, A., Stanke-Labesque, F., Hoffmann, P., & Bessard, G. (2005). Vascular effects of 15-F2t-isoprostane in spontaneously hypertensive rats. Canadian Journal of Physiology and Pharmacology, 83, 453–458.PubMed
109.
go back to reference Pauwels, E. K., Volterrani, D., Mariani, G., & Kairemo, K. (2009). Fatty acid facts, part IV: docosahexaenoic acid and Alzheimer’s disease. A story of mice, men and fish. Drug News & Perspectives, 22, 205–213. Pauwels, E. K., Volterrani, D., Mariani, G., & Kairemo, K. (2009). Fatty acid facts, part IV: docosahexaenoic acid and Alzheimer’s disease. A story of mice, men and fish. Drug News & Perspectives, 22, 205–213.
110.
go back to reference Iliopoulos, D., Hirsch, H. A., Wang, G., & Struhl, K. (2011). Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proceedings of the National Academy of Sciences of the United States of America, 108, 1397–1402.PubMed Iliopoulos, D., Hirsch, H. A., Wang, G., & Struhl, K. (2011). Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proceedings of the National Academy of Sciences of the United States of America, 108, 1397–1402.PubMed
111.
go back to reference De Bacco, F., Luraghi, P., Medico, E., Reato, G., Girolami, F., Perera, T., et al. (2011). Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. Journal of the National Cancer Institute, 103, 645–661.PubMed De Bacco, F., Luraghi, P., Medico, E., Reato, G., Girolami, F., Perera, T., et al. (2011). Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. Journal of the National Cancer Institute, 103, 645–661.PubMed
112.
go back to reference Skouteris, G. G., & Schröder, C. H. (1997). Cytosolic phospholipase A2 is activated by the hepatocyte growth factor receptor-kinase in Madin Darby canine kidney cells. Journal of Cell Science, 110(Pt 14), 1655–1663.PubMed Skouteris, G. G., & Schröder, C. H. (1997). Cytosolic phospholipase A2 is activated by the hepatocyte growth factor receptor-kinase in Madin Darby canine kidney cells. Journal of Cell Science, 110(Pt 14), 1655–1663.PubMed
113.
go back to reference Zhu, H., Naujokas, M. A., & Park, M. (1994). Receptor chimeras indicate that the met tyrosine kinase mediates the motility and morphogenic responses of hepatocyte growth/scatter factor. Cell Growth & Differentiation, 5, 359–366. Zhu, H., Naujokas, M. A., & Park, M. (1994). Receptor chimeras indicate that the met tyrosine kinase mediates the motility and morphogenic responses of hepatocyte growth/scatter factor. Cell Growth & Differentiation, 5, 359–366.
114.
go back to reference Pai, R., Nakamura, T., Moon, W. S., & Tarnawski, A. S. (2003). Prostaglandins promote colon cancer cell invasion; signaling by cross-talk between two distinct growth factor receptors. The FASEB Journal, 17, 1640–1647.PubMed Pai, R., Nakamura, T., Moon, W. S., & Tarnawski, A. S. (2003). Prostaglandins promote colon cancer cell invasion; signaling by cross-talk between two distinct growth factor receptors. The FASEB Journal, 17, 1640–1647.PubMed
115.
go back to reference Han, C., Michalopoulos, G. K., & Wu, T. (2006). Prostaglandin E2 receptor EP1 transactivates EGFR/MET receptor tyrosine kinases and enhances invasiveness in human hepatocellular carcinoma cells. Journal of Cellular Physiology, 207, 261–270.PubMed Han, C., Michalopoulos, G. K., & Wu, T. (2006). Prostaglandin E2 receptor EP1 transactivates EGFR/MET receptor tyrosine kinases and enhances invasiveness in human hepatocellular carcinoma cells. Journal of Cellular Physiology, 207, 261–270.PubMed
116.
go back to reference Han, C., & Wu, T. (2005). Cyclooxygenase-2-derived prostaglandin E2 promotes human cholangiocarcinoma cell growth and invasion through EP1 receptor-mediated activation of the epidermal growth factor receptor and Akt. Journal of Biological Chemistry, 280, 24053–24063.PubMed Han, C., & Wu, T. (2005). Cyclooxygenase-2-derived prostaglandin E2 promotes human cholangiocarcinoma cell growth and invasion through EP1 receptor-mediated activation of the epidermal growth factor receptor and Akt. Journal of Biological Chemistry, 280, 24053–24063.PubMed
117.
go back to reference Buchanan, F. G., Wang, D., Bargiacchi, F., & DuBois, R. N. (2003). Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. Journal of Biological Chemistry, 278, 35451–35457.PubMed Buchanan, F. G., Wang, D., Bargiacchi, F., & DuBois, R. N. (2003). Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. Journal of Biological Chemistry, 278, 35451–35457.PubMed
118.
go back to reference Bai, X. M., Jiang, H., Ding, J. X., Peng, T., Ma, J., Wang, Y. H., et al. (2010). Prostaglandin E2 upregulates survivin expression via the EP1 receptor in hepatocellular carcinoma cells. Life Sciences, 86, 214–223.PubMed Bai, X. M., Jiang, H., Ding, J. X., Peng, T., Ma, J., Wang, Y. H., et al. (2010). Prostaglandin E2 upregulates survivin expression via the EP1 receptor in hepatocellular carcinoma cells. Life Sciences, 86, 214–223.PubMed
119.
go back to reference Moore, A. E., Greenhough, A., Roberts, H. R., Hicks, D. J., Patsos, H. A., Williams, A. C., et al. (2009). HGF/Met signalling promotes PGE(2) biogenesis via regulation of COX-2 and 15-PGDH expression in colorectal cancer cells. Carcinogenesis, 30, 1796–1804.PubMed Moore, A. E., Greenhough, A., Roberts, H. R., Hicks, D. J., Patsos, H. A., Williams, A. C., et al. (2009). HGF/Met signalling promotes PGE(2) biogenesis via regulation of COX-2 and 15-PGDH expression in colorectal cancer cells. Carcinogenesis, 30, 1796–1804.PubMed
120.
go back to reference Skouteris, G. G., & Schröder, C. H. (1996). The hepatocyte growth factor receptor kinase-mediated phosphorylation of lipocortin-1 transduces the proliferating signal of the hepatocyte growth factor. Journal of Biological Chemistry, 271, 27266–27273.PubMed Skouteris, G. G., & Schröder, C. H. (1996). The hepatocyte growth factor receptor kinase-mediated phosphorylation of lipocortin-1 transduces the proliferating signal of the hepatocyte growth factor. Journal of Biological Chemistry, 271, 27266–27273.PubMed
121.
go back to reference Comba, A., Maestri, D. M., Berra, M. A., Garcia, C. P., Das, U. N., Eynard, A. R., et al. (2010). Effect of ω-3 and ω-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model. Lipids in Health and Disease, 9, 112.PubMed Comba, A., Maestri, D. M., Berra, M. A., Garcia, C. P., Das, U. N., Eynard, A. R., et al. (2010). Effect of ω-3 and ω-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model. Lipids in Health and Disease, 9, 112.PubMed
122.
go back to reference Sangeetha, P. S., & Das, U. N. (1993). Gamma-linolenic acid and eicosapentaenoic acid potentiate the cytotoxicity of anti-cancer drugs on human cervical carcinoma (HeLa) cells in vitro. Medical Science Research, 21, 457–459. Sangeetha, P. S., & Das, U. N. (1993). Gamma-linolenic acid and eicosapentaenoic acid potentiate the cytotoxicity of anti-cancer drugs on human cervical carcinoma (HeLa) cells in vitro. Medical Science Research, 21, 457–459.
123.
go back to reference Madhavi, N., & Das, U. N. (1994). Reversal of KB-3-1 and KB-Ch-8-5 tumor cell drug-resistance by cis-unsaturated fatty acids in vitro. Medical Science Research, 22, 689–692. Madhavi, N., & Das, U. N. (1994). Reversal of KB-3-1 and KB-Ch-8-5 tumor cell drug-resistance by cis-unsaturated fatty acids in vitro. Medical Science Research, 22, 689–692.
124.
go back to reference Das, U. N., Madhavi, N., Padma, M., & Sagar, P. S. (1998). Can tumor cell drug-resistance be reversed by essential fatty acids and their metabolites? Prostaglandins, Leukotrienes, and Essential Fatty Acids, 58, 39–54.PubMed Das, U. N., Madhavi, N., Padma, M., & Sagar, P. S. (1998). Can tumor cell drug-resistance be reversed by essential fatty acids and their metabolites? Prostaglandins, Leukotrienes, and Essential Fatty Acids, 58, 39–54.PubMed
125.
go back to reference Vartak, S., Robbins, M. E., & Spector, A. A. (1997). Polyunsaturated fatty acids increase the sensitivity of 36B10 rat astrocytoma cells to radiation-induced cell kill. Lipids, 32, 283–292.PubMed Vartak, S., Robbins, M. E., & Spector, A. A. (1997). Polyunsaturated fatty acids increase the sensitivity of 36B10 rat astrocytoma cells to radiation-induced cell kill. Lipids, 32, 283–292.PubMed
126.
go back to reference Germain, E., Chajès, V., Cognault, S., Lhuillery, C., & Bougnoux, P. (1998). Enhancement of doxorubicin cytotoxicity by polyunsaturated fatty acids in the human breast tumor cell line MDA-MB-231: relationship to lipid peroxidation. International Journal of Cancer, 75, 578–583. Germain, E., Chajès, V., Cognault, S., Lhuillery, C., & Bougnoux, P. (1998). Enhancement of doxorubicin cytotoxicity by polyunsaturated fatty acids in the human breast tumor cell line MDA-MB-231: relationship to lipid peroxidation. International Journal of Cancer, 75, 578–583.
127.
go back to reference Mahéo, K., Vibet, S., Steghens, J. P., Dartigeas, C., Lehman, M., Bougnoux, P., et al. (2005). Differential sensitization of cancer cells to doxorubicin by DHA: a role for lipoperoxidation. Free Radical Biology & Medicine, 39, 742–751. Mahéo, K., Vibet, S., Steghens, J. P., Dartigeas, C., Lehman, M., Bougnoux, P., et al. (2005). Differential sensitization of cancer cells to doxorubicin by DHA: a role for lipoperoxidation. Free Radical Biology & Medicine, 39, 742–751.
128.
go back to reference Menendez, J. A., Ropero, S., Lupu, R., & Colomer, R. (2004). Omega-6 polyunsaturated fatty acid gamma-linolenic acid (18:3n-6) enhances docetaxel (Taxotere) cytotoxicity in human breast carcinoma cells: relationship to lipid peroxidation and HER-2/neu expression. Oncology Reports, 11, 1241–1252.PubMed Menendez, J. A., Ropero, S., Lupu, R., & Colomer, R. (2004). Omega-6 polyunsaturated fatty acid gamma-linolenic acid (18:3n-6) enhances docetaxel (Taxotere) cytotoxicity in human breast carcinoma cells: relationship to lipid peroxidation and HER-2/neu expression. Oncology Reports, 11, 1241–1252.PubMed
129.
go back to reference Menéndez, J. A., Ropero, S., del Barbacid, M. M., Montero, S., Solanas, M., Escrich, E., et al. (2002). Synergistic interaction between vinorelbine and gamma-linolenic acid in breast cancer cells. Breast Cancer Research and Treatment, 72, 203–219.PubMed Menéndez, J. A., Ropero, S., del Barbacid, M. M., Montero, S., Solanas, M., Escrich, E., et al. (2002). Synergistic interaction between vinorelbine and gamma-linolenic acid in breast cancer cells. Breast Cancer Research and Treatment, 72, 203–219.PubMed
130.
go back to reference Kong, X., Ge, H., Chen, L., Liu, Z., Yin, Z., Li, P., et al. (2009). Gamma-linolenic acid modulates the response of multidrug-resistant K562 leukemic cells to anticancer drugs. Toxicology In Vitro, 23, 634–639.PubMed Kong, X., Ge, H., Chen, L., Liu, Z., Yin, Z., Li, P., et al. (2009). Gamma-linolenic acid modulates the response of multidrug-resistant K562 leukemic cells to anticancer drugs. Toxicology In Vitro, 23, 634–639.PubMed
131.
go back to reference Das, U. N., & Rao, K. P. (2006). Effect of gamma-linolenic acid and prostaglandins E1 on gamma-radiation and chemical-induced genetic damage to the bone marrow cells of mice. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 74, 165–173.PubMed Das, U. N., & Rao, K. P. (2006). Effect of gamma-linolenic acid and prostaglandins E1 on gamma-radiation and chemical-induced genetic damage to the bone marrow cells of mice. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 74, 165–173.PubMed
132.
go back to reference Shivani, P., Rao, K. P., Chaudhury, J. R., Ahmed, J., Rao, B. R., Kanjilal, S., et al. (2009). Effect of polyunsaturated fatty acids on diphenyl hydantoin-induced genetic damage in vitro and in vivo. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 80, 43–50. Shivani, P., Rao, K. P., Chaudhury, J. R., Ahmed, J., Rao, B. R., Kanjilal, S., et al. (2009). Effect of polyunsaturated fatty acids on diphenyl hydantoin-induced genetic damage in vitro and in vivo. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 80, 43–50.
133.
go back to reference Koratkar, R., Das, U. N., Sagar, P. S., Ramesh, G., Padma, M., Kumar, G. S., et al. (1993). Prostacyclin is a potent anti-mutagen. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 48, 175–184.PubMed Koratkar, R., Das, U. N., Sagar, P. S., Ramesh, G., Padma, M., Kumar, G. S., et al. (1993). Prostacyclin is a potent anti-mutagen. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 48, 175–184.PubMed
134.
go back to reference Das, U. N., Devi, G. R., Rao, K. P., & Rao, M. S. (1985). Prostaglandins and their precursors can modify genetic damage induced by benzo (a,) pyrene and gamma-radiation. Prostaglandins, 29, 911–920.PubMed Das, U. N., Devi, G. R., Rao, K. P., & Rao, M. S. (1985). Prostaglandins and their precursors can modify genetic damage induced by benzo (a,) pyrene and gamma-radiation. Prostaglandins, 29, 911–920.PubMed
135.
go back to reference Das, U. N., Ramadevi, G., Rao, K. P., & Rao, M. S. (1989). Prostaglandins can modify gamma-radiation and chemical-induced cytotoxicity and genetic damage in vitro and in vivo. Prostaglandins, 38, 689–716.PubMed Das, U. N., Ramadevi, G., Rao, K. P., & Rao, M. S. (1989). Prostaglandins can modify gamma-radiation and chemical-induced cytotoxicity and genetic damage in vitro and in vivo. Prostaglandins, 38, 689–716.PubMed
136.
go back to reference Walden, T. L., Jr. (1988). Radioprotection of mouse hematopoietic stem cells by leukotriene A4 and lipoxin B4. Journal of Radiation Research, 29, 255–260.PubMed Walden, T. L., Jr. (1988). Radioprotection of mouse hematopoietic stem cells by leukotriene A4 and lipoxin B4. Journal of Radiation Research, 29, 255–260.PubMed
137.
go back to reference Hanson, W. R., & Ainsworth, E. J. (1985). 16,16-Dimethyl prostaglandin E2 induces radioprotection in murine intestinal and hematopoietic stem cells. Radiation Research, 103, 196–203.PubMed Hanson, W. R., & Ainsworth, E. J. (1985). 16,16-Dimethyl prostaglandin E2 induces radioprotection in murine intestinal and hematopoietic stem cells. Radiation Research, 103, 196–203.PubMed
138.
go back to reference Hanson, W. R., & Thomas, C. (1983). 16, 16-Dimethyl prostaglandin E2 increases survival of murine intestinal stem cells when given before photon radiation. Radiation Research, 96, 393–398.PubMed Hanson, W. R., & Thomas, C. (1983). 16, 16-Dimethyl prostaglandin E2 increases survival of murine intestinal stem cells when given before photon radiation. Radiation Research, 96, 393–398.PubMed
139.
go back to reference Sailaja Devi, M. M., & Das, U. N. (2004). Effect of prostaglandins against alloxan-induced cytotoxicity to insulin secreting insulinoma RIN cells in vitro. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 71, 309–318. Sailaja Devi, M. M., & Das, U. N. (2004). Effect of prostaglandins against alloxan-induced cytotoxicity to insulin secreting insulinoma RIN cells in vitro. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 71, 309–318.
140.
go back to reference Sailaja, M. M. S., & Das, U. N. (2006). Effect of prostaglandins against alloxan-induced diabetes mellitus. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 74, 39–60. Sailaja, M. M. S., & Das, U. N. (2006). Effect of prostaglandins against alloxan-induced diabetes mellitus. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 74, 39–60.
141.
go back to reference Suresh, Y., & Das, U. N. (2003). Long-chain polyunsaturated fatty acids and chemically-induced diabetes mellitus: effect of ω-6 fatty acids. Nutrition, 19, 93–114.PubMed Suresh, Y., & Das, U. N. (2003). Long-chain polyunsaturated fatty acids and chemically-induced diabetes mellitus: effect of ω-6 fatty acids. Nutrition, 19, 93–114.PubMed
142.
go back to reference Suresh, Y., & Das, U. N. (2003). Long-chain polyunsaturated fatty acids and chemically-induced diabetes mellitus: effect of ω-3 fatty acids. Nutrition, 19, 213–228.PubMed Suresh, Y., & Das, U. N. (2003). Long-chain polyunsaturated fatty acids and chemically-induced diabetes mellitus: effect of ω-3 fatty acids. Nutrition, 19, 213–228.PubMed
143.
go back to reference Manjari, V., & Das, U. N. (1998). Oxidant stress, anti-oxidants, nitric oxide and essential fatty acids in peptic ulcer disease. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 59, 401–406.PubMed Manjari, V., & Das, U. N. (1998). Oxidant stress, anti-oxidants, nitric oxide and essential fatty acids in peptic ulcer disease. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 59, 401–406.PubMed
144.
go back to reference Manjari, V., & Das, U. N. (2000). Effect of polyunsaturated fatty acids on dexamethasone-induced gastric mucosal damage. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 62, 85–96.PubMed Manjari, V., & Das, U. N. (2000). Effect of polyunsaturated fatty acids on dexamethasone-induced gastric mucosal damage. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 62, 85–96.PubMed
145.
go back to reference Das, U. N. (1998). Cis-unsaturated fatty acids as potential anti-peptic ulcer drugs. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 58, 377–380.PubMed Das, U. N. (1998). Cis-unsaturated fatty acids as potential anti-peptic ulcer drugs. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 58, 377–380.PubMed
146.
go back to reference Karim, M. J., Bhattacherjee, P., Biswas, S., & Paterson, C. A. (2009). Anti-inflammatory effects of lipoxins on lipopolysaccharide-induced uveitis in rats. Journal of Ocular Pharmacology and Therapeutics, 25, 483–486.PubMed Karim, M. J., Bhattacherjee, P., Biswas, S., & Paterson, C. A. (2009). Anti-inflammatory effects of lipoxins on lipopolysaccharide-induced uveitis in rats. Journal of Ocular Pharmacology and Therapeutics, 25, 483–486.PubMed
147.
go back to reference Kure, I., Nishiumi, S., Nishitani, Y., Tanoue, T., Ishida, T., Mizuno, M., et al. (2010). Lipoxin A(4) reduces lipopolysaccharide-induced inflammation in macrophages and intestinal epithelial cells through inhibition of nuclear factor-kappaB activation. Journal of Pharmacology and Experimental Therapeutics, 332, 541–548.PubMed Kure, I., Nishiumi, S., Nishitani, Y., Tanoue, T., Ishida, T., Mizuno, M., et al. (2010). Lipoxin A(4) reduces lipopolysaccharide-induced inflammation in macrophages and intestinal epithelial cells through inhibition of nuclear factor-kappaB activation. Journal of Pharmacology and Experimental Therapeutics, 332, 541–548.PubMed
148.
go back to reference Wu, S. H., Liu, B., Dong, L., & Wu, H. J. (2010). NF-kappaB is involved in inhibition of lipoxin A4 on dermal inflammation and hyperplasia induced by mezerein. Experimental Dermatology, 19, e286–e288.PubMed Wu, S. H., Liu, B., Dong, L., & Wu, H. J. (2010). NF-kappaB is involved in inhibition of lipoxin A4 on dermal inflammation and hyperplasia induced by mezerein. Experimental Dermatology, 19, e286–e288.PubMed
149.
go back to reference Kim, S. J. (1990). Lipoxins formation by rat basophilic leukemia (RBL-1) cells. Research Communications in Chemical Pathology and Pharmacology, 68, 159–174.PubMed Kim, S. J. (1990). Lipoxins formation by rat basophilic leukemia (RBL-1) cells. Research Communications in Chemical Pathology and Pharmacology, 68, 159–174.PubMed
150.
go back to reference Stenke, L., Näsman-Glaser, B., Edenius, C., Samuelsson, J., Palmblad, J., & Lindgren, J. A. (1991). Lipoxygenase products in myeloproliferative disorders: increased leukotriene C4 and decreased lipoxin formation in chronic myeloid leukemia. Advances in Prostaglandin, Thromboxane, and Leukotriene Research, 21B, 883–886.PubMed Stenke, L., Näsman-Glaser, B., Edenius, C., Samuelsson, J., Palmblad, J., & Lindgren, J. A. (1991). Lipoxygenase products in myeloproliferative disorders: increased leukotriene C4 and decreased lipoxin formation in chronic myeloid leukemia. Advances in Prostaglandin, Thromboxane, and Leukotriene Research, 21B, 883–886.PubMed
151.
go back to reference Stenke, L., Edenius, C., Samuelsson, J., & Lindgren, J. A. (1991). Deficient lipoxin synthesis: a novel platelet dysfunction in myeloproliferative disorders with special reference to blastic crisis of chronic myelogenous leukemia. Blood, 78, 2989–2995.PubMed Stenke, L., Edenius, C., Samuelsson, J., & Lindgren, J. A. (1991). Deficient lipoxin synthesis: a novel platelet dysfunction in myeloproliferative disorders with special reference to blastic crisis of chronic myelogenous leukemia. Blood, 78, 2989–2995.PubMed
152.
go back to reference Chen, Y., Hao, H., He, S., Cai, L., Li, Y., Hu, S., et al. (2010). Lipoxin A4 and its analogue suppress the tumor growth of transplanted H22 in mice: the role of antiangiogenesis. Molecular Cancer Therapeutics, 9, 2164–2174.PubMed Chen, Y., Hao, H., He, S., Cai, L., Li, Y., Hu, S., et al. (2010). Lipoxin A4 and its analogue suppress the tumor growth of transplanted H22 in mice: the role of antiangiogenesis. Molecular Cancer Therapeutics, 9, 2164–2174.PubMed
153.
go back to reference Zhang, B., Jia, H., Liu, J., Yang, Z., Jiang, T., Tang, K., et al. (2010). Depletion of regulatory T cells facilitates growth of established tumors: a mechanism involving the regulation of myeloid-derived suppressor cells by lipoxin A4. The Journal of Immunology, 185, 7199–7206.PubMed Zhang, B., Jia, H., Liu, J., Yang, Z., Jiang, T., Tang, K., et al. (2010). Depletion of regulatory T cells facilitates growth of established tumors: a mechanism involving the regulation of myeloid-derived suppressor cells by lipoxin A4. The Journal of Immunology, 185, 7199–7206.PubMed
154.
go back to reference Gleissman, H., Yang, R., Martinod, K., Lindskog, M., Serhan, C. N., Johnsen, J. I., et al. (2010). Docosahexaenoic acid metabolome in neural tumors: identification of cytotoxic intermediates. The FASEB Journal, 24, 906–915.PubMed Gleissman, H., Yang, R., Martinod, K., Lindskog, M., Serhan, C. N., Johnsen, J. I., et al. (2010). Docosahexaenoic acid metabolome in neural tumors: identification of cytotoxic intermediates. The FASEB Journal, 24, 906–915.PubMed
155.
go back to reference Gleissman, H., Segerström, L., Hamberg, M., Ponthan, F., Lindskog, M., Johnsen, J. I., et al. (2011). Omega-3 fatty acid supplementation delays the progression of neuroblastoma in vivo. International Journal of Cancer, 128, 1703–1711. Gleissman, H., Segerström, L., Hamberg, M., Ponthan, F., Lindskog, M., Johnsen, J. I., et al. (2011). Omega-3 fatty acid supplementation delays the progression of neuroblastoma in vivo. International Journal of Cancer, 128, 1703–1711.
156.
go back to reference Rose, D. P., Connolly, J. M., & Coleman, M. (1996). Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice. Clinical Cancer Research, 2, 1751–1756.PubMed Rose, D. P., Connolly, J. M., & Coleman, M. (1996). Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice. Clinical Cancer Research, 2, 1751–1756.PubMed
157.
go back to reference Jin, Y., Arita, M., Zhang, Q., Saban, D. R., Chauhan, S. K., Chiang, N., et al. (2009). Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators. Investigative Ophthalmology & Visual Science, 50, 4743–4752. Jin, Y., Arita, M., Zhang, Q., Saban, D. R., Chauhan, S. K., Chiang, N., et al. (2009). Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators. Investigative Ophthalmology & Visual Science, 50, 4743–4752.
158.
go back to reference Rhodes, L. E., Gledhill, K., Masoodi, M., Haylett, A. K., Brownrigg, M., Thody, A. J., et al. (2009). The sunburn response in human skin is characterized by sequential eicosanoid profiles that may mediate its early and late phases. The FASEB Journal, 23, 3947–3956.PubMed Rhodes, L. E., Gledhill, K., Masoodi, M., Haylett, A. K., Brownrigg, M., Thody, A. J., et al. (2009). The sunburn response in human skin is characterized by sequential eicosanoid profiles that may mediate its early and late phases. The FASEB Journal, 23, 3947–3956.PubMed
159.
go back to reference Takahashi, M., Przetakiewicz, M., Ong, A., Borek, C., & Lowenstein, J. M. (1992). Effect of ω3 and ω6 fatty acids on transformation of cultured cells by irradiation and transfection. Cancer Research, 52, 154–162.PubMed Takahashi, M., Przetakiewicz, M., Ong, A., Borek, C., & Lowenstein, J. M. (1992). Effect of ω3 and ω6 fatty acids on transformation of cultured cells by irradiation and transfection. Cancer Research, 52, 154–162.PubMed
160.
go back to reference Li, F., Huang, Q., Chen, J., Peng, Y., Roop, D., Bedford, J. S., et al. (2010). Apoptotic cells activate the “Phoenix Rising” pathway to promote wound healing and tissue regeneration. Science Signaling, 3(110), ra13. doi:10.1126/scisignal.2000634.PubMed Li, F., Huang, Q., Chen, J., Peng, Y., Roop, D., Bedford, J. S., et al. (2010). Apoptotic cells activate the “Phoenix Rising” pathway to promote wound healing and tissue regeneration. Science Signaling, 3(110), ra13. doi:10.​1126/​scisignal.​2000634.PubMed
161.
go back to reference Biteman, B., Hassan, I. R., Walker, E., Leedom, A. J., Dunn, M., Seta, F., et al. (2007). Interdependence of lipoxin A4 and heme-oxygenase in counter-regulating inflammation during corneal wound healing. The FASEB Journal, 21, 2257–2266.PubMed Biteman, B., Hassan, I. R., Walker, E., Leedom, A. J., Dunn, M., Seta, F., et al. (2007). Interdependence of lipoxin A4 and heme-oxygenase in counter-regulating inflammation during corneal wound healing. The FASEB Journal, 21, 2257–2266.PubMed
162.
go back to reference Tang, D. G., Chen, Y. Q., & Honn, K. V. (1996). Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 93, 5241–5246.PubMed Tang, D. G., Chen, Y. Q., & Honn, K. V. (1996). Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 93, 5241–5246.PubMed
163.
go back to reference Wu, S. H., Lu, C., Dong, L., Zhou, G. P., He, Z. G., & Chen, Z. Q. (2005). High dose of lipoxin A4 induces apoptosis in rat renal interstitial fibroblasts. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 73, 127–137.PubMed Wu, S. H., Lu, C., Dong, L., Zhou, G. P., He, Z. G., & Chen, Z. Q. (2005). High dose of lipoxin A4 induces apoptosis in rat renal interstitial fibroblasts. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 73, 127–137.PubMed
164.
go back to reference Prieto, P., Cuenca, J., Través, P. G., Fernández-Velasco, M., Martín-Sanz, P., & Boscá, L. (2010). Lipoxin A4 impairment of apoptotic signaling in macrophages: implication of the PI3K/Akt and the ERK/Nrf-2 defense pathways. Cell Death and Differentiation, 17, 1179–1188.PubMed Prieto, P., Cuenca, J., Través, P. G., Fernández-Velasco, M., Martín-Sanz, P., & Boscá, L. (2010). Lipoxin A4 impairment of apoptotic signaling in macrophages: implication of the PI3K/Akt and the ERK/Nrf-2 defense pathways. Cell Death and Differentiation, 17, 1179–1188.PubMed
Metadata
Title
Essential fatty acids and their metabolites as modulators of stem cell biology with reference to inflammation, cancer, and metastasis
Author
Undurti N. Das
Publication date
01-12-2011
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2011
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9316-x

Other articles of this Issue 3-4/2011

Cancer and Metastasis Reviews 3-4/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine