Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2011

Open Access 01-12-2011

The role of the EP receptors for prostaglandin E2 in skin and skin cancer

Authors: J. E. Rundhaug, M. S. Simper, I. Surh, S. M. Fischer

Published in: Cancer and Metastasis Reviews | Issue 3-4/2011

Login to get access

Abstract

One of the most common features of exposure of skin to ultraviolet (UV) light is the induction of inflammation, a contributor to tumorigenesis, which is characterized by the synthesis of cytokines, growth factors and arachidonic acid metabolites, including the prostaglandins (PGs). Studies on the role of the PGs in non-melanoma skin cancer (NMSC) have shown that the cyclooxygenase-2 (COX-2) isoform of the cyclooxygenases is responsible for the majority of the pathological effects of PGE2. In mouse skin models, COX-2 deficiency significantly protects against chemical carcinogen- or UV-induced NMSC while overexpression confers endogenous tumor promoting activity. Current studies are focused on identifying which of the G protein-coupled EP receptors mediate the tumor promotion/progression activities of PGE2 and the signaling pathways involved. As reviewed here, the EP1, EP2, and EP4 receptors, but not the EP3 receptor, contribute to NMSC development, albeit through different signaling pathways and with somewhat different outcomes. The signaling pathways activated by the specific EP receptors are context specific and likely depend on the level of PGE2 synthesis, the differential levels of expression of the different EP receptors, as well as the levels of expression of other interacting receptors. Understanding the role and mechanisms of action of the EP receptors potentially offers new targets for the prevention or therapy of NMSCs.
Literature
1.
go back to reference Rundhaug, J. E., & Fischer, S. M. (2010). Molecular mechanisms of mouse skin tumor promotion. Cancers (Basel), 2(2), 436–482. Rundhaug, J. E., & Fischer, S. M. (2010). Molecular mechanisms of mouse skin tumor promotion. Cancers (Basel), 2(2), 436–482.
2.
go back to reference Fischer, S. M., Lo, H. H., Gordon, G. B., Seibert, K., Kelloff, G., Lubet, R. A., et al. (1999). Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, and indomethacin against ultraviolet light-induced skin carcinogenesis. Molecular Carcinogenesis, 25(4), 231–240.PubMedCrossRef Fischer, S. M., Lo, H. H., Gordon, G. B., Seibert, K., Kelloff, G., Lubet, R. A., et al. (1999). Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, and indomethacin against ultraviolet light-induced skin carcinogenesis. Molecular Carcinogenesis, 25(4), 231–240.PubMedCrossRef
3.
go back to reference Muller-Decker, K., & Furstenberger, G. (2007). The cyclooxygenase-2-mediated prostaglandin signaling is causally related to epithelial carcinogenesis. Molecular Carcinogenesis, 46(8), 705–710.PubMedCrossRef Muller-Decker, K., & Furstenberger, G. (2007). The cyclooxygenase-2-mediated prostaglandin signaling is causally related to epithelial carcinogenesis. Molecular Carcinogenesis, 46(8), 705–710.PubMedCrossRef
4.
go back to reference Tober, K. L., Wilgus, T. A., Kusewitt, D. F., Thomas-Ahner, J. M., Maruyama, T., & Oberyszyn, T. M. (2006). Importance of the EP(1) receptor in cutaneous UVB-induced inflammation and tumor development. The Journal of Investigative Dermatology, 126(1), 205–211.PubMedCrossRef Tober, K. L., Wilgus, T. A., Kusewitt, D. F., Thomas-Ahner, J. M., Maruyama, T., & Oberyszyn, T. M. (2006). Importance of the EP(1) receptor in cutaneous UVB-induced inflammation and tumor development. The Journal of Investigative Dermatology, 126(1), 205–211.PubMedCrossRef
5.
go back to reference Rundhaug, J. E., Pavone, A., Kim, E., & Fischer, S. M. (2007). The effect of cyclooxygenase-2 overexpression on skin carcinogenesis is context dependent. Molecular Carcinogenesis, 46(12), 981–992.PubMedCrossRef Rundhaug, J. E., Pavone, A., Kim, E., & Fischer, S. M. (2007). The effect of cyclooxygenase-2 overexpression on skin carcinogenesis is context dependent. Molecular Carcinogenesis, 46(12), 981–992.PubMedCrossRef
6.
go back to reference Tiano, H. F., Loftin, C. D., Akunda, J., Lee, C. A., Spalding, J., Sessoms, A., et al. (2002). Deficiency of either cyclooxygenase (COX)-1 or COX-2 alters epidermal differentiation and reduces mouse skin tumorigenesis. Cancer Research, 62(12), 3395–3401.PubMed Tiano, H. F., Loftin, C. D., Akunda, J., Lee, C. A., Spalding, J., Sessoms, A., et al. (2002). Deficiency of either cyclooxygenase (COX)-1 or COX-2 alters epidermal differentiation and reduces mouse skin tumorigenesis. Cancer Research, 62(12), 3395–3401.PubMed
7.
go back to reference Muller-Decker, K., Neufang, G., Berger, I., Neumann, M., Marks, F., & Furstenberger, G. (2002). Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis. Proc Natl Acad Sci USA, 99(19), 12483–12488.PubMedCrossRef Muller-Decker, K., Neufang, G., Berger, I., Neumann, M., Marks, F., & Furstenberger, G. (2002). Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis. Proc Natl Acad Sci USA, 99(19), 12483–12488.PubMedCrossRef
8.
go back to reference Fischer, S. M., Pavone, A., Mikulec, C., Langenbach, R., & Rundhaug, J. E. (2007). Cyclooxygenase-2 expression is critical for chronic UV-induced murine skin carcinogenesis. Molecular Carcinogenesis, 46(5), 363–371.PubMedCrossRef Fischer, S. M., Pavone, A., Mikulec, C., Langenbach, R., & Rundhaug, J. E. (2007). Cyclooxygenase-2 expression is critical for chronic UV-induced murine skin carcinogenesis. Molecular Carcinogenesis, 46(5), 363–371.PubMedCrossRef
9.
go back to reference Ansari, K. M., Rundhaug, J. E., & Fischer, S. M. (2008). Multiple signaling pathways are responsible for prostaglandin E2-induced murine keratinocyte proliferation. Molecular Cancer Research, 6(6), 1003–1016.PubMedCrossRef Ansari, K. M., Rundhaug, J. E., & Fischer, S. M. (2008). Multiple signaling pathways are responsible for prostaglandin E2-induced murine keratinocyte proliferation. Molecular Cancer Research, 6(6), 1003–1016.PubMedCrossRef
10.
go back to reference DiGiovanni, J. (1992). Multistage carcinogenesis in mouse skin. Pharmacology and Therapeutics, 54(1), 63–128.PubMedCrossRef DiGiovanni, J. (1992). Multistage carcinogenesis in mouse skin. Pharmacology and Therapeutics, 54(1), 63–128.PubMedCrossRef
11.
go back to reference Jones, R. L., Giembycz, M. A., & Woodward, D. F. (2009). Prostanoid receptor antagonists: development strategies and therapeutic applications. British Journal of Pharmacology, 158(1), 104–145.PubMedCrossRef Jones, R. L., Giembycz, M. A., & Woodward, D. F. (2009). Prostanoid receptor antagonists: development strategies and therapeutic applications. British Journal of Pharmacology, 158(1), 104–145.PubMedCrossRef
12.
go back to reference Sugimoto, Y., & Narumiya, S. (2007). Prostaglandin E receptors. Journal of Biological Chemistry, 282(16), 11613–11617.PubMedCrossRef Sugimoto, Y., & Narumiya, S. (2007). Prostaglandin E receptors. Journal of Biological Chemistry, 282(16), 11613–11617.PubMedCrossRef
13.
go back to reference Narumiya, S. (2009). Prostanoids and inflammation: a new concept arising from receptor knockout mice. Journal of Molecular Medicine, 87(10), 1015–1022.PubMedCrossRef Narumiya, S. (2009). Prostanoids and inflammation: a new concept arising from receptor knockout mice. Journal of Molecular Medicine, 87(10), 1015–1022.PubMedCrossRef
14.
go back to reference Tang, C. H., Yang, R. S., & Fu, W. M. (2005). Prostaglandin E2 stimulates fibronectin expression through EP1 receptor, phospholipase C, protein kinase Calpha, and c-Src pathway in primary cultured rat osteoblasts. Journal of Biological Chemistry, 280(24), 22907–22916.PubMedCrossRef Tang, C. H., Yang, R. S., & Fu, W. M. (2005). Prostaglandin E2 stimulates fibronectin expression through EP1 receptor, phospholipase C, protein kinase Calpha, and c-Src pathway in primary cultured rat osteoblasts. Journal of Biological Chemistry, 280(24), 22907–22916.PubMedCrossRef
15.
go back to reference Negishi, M., Sugimoto, Y., & Ichikawa, A. (1993). Prostanoid receptors and their biological actions. Progress in Lipid Research, 32(4), 417–434.PubMedCrossRef Negishi, M., Sugimoto, Y., & Ichikawa, A. (1993). Prostanoid receptors and their biological actions. Progress in Lipid Research, 32(4), 417–434.PubMedCrossRef
16.
go back to reference Wu, W. K., Sung, J. J., Lee, C. W., Yu, J., & Cho, C. H. (2010). Cyclooxygenase-2 in tumorigenesis of gastrointestinal cancers: an update on the molecular mechanisms. Cancer Letters, 295(1), 7–16.PubMedCrossRef Wu, W. K., Sung, J. J., Lee, C. W., Yu, J., & Cho, C. H. (2010). Cyclooxygenase-2 in tumorigenesis of gastrointestinal cancers: an update on the molecular mechanisms. Cancer Letters, 295(1), 7–16.PubMedCrossRef
17.
go back to reference Kiguchi, K., Kitamura, T., Moore, T., Rumi, M., Chang, H. C., Treece, D., et al. (2010). Dual inhibition of both the epidermal growth factor receptor and erbB2 effectively inhibits the promotion of skin tumors during two-stage carcinogenesis. Cancer Prevention Research (Philadelphia, Pa.), 3(8), 940–952.CrossRef Kiguchi, K., Kitamura, T., Moore, T., Rumi, M., Chang, H. C., Treece, D., et al. (2010). Dual inhibition of both the epidermal growth factor receptor and erbB2 effectively inhibits the promotion of skin tumors during two-stage carcinogenesis. Cancer Prevention Research (Philadelphia, Pa.), 3(8), 940–952.CrossRef
18.
go back to reference Desai, S., & Ashby, B. (2001). Agonist-induced internalization and mitogen-activated protein kinase activation of the human prostaglandin EP4 receptor. FEBS Letters, 501(2–3), 156–160.PubMedCrossRef Desai, S., & Ashby, B. (2001). Agonist-induced internalization and mitogen-activated protein kinase activation of the human prostaglandin EP4 receptor. FEBS Letters, 501(2–3), 156–160.PubMedCrossRef
19.
go back to reference Sugimoto, Y., Negishi, M., Hayashi, Y., Namba, T., Honda, A., Watabe, A., et al. (1993). Two isoforms of the EP3 receptor with different carboxyl-terminal domains. Identical ligand binding properties and different coupling properties with Gi proteins. Journal of Biological Chemistry, 268(4), 2712–2718.PubMed Sugimoto, Y., Negishi, M., Hayashi, Y., Namba, T., Honda, A., Watabe, A., et al. (1993). Two isoforms of the EP3 receptor with different carboxyl-terminal domains. Identical ligand binding properties and different coupling properties with Gi proteins. Journal of Biological Chemistry, 268(4), 2712–2718.PubMed
20.
go back to reference Arakawa, T., Laneuville, O., Miller, C. A., Lakkides, K. M., Wingerd, B. A., DeWitt, D. L., et al. (1996). Prostanoid receptors of murine NIH 3T3 and RAW 264.7 cells. Structure and expression of the murine prostaglandin EP4 receptor gene. Journal of Biological Chemistry, 271(47), 29569–29575.PubMedCrossRef Arakawa, T., Laneuville, O., Miller, C. A., Lakkides, K. M., Wingerd, B. A., DeWitt, D. L., et al. (1996). Prostanoid receptors of murine NIH 3T3 and RAW 264.7 cells. Structure and expression of the murine prostaglandin EP4 receptor gene. Journal of Biological Chemistry, 271(47), 29569–29575.PubMedCrossRef
21.
go back to reference Tsuchiya, S., Tanaka, S., Sugimoto, Y., Katsuyama, M., Ikegami, R., & Ichikawa, A. (2003). Identification and characterization of a novel progesterone receptor-binding element in the mouse prostaglandin E receptor subtype EP2 gene. Genes to Cells, 8(9), 747–758.PubMedCrossRef Tsuchiya, S., Tanaka, S., Sugimoto, Y., Katsuyama, M., Ikegami, R., & Ichikawa, A. (2003). Identification and characterization of a novel progesterone receptor-binding element in the mouse prostaglandin E receptor subtype EP2 gene. Genes to Cells, 8(9), 747–758.PubMedCrossRef
22.
go back to reference Regan, J. W. (2003). EP2 and EP4 prostanoid receptor signaling. Life Sciences, 74(2–3), 143–153.PubMedCrossRef Regan, J. W. (2003). EP2 and EP4 prostanoid receptor signaling. Life Sciences, 74(2–3), 143–153.PubMedCrossRef
23.
go back to reference Neumann, M., Dulsner, E., Furstenberger, G., & Muller-Decker, K. (2007). The expression pattern of prostaglandin E synthase and EP receptor isoforms in normal mouse skin and preinvasive skin neoplasms. Experimental Dermatology, 16(5), 445–453.PubMedCrossRef Neumann, M., Dulsner, E., Furstenberger, G., & Muller-Decker, K. (2007). The expression pattern of prostaglandin E synthase and EP receptor isoforms in normal mouse skin and preinvasive skin neoplasms. Experimental Dermatology, 16(5), 445–453.PubMedCrossRef
24.
go back to reference Sung, Y. M., He, G., & Fischer, S. M. (2005). Lack of expression of the EP2 but not EP3 receptor for prostaglandin E2 results in suppression of skin tumor development. Cancer Research, 65(20), 9304–9311.PubMedCrossRef Sung, Y. M., He, G., & Fischer, S. M. (2005). Lack of expression of the EP2 but not EP3 receptor for prostaglandin E2 results in suppression of skin tumor development. Cancer Research, 65(20), 9304–9311.PubMedCrossRef
25.
go back to reference Konger, R. L., Billings, S. D., Thompson, A. B., Morimiya, A., Ladenson, J. H., Landt, Y., et al. (2005). Immunolocalization of low-affinity prostaglandin E receptors, EP1 and EP2, in adult human epidermis. The Journal of Investigative Dermatology, 124(5), 965–970.PubMedCrossRef Konger, R. L., Billings, S. D., Thompson, A. B., Morimiya, A., Ladenson, J. H., Landt, Y., et al. (2005). Immunolocalization of low-affinity prostaglandin E receptors, EP1 and EP2, in adult human epidermis. The Journal of Investigative Dermatology, 124(5), 965–970.PubMedCrossRef
26.
go back to reference Lee, J. L., Kim, A., Kopelovich, L., Bickers, D. R., & Athar, M. (2005). Differential expression of E prostanoid receptors in murine and human non-melanoma skin cancer. The Journal of Investigative Dermatology, 125(4), 818–825.PubMedCrossRef Lee, J. L., Kim, A., Kopelovich, L., Bickers, D. R., & Athar, M. (2005). Differential expression of E prostanoid receptors in murine and human non-melanoma skin cancer. The Journal of Investigative Dermatology, 125(4), 818–825.PubMedCrossRef
27.
go back to reference Tober, K. L., Thomas-Ahner, J. M., Kusewitt, D. F., & Oberyszyn, T. M. (2007). Effects of UVB on E prostanoid receptor expression in murine skin. The Journal of Investigative Dermatology, 127(1), 214–221.PubMedCrossRef Tober, K. L., Thomas-Ahner, J. M., Kusewitt, D. F., & Oberyszyn, T. M. (2007). Effects of UVB on E prostanoid receptor expression in murine skin. The Journal of Investigative Dermatology, 127(1), 214–221.PubMedCrossRef
28.
go back to reference Tober, K. L., Thomas-Ahner, J. M., Maruyama, T., & Oberyszyn, T. M. (2007). Possible cross-regulation of the E prostanoid receptors. Molecular Carcinogenesis, 46(8), 711–715.PubMedCrossRef Tober, K. L., Thomas-Ahner, J. M., Maruyama, T., & Oberyszyn, T. M. (2007). Possible cross-regulation of the E prostanoid receptors. Molecular Carcinogenesis, 46(8), 711–715.PubMedCrossRef
29.
go back to reference Black, A. T., Gray, J. P., Shakarjian, M. P., Mishin, V., Laskin, D. L., Heck, D. E., et al. (2008). UVB light upregulates prostaglandin synthases and prostaglandin receptors in mouse keratinocytes. Toxicology and Applied Pharmacology, 232(1), 14–24.PubMedCrossRef Black, A. T., Gray, J. P., Shakarjian, M. P., Mishin, V., Laskin, D. L., Heck, D. E., et al. (2008). UVB light upregulates prostaglandin synthases and prostaglandin receptors in mouse keratinocytes. Toxicology and Applied Pharmacology, 232(1), 14–24.PubMedCrossRef
30.
go back to reference Surh, I., Rundhaug, J., Pavone, A., Mikulec, C., Abel, E., & Fischer, S. M. (2011). Upregulation of the EP1 receptor for prostaglandin E(2) promotes skin tumor progression. Molecular Carcinogenesis, 50, 458–468.PubMedCrossRef Surh, I., Rundhaug, J., Pavone, A., Mikulec, C., Abel, E., & Fischer, S. M. (2011). Upregulation of the EP1 receptor for prostaglandin E(2) promotes skin tumor progression. Molecular Carcinogenesis, 50, 458–468.PubMedCrossRef
31.
go back to reference Konger, R. L., Billings, S. D., Prall, N. C., Katona, T. M., Dasilva, S. C., Kennedy, C. R., et al. (2009). The EP1 subtype of prostaglandin E2 receptor: role in keratinocyte differentiation and expression in non-melanoma skin cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 81(4), 279–290.PubMedCrossRef Konger, R. L., Billings, S. D., Prall, N. C., Katona, T. M., Dasilva, S. C., Kennedy, C. R., et al. (2009). The EP1 subtype of prostaglandin E2 receptor: role in keratinocyte differentiation and expression in non-melanoma skin cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 81(4), 279–290.PubMedCrossRef
32.
go back to reference Kawamori, T., Kitamura, T., Watanabe, K., Uchiya, N., Maruyama, T., Narumiya, S., et al. (2005). Prostaglandin E receptor subtype EP(1) deficiency inhibits colon cancer development. Carcinogenesis, 26(2), 353–357.PubMedCrossRef Kawamori, T., Kitamura, T., Watanabe, K., Uchiya, N., Maruyama, T., Narumiya, S., et al. (2005). Prostaglandin E receptor subtype EP(1) deficiency inhibits colon cancer development. Carcinogenesis, 26(2), 353–357.PubMedCrossRef
33.
go back to reference Kawamori, T., Uchiya, N., Nakatsugi, S., Watanabe, K., Ohuchida, S., Yamamoto, H., et al. (2001). Chemopreventive effects of ONO-8711, a selective prostaglandin E receptor EP(1) antagonist, on breast cancer development. Carcinogenesis, 22(12), 2001–2004.PubMedCrossRef Kawamori, T., Uchiya, N., Nakatsugi, S., Watanabe, K., Ohuchida, S., Yamamoto, H., et al. (2001). Chemopreventive effects of ONO-8711, a selective prostaglandin E receptor EP(1) antagonist, on breast cancer development. Carcinogenesis, 22(12), 2001–2004.PubMedCrossRef
34.
go back to reference Watanabe, K., Kawamori, T., Nakatsugi, S., Ohta, T., Ohuchida, S., Yamamoto, H., et al. (1999). Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Research, 59(20), 5093–5096.PubMed Watanabe, K., Kawamori, T., Nakatsugi, S., Ohta, T., Ohuchida, S., Yamamoto, H., et al. (1999). Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Research, 59(20), 5093–5096.PubMed
35.
go back to reference Ide, T., Egan, K., Bell-Parikh, L. C., & FitzGerald, G. A. (2003). Activation of nuclear receptors by prostaglandins. Thrombosis Research, 110(5–6), 311–315.PubMedCrossRef Ide, T., Egan, K., Bell-Parikh, L. C., & FitzGerald, G. A. (2003). Activation of nuclear receptors by prostaglandins. Thrombosis Research, 110(5–6), 311–315.PubMedCrossRef
36.
go back to reference Breitkreutz, D., Braiman-Wiksman, L., Daum, N., Denning, M. F., & Tennenbaum, T. (2007). Protein kinase C family: on the crossroads of cell signaling in skin and tumor epithelium. Journal of Cancer Research and Clinical Oncology, 133(11), 793–808.PubMedCrossRef Breitkreutz, D., Braiman-Wiksman, L., Daum, N., Denning, M. F., & Tennenbaum, T. (2007). Protein kinase C family: on the crossroads of cell signaling in skin and tumor epithelium. Journal of Cancer Research and Clinical Oncology, 133(11), 793–808.PubMedCrossRef
37.
go back to reference Surh, I., Rundhaug, J. E., Pavone, A., Mikulec, C., Abel, E., Simper, M., et al. (2011b). The EP2 receptor for prostaglandin E2 promotes the development and progression of malignant murine skin tumors. Molecular Carcinogenesis Surh, I., Rundhaug, J. E., Pavone, A., Mikulec, C., Abel, E., Simper, M., et al. (2011b). The EP2 receptor for prostaglandin E2 promotes the development and progression of malignant murine skin tumors. Molecular Carcinogenesis
38.
go back to reference Battalora, M. S., Johnston, D. A., & DiGiovanni, J. (1995). The effects of calcium antagonists on anthrone skin tumor promotion and promoter-related effects in SENCAR mice. Cancer Letters, 98(1), 19–25.PubMed Battalora, M. S., Johnston, D. A., & DiGiovanni, J. (1995). The effects of calcium antagonists on anthrone skin tumor promotion and promoter-related effects in SENCAR mice. Cancer Letters, 98(1), 19–25.PubMed
39.
go back to reference Trempus, C. S., Morris, R. J., Ehinger, M., Elmore, A., Bortner, C. D., Ito, M., et al. (2007). CD34 expression by hair follicle stem cells is required for skin tumor development in mice. Cancer Research, 67(9), 4173–4181.PubMedCrossRef Trempus, C. S., Morris, R. J., Ehinger, M., Elmore, A., Bortner, C. D., Ito, M., et al. (2007). CD34 expression by hair follicle stem cells is required for skin tumor development in mice. Cancer Research, 67(9), 4173–4181.PubMedCrossRef
40.
go back to reference Konger, R. L., Brouxhon, S., Partillo, S., VanBuskirk, J., & Pentland, A. P. (2005). The EP3 receptor stimulates ceramide and diacylglycerol release and inhibits growth of primary keratinocytes. Experimental Dermatology, 14(12), 914–922.PubMedCrossRef Konger, R. L., Brouxhon, S., Partillo, S., VanBuskirk, J., & Pentland, A. P. (2005). The EP3 receptor stimulates ceramide and diacylglycerol release and inhibits growth of primary keratinocytes. Experimental Dermatology, 14(12), 914–922.PubMedCrossRef
41.
go back to reference Fukami, K., Inanobe, S., Kanemaru, K., & Nakamura, Y. (2010). Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance. Progress in Lipid Research, 49(4), 429–437.PubMedCrossRef Fukami, K., Inanobe, S., Kanemaru, K., & Nakamura, Y. (2010). Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance. Progress in Lipid Research, 49(4), 429–437.PubMedCrossRef
42.
go back to reference Thompson, E. J., Gupta, A., Vielhauer, G. A., Regan, J. W., & Bowden, G. T. (2001). The growth of malignant keratinocytes depends on signaling through the PGE(2) receptor EP1. Neoplasia, 3(5), 402–410.PubMedCrossRef Thompson, E. J., Gupta, A., Vielhauer, G. A., Regan, J. W., & Bowden, G. T. (2001). The growth of malignant keratinocytes depends on signaling through the PGE(2) receptor EP1. Neoplasia, 3(5), 402–410.PubMedCrossRef
43.
go back to reference Ma, X., Kundu, N., Ioffe, O. B., Goloubeva, O., Konger, R., Baquet, C., et al. (2010). Prostaglandin E receptor EP1 suppresses breast cancer metastasis and is linked to survival differences and cancer disparities. Molecular Cancer Research, 8(10), 1310–1318.PubMedCrossRef Ma, X., Kundu, N., Ioffe, O. B., Goloubeva, O., Konger, R., Baquet, C., et al. (2010). Prostaglandin E receptor EP1 suppresses breast cancer metastasis and is linked to survival differences and cancer disparities. Molecular Cancer Research, 8(10), 1310–1318.PubMedCrossRef
44.
go back to reference Sung, Y. M., He, G., Hwang, D. H., & Fischer, S. M. (2006). Overexpression of the prostaglandin E2 receptor EP2 results in enhanced skin tumor development. Oncogene, 25(40), 5507–5516.PubMedCrossRef Sung, Y. M., He, G., Hwang, D. H., & Fischer, S. M. (2006). Overexpression of the prostaglandin E2 receptor EP2 results in enhanced skin tumor development. Oncogene, 25(40), 5507–5516.PubMedCrossRef
45.
go back to reference Konger, R. L., Malaviya, R., & Pentland, A. P. (1998). Growth regulation of primary human keratinocytes by prostaglandin E receptor EP2 and EP3 subtypes. Biochimica et Biophysica Acta, 1401(2), 221–234.PubMedCrossRef Konger, R. L., Malaviya, R., & Pentland, A. P. (1998). Growth regulation of primary human keratinocytes by prostaglandin E receptor EP2 and EP3 subtypes. Biochimica et Biophysica Acta, 1401(2), 221–234.PubMedCrossRef
46.
go back to reference Brouxhon, S., Konger, R. L., VanBuskirk, J., Sheu, T. J., Ryan, J., Erdle, B., et al. (2007). Deletion of prostaglandin E2 EP2 receptor protects against ultraviolet-induced carcinogenesis, but increases tumor aggressiveness. The Journal of Investigative Dermatology, 127(2), 439–446.PubMedCrossRef Brouxhon, S., Konger, R. L., VanBuskirk, J., Sheu, T. J., Ryan, J., Erdle, B., et al. (2007). Deletion of prostaglandin E2 EP2 receptor protects against ultraviolet-induced carcinogenesis, but increases tumor aggressiveness. The Journal of Investigative Dermatology, 127(2), 439–446.PubMedCrossRef
47.
go back to reference Benjamin, C. L., Melnikova, V. O., & Ananthaswamy, H. N. (2008). P53 protein and pathogenesis of melanoma and nonmelanoma skin cancer. Advances in Experimental Medicine and Biology, 624, 265–282.PubMedCrossRef Benjamin, C. L., Melnikova, V. O., & Ananthaswamy, H. N. (2008). P53 protein and pathogenesis of melanoma and nonmelanoma skin cancer. Advances in Experimental Medicine and Biology, 624, 265–282.PubMedCrossRef
48.
go back to reference Kim, H., Bachelor, M. A., Englehard, A., Owens, D. M., & Christiano, A. M. (2009) Hairless is respressed by tumor necrosis factor-alpha via activation of NFkB. In Annual Society for Investigative Dermatology Conference, Montreal, Canada (pp. 179). Kim, H., Bachelor, M. A., Englehard, A., Owens, D. M., & Christiano, A. M. (2009) Hairless is respressed by tumor necrosis factor-alpha via activation of NFkB. In Annual Society for Investigative Dermatology Conference, Montreal, Canada (pp. 179).
49.
go back to reference Ansari, K. M., Sung, Y. M., He, G., & Fischer, S. M. (2007). Prostaglandin receptor EP2 is responsible for cyclooxygenase-2 induction by prostaglandin E2 in mouse skin. Carcinogenesis, 28(10), 2063–2068.PubMedCrossRef Ansari, K. M., Sung, Y. M., He, G., & Fischer, S. M. (2007). Prostaglandin receptor EP2 is responsible for cyclooxygenase-2 induction by prostaglandin E2 in mouse skin. Carcinogenesis, 28(10), 2063–2068.PubMedCrossRef
50.
go back to reference Konger, R. L., Scott, G. A., Landt, Y., Ladenson, J. H., & Pentland, A. P. (2002). Loss of the EP2 prostaglandin E2 receptor in immortalized human keratinocytes results in increased invasiveness and decreased paxillin expression. American Journal of Pathology, 161(6), 2065–2078.PubMedCrossRef Konger, R. L., Scott, G. A., Landt, Y., Ladenson, J. H., & Pentland, A. P. (2002). Loss of the EP2 prostaglandin E2 receptor in immortalized human keratinocytes results in increased invasiveness and decreased paxillin expression. American Journal of Pathology, 161(6), 2065–2078.PubMedCrossRef
51.
go back to reference Fujino, H., West, K. A., & Regan, J. W. (2002). Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. Journal of Biological Chemistry, 277(4), 2614–2619.PubMedCrossRef Fujino, H., West, K. A., & Regan, J. W. (2002). Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. Journal of Biological Chemistry, 277(4), 2614–2619.PubMedCrossRef
52.
go back to reference Fujino, H., Salvi, S., & Regan, J. W. (2005). Differential regulation of phosphorylation of the cAMP response element-binding protein after activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. Molecular Pharmacology, 68(1), 251–259.PubMed Fujino, H., Salvi, S., & Regan, J. W. (2005). Differential regulation of phosphorylation of the cAMP response element-binding protein after activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. Molecular Pharmacology, 68(1), 251–259.PubMed
53.
go back to reference Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M., & Gutkind, J. S. (2005). Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science, 310(5753), 1504–1510.PubMedCrossRef Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M., & Gutkind, J. S. (2005). Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science, 310(5753), 1504–1510.PubMedCrossRef
54.
go back to reference Akunda, J. K., Chun, K. S., Sessoms, A. R., Lao, H. C., Fischer, S. M., & Langenbach, R. (2007). Cyclooxygenase-2 deficiency increases epidermal apoptosis and impairs recovery following acute UVB exposure. Molecular Carcinogenesis, 46(5), 354–362.PubMedCrossRef Akunda, J. K., Chun, K. S., Sessoms, A. R., Lao, H. C., Fischer, S. M., & Langenbach, R. (2007). Cyclooxygenase-2 deficiency increases epidermal apoptosis and impairs recovery following acute UVB exposure. Molecular Carcinogenesis, 46(5), 354–362.PubMedCrossRef
55.
go back to reference Chun, K. S., Akunda, J. K., & Langenbach, R. (2007). Cyclooxygenase-2 inhibits UVB-induced apoptosis in mouse skin by activating the prostaglandin E2 receptors, EP2 and EP4. Cancer Research, 67(5), 2015–2021.PubMedCrossRef Chun, K. S., Akunda, J. K., & Langenbach, R. (2007). Cyclooxygenase-2 inhibits UVB-induced apoptosis in mouse skin by activating the prostaglandin E2 receptors, EP2 and EP4. Cancer Research, 67(5), 2015–2021.PubMedCrossRef
56.
go back to reference Chun, K. S., & Langenbach, R. (2007). A proposed COX-2 and PGE(2) receptor interaction in UV-exposed mouse skin. Molecular Carcinogenesis, 46(8), 699–704.PubMedCrossRef Chun, K. S., & Langenbach, R. (2007). A proposed COX-2 and PGE(2) receptor interaction in UV-exposed mouse skin. Molecular Carcinogenesis, 46(8), 699–704.PubMedCrossRef
57.
go back to reference Maldve, R. E., & Fischer, S. M. (1996). Multifactor regulation of prostaglandin H synthase-2 in murine keratinocytes. Molecular Carcinogenesis, 17(4), 207–216.PubMedCrossRef Maldve, R. E., & Fischer, S. M. (1996). Multifactor regulation of prostaglandin H synthase-2 in murine keratinocytes. Molecular Carcinogenesis, 17(4), 207–216.PubMedCrossRef
58.
go back to reference Chun, K. S., Lao, H. C., Trempus, C. S., Okada, M., & Langenbach, R. (2009). The prostaglandin receptor EP2 activates multiple signaling pathways and beta-arrestin1 complex formation during mouse skin papilloma development. Carcinogenesis, 30(9), 1620–1627.PubMedCrossRef Chun, K. S., Lao, H. C., Trempus, C. S., Okada, M., & Langenbach, R. (2009). The prostaglandin receptor EP2 activates multiple signaling pathways and beta-arrestin1 complex formation during mouse skin papilloma development. Carcinogenesis, 30(9), 1620–1627.PubMedCrossRef
59.
go back to reference Donnini, S., Finetti, F., Solito, R., Terzuoli, E., Sacchetti, A., Morbidelli, L., et al. (2007). EP2 prostanoid receptor promotes squamous cell carcinoma growth through epidermal growth factor receptor transactivation and iNOS and ERK1/2 pathways. The FASEB Journal, 21(10), 2418–2430.PubMedCrossRef Donnini, S., Finetti, F., Solito, R., Terzuoli, E., Sacchetti, A., Morbidelli, L., et al. (2007). EP2 prostanoid receptor promotes squamous cell carcinoma growth through epidermal growth factor receptor transactivation and iNOS and ERK1/2 pathways. The FASEB Journal, 21(10), 2418–2430.PubMedCrossRef
60.
go back to reference Chun, K. S., & Langenbach, R. (2011). The prostaglandin E(2) receptor, EP2, regulates survivin expression via an EGFR/STAT3 pathway in UVB-exposed mouse skin. Mol Carcinog. Chun, K. S., & Langenbach, R. (2011). The prostaglandin E(2) receptor, EP2, regulates survivin expression via an EGFR/STAT3 pathway in UVB-exposed mouse skin. Mol Carcinog.
61.
go back to reference Brouxhon, S., Kyrkanides, S., O'Banion, M. K., Johnson, R., Pearce, D. A., Centola, G. M., et al. (2007). Sequential down-regulation of E-cadherin with squamous cell carcinoma progression: loss of E-cadherin via a prostaglandin E2-EP2 dependent posttranslational mechanism. Cancer Research, 67(16), 7654–7664.PubMedCrossRef Brouxhon, S., Kyrkanides, S., O'Banion, M. K., Johnson, R., Pearce, D. A., Centola, G. M., et al. (2007). Sequential down-regulation of E-cadherin with squamous cell carcinoma progression: loss of E-cadherin via a prostaglandin E2-EP2 dependent posttranslational mechanism. Cancer Research, 67(16), 7654–7664.PubMedCrossRef
62.
go back to reference Seno, H., Oshima, M., Ishikawa, T. O., Oshima, H., Takaku, K., Chiba, T., et al. (2002). Cyclooxygenase 2- and prostaglandin E(2) receptor EP(2)-dependent angiogenesis in Apc(Delta716) mouse intestinal polyps. Cancer Research, 62(2), 506–511.PubMed Seno, H., Oshima, M., Ishikawa, T. O., Oshima, H., Takaku, K., Chiba, T., et al. (2002). Cyclooxygenase 2- and prostaglandin E(2) receptor EP(2)-dependent angiogenesis in Apc(Delta716) mouse intestinal polyps. Cancer Research, 62(2), 506–511.PubMed
63.
go back to reference Chang, S. H., Ai, Y., Breyer, R. M., Lane, T. F., & Hla, T. (2005). The prostaglandin E2 receptor EP2 is required for cyclooxygenase 2-mediated mammary hyperplasia. Cancer Research, 65(11), 4496–4499.PubMedCrossRef Chang, S. H., Ai, Y., Breyer, R. M., Lane, T. F., & Hla, T. (2005). The prostaglandin E2 receptor EP2 is required for cyclooxygenase 2-mediated mammary hyperplasia. Cancer Research, 65(11), 4496–4499.PubMedCrossRef
64.
go back to reference Namba, T., Sugimoto, Y., Negishi, M., Irie, A., Ushikubi, F., Kakizuka, A., et al. (1993). Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature, 365(6442), 166–170.PubMedCrossRef Namba, T., Sugimoto, Y., Negishi, M., Irie, A., Ushikubi, F., Kakizuka, A., et al. (1993). Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature, 365(6442), 166–170.PubMedCrossRef
65.
go back to reference Hatae, N., Sugimoto, Y., & Ichikawa, A. (2002). Prostaglandin receptors: advances in the study of EP3 receptor signaling. Journal of Biochemistry, 131(6), 781–784.PubMed Hatae, N., Sugimoto, Y., & Ichikawa, A. (2002). Prostaglandin receptors: advances in the study of EP3 receptor signaling. Journal of Biochemistry, 131(6), 781–784.PubMed
66.
go back to reference Kanda, N., Mitsui, H., & Watanabe, S. (2004). Prostaglandin E(2) suppresses CCL27 production through EP2 and EP3 receptors in human keratinocytes. The Journal of Allergy and Clinical Immunology, 114(6), 1403–1409.PubMedCrossRef Kanda, N., Mitsui, H., & Watanabe, S. (2004). Prostaglandin E(2) suppresses CCL27 production through EP2 and EP3 receptors in human keratinocytes. The Journal of Allergy and Clinical Immunology, 114(6), 1403–1409.PubMedCrossRef
67.
go back to reference Honda, T., Matsuoka, T., Ueta, M., Kabashima, K., Miyachi, Y., & Narumiya, S. (2009). Prostaglandin E(2)-EP(3) signaling suppresses skin inflammation in murine contact hypersensitivity. The Journal of Allergy and Clinical Immunology, 124(4), 809–818. e802.PubMedCrossRef Honda, T., Matsuoka, T., Ueta, M., Kabashima, K., Miyachi, Y., & Narumiya, S. (2009). Prostaglandin E(2)-EP(3) signaling suppresses skin inflammation in murine contact hypersensitivity. The Journal of Allergy and Clinical Immunology, 124(4), 809–818. e802.PubMedCrossRef
68.
go back to reference Bhattacharya, M., Peri, K., Ribeiro-da-Silva, A., Almazan, G., Shichi, H., Hou, X., et al. (1999). Localization of functional prostaglandin E2 receptors EP3 and EP4 in the nuclear envelope. Journal of Biological Chemistry, 274(22), 15719–15724.PubMedCrossRef Bhattacharya, M., Peri, K., Ribeiro-da-Silva, A., Almazan, G., Shichi, H., Hou, X., et al. (1999). Localization of functional prostaglandin E2 receptors EP3 and EP4 in the nuclear envelope. Journal of Biological Chemistry, 274(22), 15719–15724.PubMedCrossRef
69.
go back to reference Shoji, Y., Takahashi, M., Kitamura, T., Watanabe, K., Kawamori, T., Maruyama, T., et al. (2004). Downregulation of prostaglandin E receptor subtype EP3 during colon cancer development. Gut, 53(8), 1151–1158.PubMedCrossRef Shoji, Y., Takahashi, M., Kitamura, T., Watanabe, K., Kawamori, T., Maruyama, T., et al. (2004). Downregulation of prostaglandin E receptor subtype EP3 during colon cancer development. Gut, 53(8), 1151–1158.PubMedCrossRef
70.
go back to reference Shoji, Y., Takahashi, M., Takasuka, N., Niho, N., Kitamura, T., Sato, H., et al. (2005). Prostaglandin E receptor EP3 deficiency modifies tumor outcome in mouse two-stage skin carcinogenesis. Carcinogenesis, 26(12), 2116–2122.PubMedCrossRef Shoji, Y., Takahashi, M., Takasuka, N., Niho, N., Kitamura, T., Sato, H., et al. (2005). Prostaglandin E receptor EP3 deficiency modifies tumor outcome in mouse two-stage skin carcinogenesis. Carcinogenesis, 26(12), 2116–2122.PubMedCrossRef
71.
go back to reference Chang, S. H., Liu, C. H., Conway, R., Han, D. K., Nithipatikom, K., Trifan, O. C., et al. (2004). Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc Natl Acad Sci USA, 101(2), 591–596.PubMedCrossRef Chang, S. H., Liu, C. H., Conway, R., Han, D. K., Nithipatikom, K., Trifan, O. C., et al. (2004). Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc Natl Acad Sci USA, 101(2), 591–596.PubMedCrossRef
72.
go back to reference Sonoshita, M., Takaku, K., Sasaki, N., Sugimoto, Y., Ushikubi, F., Narumiya, S., et al. (2001). Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta 716) knockout mice. Nature Medicine, 7(9), 1048–1051.PubMedCrossRef Sonoshita, M., Takaku, K., Sasaki, N., Sugimoto, Y., Ushikubi, F., Narumiya, S., et al. (2001). Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta 716) knockout mice. Nature Medicine, 7(9), 1048–1051.PubMedCrossRef
73.
go back to reference Goulet, J. L., Pace, A. J., Key, M. L., Byrum, R. S., Nguyen, M., Tilley, S. L., et al. (2004). E-prostanoid-3 receptors mediate the proinflammatory actions of prostaglandin E2 in acute cutaneous inflammation. Journal of Immunology, 173(2), 1321–1326. Goulet, J. L., Pace, A. J., Key, M. L., Byrum, R. S., Nguyen, M., Tilley, S. L., et al. (2004). E-prostanoid-3 receptors mediate the proinflammatory actions of prostaglandin E2 in acute cutaneous inflammation. Journal of Immunology, 173(2), 1321–1326.
74.
go back to reference Audoly, L. P., Tilley, S. L., Goulet, J., Key, M., Nguyen, M., Stock, J. L., et al. (1999). Identification of specific EP receptors responsible for the hemodynamic effects of PGE2. American Journal of Physiology, 277(3 Pt 2), H924–H930.PubMed Audoly, L. P., Tilley, S. L., Goulet, J., Key, M., Nguyen, M., Stock, J. L., et al. (1999). Identification of specific EP receptors responsible for the hemodynamic effects of PGE2. American Journal of Physiology, 277(3 Pt 2), H924–H930.PubMed
75.
go back to reference Jones, R. L., Armstrong, R. A., & Wise, H. (1997). Prostaglandin receptors involved in inflammatory events. Advances in Experimental Medicine and Biology, 400A, 241–245.PubMedCrossRef Jones, R. L., Armstrong, R. A., & Wise, H. (1997). Prostaglandin receptors involved in inflammatory events. Advances in Experimental Medicine and Biology, 400A, 241–245.PubMedCrossRef
76.
go back to reference Kanda, N., Koike, S., & Watanabe, S. (2005). Prostaglandin E2 enhances neurotrophin-4 production via EP3 receptor in human keratinocytes. Journal of Pharmacology and Experimental Therapeutics, 315(2), 796–804.PubMedCrossRef Kanda, N., Koike, S., & Watanabe, S. (2005). Prostaglandin E2 enhances neurotrophin-4 production via EP3 receptor in human keratinocytes. Journal of Pharmacology and Experimental Therapeutics, 315(2), 796–804.PubMedCrossRef
77.
go back to reference Ahluwalia, A., & Perretti, M. (1994). Anti-inflammatory effect of prostanoids in mouse and rat skin: evidence for a role of EP3-receptors. Journal of Pharmacology and Experimental Therapeutics, 268(3), 1526–1531.PubMed Ahluwalia, A., & Perretti, M. (1994). Anti-inflammatory effect of prostanoids in mouse and rat skin: evidence for a role of EP3-receptors. Journal of Pharmacology and Experimental Therapeutics, 268(3), 1526–1531.PubMed
78.
go back to reference Foord, S. M., Marks, B., Stolz, M., Bufflier, E., Fraser, N. J., & Lee, M. G. (1996). The structure of the prostaglandin EP4 receptor gene and related pseudogenes. Genomics, 35(1), 182–188.PubMedCrossRef Foord, S. M., Marks, B., Stolz, M., Bufflier, E., Fraser, N. J., & Lee, M. G. (1996). The structure of the prostaglandin EP4 receptor gene and related pseudogenes. Genomics, 35(1), 182–188.PubMedCrossRef
79.
go back to reference Simper, M. S., Bowen, R. A., Surh, I., & Fischer, S. M (2010) Overexpression of prostaglandin E2 EP4 receptor enhances mouse skin tumorigenesis. In Annual Meeting of the American Association for Cancer Research, Washington, DC (pp. 2462) Simper, M. S., Bowen, R. A., Surh, I., & Fischer, S. M (2010) Overexpression of prostaglandin E2 EP4 receptor enhances mouse skin tumorigenesis. In Annual Meeting of the American Association for Cancer Research, Washington, DC (pp. 2462)
80.
go back to reference Simper, M. S., Bowen, R. A., Surh, I., & Fischer, S. M. (2011) The tumor promoting activity of the prostaglandin E2 EP4 receptor in mouse skin. In Annual Meeting of the American Association for Cancer Research (pp. 912) Simper, M. S., Bowen, R. A., Surh, I., & Fischer, S. M. (2011) The tumor promoting activity of the prostaglandin E2 EP4 receptor in mouse skin. In Annual Meeting of the American Association for Cancer Research (pp. 912)
81.
go back to reference Aoudjit, L., Potapov, A., & Takano, T. (2006). Prostaglandin E2 promotes cell survival of glomerular epithelial cells via the EP4 receptor. American Journal of Physiology. Renal Physiology, 290(6), F1534–F1542.PubMedCrossRef Aoudjit, L., Potapov, A., & Takano, T. (2006). Prostaglandin E2 promotes cell survival of glomerular epithelial cells via the EP4 receptor. American Journal of Physiology. Renal Physiology, 290(6), F1534–F1542.PubMedCrossRef
82.
go back to reference Mutoh, M., Watanabe, K., Kitamura, T., Shoji, Y., Takahashi, M., Kawamori, T., et al. (2002). Involvement of prostaglandin E receptor subtype EP(4) in colon carcinogenesis. Cancer Research, 62(1), 28–32.PubMed Mutoh, M., Watanabe, K., Kitamura, T., Shoji, Y., Takahashi, M., Kawamori, T., et al. (2002). Involvement of prostaglandin E receptor subtype EP(4) in colon carcinogenesis. Cancer Research, 62(1), 28–32.PubMed
83.
go back to reference Ma, X., Kundu, N., Rifat, S., Walser, T., & Fulton, A. M. (2006). Prostaglandin E receptor EP4 antagonism inhibits breast cancer metastasis. Cancer Research, 66(6), 2923–2927.PubMedCrossRef Ma, X., Kundu, N., Rifat, S., Walser, T., & Fulton, A. M. (2006). Prostaglandin E receptor EP4 antagonism inhibits breast cancer metastasis. Cancer Research, 66(6), 2923–2927.PubMedCrossRef
84.
go back to reference Kabashima, K., Nagamachi, M., Honda, T., Nishigori, C., Miyachi, Y., Tokura, Y., et al. (2007). Prostaglandin E2 is required for ultraviolet B-induced skin inflammation via EP2 and EP4 receptors. Laboratory Investigation, 87(1), 49–55.PubMedCrossRef Kabashima, K., Nagamachi, M., Honda, T., Nishigori, C., Miyachi, Y., Tokura, Y., et al. (2007). Prostaglandin E2 is required for ultraviolet B-induced skin inflammation via EP2 and EP4 receptors. Laboratory Investigation, 87(1), 49–55.PubMedCrossRef
85.
go back to reference Minami, M., Shimizu, K., Okamoto, Y., Folco, E., Ilasaca, M. L., Feinberg, M. W., et al. (2008). Prostaglandin E receptor type 4-associated protein interacts directly with NF-kappaB1 and attenuates macrophage activation. Journal of Biological Chemistry, 283(15), 9692–9703.PubMedCrossRef Minami, M., Shimizu, K., Okamoto, Y., Folco, E., Ilasaca, M. L., Feinberg, M. W., et al. (2008). Prostaglandin E receptor type 4-associated protein interacts directly with NF-kappaB1 and attenuates macrophage activation. Journal of Biological Chemistry, 283(15), 9692–9703.PubMedCrossRef
86.
go back to reference Soontrapa, K., Honda, T., Sakata, D., Yao, C., Hirata, T., Hori, S., et al. (2011). Prostaglandin E2-prostoglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression. Proceedings of the National Academy of Sciences of the United States of America, 108(16), 6668–6673.PubMedCrossRef Soontrapa, K., Honda, T., Sakata, D., Yao, C., Hirata, T., Hori, S., et al. (2011). Prostaglandin E2-prostoglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression. Proceedings of the National Academy of Sciences of the United States of America, 108(16), 6668–6673.PubMedCrossRef
87.
go back to reference Subbaramaiah, K., Hudis, C., Chang, S. H., Hla, T., & Dannenberg, A. J. (2008). EP2 and EP4 receptors regulate aromatase expression in human adipocytes and breast cancer cells. Evidence of a BRCA1 and p300 exchange. Journal of Biological Chemistry, 283(6), 3433–3444.PubMedCrossRef Subbaramaiah, K., Hudis, C., Chang, S. H., Hla, T., & Dannenberg, A. J. (2008). EP2 and EP4 receptors regulate aromatase expression in human adipocytes and breast cancer cells. Evidence of a BRCA1 and p300 exchange. Journal of Biological Chemistry, 283(6), 3433–3444.PubMedCrossRef
88.
go back to reference Fujino, H., Xu, W., & Regan, J. W. (2003). Prostaglandin E2 induced functional expression of early growth response factor-1 by EP4, but not EP2, prostanoid receptors via the phosphatidylinositol 3-kinase and extracellular signal-regulated kinases. Journal of Biological Chemistry, 278(14), 12151–12156.PubMedCrossRef Fujino, H., Xu, W., & Regan, J. W. (2003). Prostaglandin E2 induced functional expression of early growth response factor-1 by EP4, but not EP2, prostanoid receptors via the phosphatidylinositol 3-kinase and extracellular signal-regulated kinases. Journal of Biological Chemistry, 278(14), 12151–12156.PubMedCrossRef
89.
go back to reference Fujino, H., & Regan, J. W. (2006). EP(4) prostanoid receptor coupling to a pertussis toxin-sensitive inhibitory G protein. Molecular Pharmacology, 69(1), 5–10.PubMed Fujino, H., & Regan, J. W. (2006). EP(4) prostanoid receptor coupling to a pertussis toxin-sensitive inhibitory G protein. Molecular Pharmacology, 69(1), 5–10.PubMed
90.
go back to reference Kambe, A., Iguchi, G., Moon, Y., Kamitani, H., Watanabe, T., & Eling, T. E. (2008). Regulation of EP4 expression via the Sp-1 transcription factor: inhibition of expression by anti-cancer agents. Biochimica et Biophysica Acta, 1783(6), 1211–1219.PubMedCrossRef Kambe, A., Iguchi, G., Moon, Y., Kamitani, H., Watanabe, T., & Eling, T. E. (2008). Regulation of EP4 expression via the Sp-1 transcription factor: inhibition of expression by anti-cancer agents. Biochimica et Biophysica Acta, 1783(6), 1211–1219.PubMedCrossRef
91.
go back to reference Singh, T., Vaid, M., Katiyar, N., Sharma, S., & Katiyar, S. K. (2011). Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E and prostaglandin E receptors. Carcinogenesis, 32(1), 86–92.PubMedCrossRef Singh, T., Vaid, M., Katiyar, N., Sharma, S., & Katiyar, S. K. (2011). Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E and prostaglandin E receptors. Carcinogenesis, 32(1), 86–92.PubMedCrossRef
92.
go back to reference Rho, O., Kim, D. J., Kiguchi, K., & Digiovanni, J. (2011). Growth factor signaling pathways as targets for prevention of epithelial carcinogenesis. Molecular Carcinogenesis, 50(4), 264–279.PubMedCrossRef Rho, O., Kim, D. J., Kiguchi, K., & Digiovanni, J. (2011). Growth factor signaling pathways as targets for prevention of epithelial carcinogenesis. Molecular Carcinogenesis, 50(4), 264–279.PubMedCrossRef
93.
go back to reference Bowden, G. T. (2004). Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nature Reviews. Cancer, 4(1), 23–35.PubMedCrossRef Bowden, G. T. (2004). Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nature Reviews. Cancer, 4(1), 23–35.PubMedCrossRef
Metadata
Title
The role of the EP receptors for prostaglandin E2 in skin and skin cancer
Authors
J. E. Rundhaug
M. S. Simper
I. Surh
S. M. Fischer
Publication date
01-12-2011
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2011
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9317-9

Other articles of this Issue 3-4/2011

Cancer and Metastasis Reviews 3-4/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine