Skip to main content
Top
Published in: Surgical Endoscopy 7/2019

01-07-2019 | 2018 SAGES Oral

Ergonomics of minimally invasive surgery: an analysis of muscle effort and fatigue in the operating room between laparoscopic and robotic surgery

Authors: Priscila R. Armijo, Chun-Kai Huang, Robin High, Melissa Leon, Ka-Chun Siu, Dmitry Oleynikov

Published in: Surgical Endoscopy | Issue 7/2019

Login to get access

Abstract

Background

Our aim was to determine how objectively-measured and self-reported muscle effort and fatigue of the upper-limb differ between surgeons performing laparoscopic (LAP) and robotic-assisted (ROBOT) surgeries.

Methods

Surgeons performing LAP or ROBOT procedures at a single-institution were enrolled. Objective muscle activation and self-reported fatigue were evaluated, and comparisons were made between approaches. Muscle activation of the upper trapezius (UT), anterior deltoid (AD), flexor carpi radialis (FCR), and extensor digitorum (ED) were recorded during the surgical procedure using Trigno wireless surface electromyography (EMG). The maximal voluntary contraction (MVC) was obtained to normalize root-mean-square muscle activation as %MVCRMS. The median frequency (MDF) was calculated to assess muscle fatigue. Each surgeon also completed the validated Piper Fatigue Scale-12 (PFH-12) before and after the procedure for self-perceived fatigue assessment. Statistical analysis was done using SAS/STAT software, with α = 0.05.

Results

28 surgeries were recorded (LAP: N = 18, ROBOT: N = 10). EMG analysis revealed the ROBOT group had a higher muscle activation than LAP for UT (37.7 vs. 25.5, p = 0.003), AD (8.9 vs. 6.3, p = 0.027), and FCR (14.4 vs. 10.9, p = 0.019). Conversely, LAP required more effort for the ED, represented by a significantly lower MDF compared to the ROBOT group (91.2 ± 1.5 Hz vs. 102.8 ± 1.5 Hz, p < 0.001). Survey analysis revealed no differences in self-reported fatigue before and after the surgery between approaches, p = 0.869.

Conclusions

Our analysis revealed surgeons show similar fatigue levels performing the first case of the day using either robotic or LAP surgery. Surgeons performing LAP surgery had more fatigue in the forearm, robotic surgery required more shoulder and neck use, but neither was superior. Neither technique produced significant overall fatigue on survey. Long-term selective use of these different muscles could be correlated with different patterns of injury. Future studies are needed to fully understand long-term implications of prolonged surgery on occupational injury.
Appendix
Available only for authorised users
Literature
1.
go back to reference Berguer R, Forkey D, Smith W (1999) Ergonomic problems associated with laparoscopic surgery. Surg Endosc 13(5):466–468CrossRefPubMed Berguer R, Forkey D, Smith W (1999) Ergonomic problems associated with laparoscopic surgery. Surg Endosc 13(5):466–468CrossRefPubMed
2.
go back to reference Wang R, Liang Z, Zihni AM, Ray S, Awad MM (2017) Which causes more ergonomic stress: laparoscopic or open surgery? Surg Endosc 31(8):3286–3290CrossRefPubMed Wang R, Liang Z, Zihni AM, Ray S, Awad MM (2017) Which causes more ergonomic stress: laparoscopic or open surgery? Surg Endosc 31(8):3286–3290CrossRefPubMed
3.
go back to reference Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D (2018) Review of emerging surgical robotic technology. Surg Endosc 32(4):1636–1655CrossRefPubMed Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D (2018) Review of emerging surgical robotic technology. Surg Endosc 32(4):1636–1655CrossRefPubMed
4.
go back to reference Capone AC, Parikh PM, Gatti ME, Davidson BJ, Davison SP (2010) Occupational injury in plastic surgeons. Plast Reconstr Surg 125(5):1555–1561CrossRefPubMed Capone AC, Parikh PM, Gatti ME, Davidson BJ, Davison SP (2010) Occupational injury in plastic surgeons. Plast Reconstr Surg 125(5):1555–1561CrossRefPubMed
5.
go back to reference Zihni AM, Ohu I, Cavallo JA, Cho S, Awad MM (2014) Ergonomic analysis of robot-assisted and traditional laparoscopic procedures. Surg Endosc 28(12):3379–3384CrossRefPubMed Zihni AM, Ohu I, Cavallo JA, Cho S, Awad MM (2014) Ergonomic analysis of robot-assisted and traditional laparoscopic procedures. Surg Endosc 28(12):3379–3384CrossRefPubMed
6.
go back to reference Janki S, Mulder EE, IJzermans JN, Tran TK (2017) Ergonomics in the operating room. Surg Endosc 31(6):2457–2466CrossRefPubMed Janki S, Mulder EE, IJzermans JN, Tran TK (2017) Ergonomics in the operating room. Surg Endosc 31(6):2457–2466CrossRefPubMed
7.
go back to reference Armijo PR, Pagkratis S, Boilesen E, Tanner T, Oleynikov D (2018) Growth in robotic-assisted procedures is from conversion of laparoscopic procedures and not from open surgeons’ conversion: a study of trends and costs. Surg Endosc 32(4):2106–2113CrossRefPubMed Armijo PR, Pagkratis S, Boilesen E, Tanner T, Oleynikov D (2018) Growth in robotic-assisted procedures is from conversion of laparoscopic procedures and not from open surgeons’ conversion: a study of trends and costs. Surg Endosc 32(4):2106–2113CrossRefPubMed
8.
go back to reference van der Schatte Olivier RH, Van’t Hullenaar CD, Ruurda JP, Broeders IA (2009) Ergonomics, user comfort, and performance in standard and robot-assisted laparoscopic surgery. Surg Endosc 23(6):1365–1371CrossRefPubMed van der Schatte Olivier RH, Van’t Hullenaar CD, Ruurda JP, Broeders IA (2009) Ergonomics, user comfort, and performance in standard and robot-assisted laparoscopic surgery. Surg Endosc 23(6):1365–1371CrossRefPubMed
9.
go back to reference Kant IJ, de Jong LC, van Rijssen-Moll M, Borm PJ (1992) A survey of static and dynamic work postures of operating room staff. Int Arch Occup Environ Health 63(6):423–428CrossRefPubMed Kant IJ, de Jong LC, van Rijssen-Moll M, Borm PJ (1992) A survey of static and dynamic work postures of operating room staff. Int Arch Occup Environ Health 63(6):423–428CrossRefPubMed
10.
go back to reference Lux MM, Marshall M, Erturk E, Joseph JV (2010) Ergonomic evaluation and guidelines for use of the daVinci robot system. J Endourol 24(3):371–375CrossRefPubMed Lux MM, Marshall M, Erturk E, Joseph JV (2010) Ergonomic evaluation and guidelines for use of the daVinci robot system. J Endourol 24(3):371–375CrossRefPubMed
11.
go back to reference Judkins TN, Oleynikov D, Narazaki K, Stergiou N (2006) Robotic surgery and training: electromyographic correlates of robotic laparoscopic training. Surg Endosc Other Interv Tech 20(5):824–829CrossRef Judkins TN, Oleynikov D, Narazaki K, Stergiou N (2006) Robotic surgery and training: electromyographic correlates of robotic laparoscopic training. Surg Endosc Other Interv Tech 20(5):824–829CrossRef
13.
go back to reference Huang CK, Boman A, White A, Oleynikov D, Siu KC (2016) Effects of hand dominance and postural selection on muscle activities of virtual laparoscopic surgical training tasks. Stud Health Technol Inf 220:142–145 Huang CK, Boman A, White A, Oleynikov D, Siu KC (2016) Effects of hand dominance and postural selection on muscle activities of virtual laparoscopic surgical training tasks. Stud Health Technol Inf 220:142–145
14.
go back to reference Reeve BB, Stover AM, Alfano CM et al (2012) The piper fatigue scale-12 (PFS-12): Psychometric findings and item reduction in a cohort of breast cancer survivors. Breast Cancer Res Treat 136(1):9–20CrossRefPubMedPubMedCentral Reeve BB, Stover AM, Alfano CM et al (2012) The piper fatigue scale-12 (PFS-12): Psychometric findings and item reduction in a cohort of breast cancer survivors. Breast Cancer Res Treat 136(1):9–20CrossRefPubMedPubMedCentral
15.
go back to reference Park A, Lee G, Seagull FJ, Meenaghan N, Dexter D (2010) Patients benefit while surgeons suffer: an impending epidemic. J Am Coll Surg 210(3):306–313CrossRefPubMed Park A, Lee G, Seagull FJ, Meenaghan N, Dexter D (2010) Patients benefit while surgeons suffer: an impending epidemic. J Am Coll Surg 210(3):306–313CrossRefPubMed
16.
go back to reference Lee G, Lee M, Green I, Allaf M, Marohn M (2017) Surgeons’ physical discomfort and symptoms during robotic surgery: a comprehensive ergonomic survey study. Surg Endosc 31(4):1697–1706CrossRefPubMed Lee G, Lee M, Green I, Allaf M, Marohn M (2017) Surgeons’ physical discomfort and symptoms during robotic surgery: a comprehensive ergonomic survey study. Surg Endosc 31(4):1697–1706CrossRefPubMed
17.
go back to reference González-Sánchez M, González-Poveda I, Mera-Velasco S, Cuesta-Vargas AI (2017) Comparison of fatigue accumulated during and after prolonged robotic and laparoscopic surgical methods: a cross-sectional study. Surg Endosc 31(3):1119–1135CrossRefPubMed González-Sánchez M, González-Poveda I, Mera-Velasco S, Cuesta-Vargas AI (2017) Comparison of fatigue accumulated during and after prolonged robotic and laparoscopic surgical methods: a cross-sectional study. Surg Endosc 31(3):1119–1135CrossRefPubMed
18.
go back to reference Ehlers L, Suh IH, LaGrange C, Oleynikov D, Siu KC (2013) Examination of muscle effort and fatigue during virtual and actual laparoscopic surgical skills practice. Stud Health Technol Inf 184:122–128 Ehlers L, Suh IH, LaGrange C, Oleynikov D, Siu KC (2013) Examination of muscle effort and fatigue during virtual and actual laparoscopic surgical skills practice. Stud Health Technol Inf 184:122–128
19.
go back to reference Suh IH, Mukherjee M, Schrack R et al (2011) Electromyographic correlates of learning during robotic surgical training in virtual reality. Stud Health Technol Inf 163:630–634 Suh IH, Mukherjee M, Schrack R et al (2011) Electromyographic correlates of learning during robotic surgical training in virtual reality. Stud Health Technol Inf 163:630–634
20.
go back to reference Judkins TN, Oleynikov D, Stergiou N (2009) Objective evaluation of expert and novice performance during robotic surgical training tasks. Surg Endosc 23(3):590CrossRefPubMed Judkins TN, Oleynikov D, Stergiou N (2009) Objective evaluation of expert and novice performance during robotic surgical training tasks. Surg Endosc 23(3):590CrossRefPubMed
21.
go back to reference Huang CK, Suh IH, Chien JH, Vallabhajosula S, Oleynikov D, Siu KC (2012) Investigating the muscle activities of performing surgical training tasks using a virtual simulator. Stud Health Technol Inf 173:200–204 Huang CK, Suh IH, Chien JH, Vallabhajosula S, Oleynikov D, Siu KC (2012) Investigating the muscle activities of performing surgical training tasks using a virtual simulator. Stud Health Technol Inf 173:200–204
22.
go back to reference Lee GI, Lee MR, Clanton T, Sutton E, Park AE, Marohn MR (2014) Comparative assessment of physical and cognitive ergonomics associated with robotic and traditional laparoscopic surgeries. Surg Endosc 28(2):456–465CrossRefPubMed Lee GI, Lee MR, Clanton T, Sutton E, Park AE, Marohn MR (2014) Comparative assessment of physical and cognitive ergonomics associated with robotic and traditional laparoscopic surgeries. Surg Endosc 28(2):456–465CrossRefPubMed
24.
go back to reference Aitchison LP, Cui CK, Arnold A, Nesbitt-Hawes E, Abbott J (2016) The ergonomics of laparoscopic surgery: a quantitative study of the time and motion of laparoscopic surgeons in live surgical environments. Surg Endosc 30(11):5068–5076CrossRefPubMed Aitchison LP, Cui CK, Arnold A, Nesbitt-Hawes E, Abbott J (2016) The ergonomics of laparoscopic surgery: a quantitative study of the time and motion of laparoscopic surgeons in live surgical environments. Surg Endosc 30(11):5068–5076CrossRefPubMed
25.
go back to reference Lawson EH, Curet MJ, Sanchez BR, Schuster R, Berguer R (2007) Postural ergonomics during robotic and laparoscopic gastric bypass surgery: a pilot project. J Rob Surg 1(1):61–67CrossRef Lawson EH, Curet MJ, Sanchez BR, Schuster R, Berguer R (2007) Postural ergonomics during robotic and laparoscopic gastric bypass surgery: a pilot project. J Rob Surg 1(1):61–67CrossRef
27.
go back to reference Sánchez-Margallo FM, Sánchez-Margallo JA, Pagador JB, Moyano JL, Moreno J, Usón J (2010) Ergonomic assessment of hand movements in laparoscopic surgery using the CyberGlove®. In: Miller K, Nielsen P (eds) Computational biomechanics for medicine. Springer, New York, pp. 121–128CrossRef Sánchez-Margallo FM, Sánchez-Margallo JA, Pagador JB, Moyano JL, Moreno J, Usón J (2010) Ergonomic assessment of hand movements in laparoscopic surgery using the CyberGlove®. In: Miller K, Nielsen P (eds) Computational biomechanics for medicine. Springer, New York, pp. 121–128CrossRef
28.
go back to reference Park AE, Zahiri HR, Hallbeck MS et al (2017) Intraoperative “micro breaks” with targeted stretching enhance surgeon physical function and mental focus: a multicenter cohort study. Ann Surg 265(2):340–346CrossRef Park AE, Zahiri HR, Hallbeck MS et al (2017) Intraoperative “micro breaks” with targeted stretching enhance surgeon physical function and mental focus: a multicenter cohort study. Ann Surg 265(2):340–346CrossRef
Metadata
Title
Ergonomics of minimally invasive surgery: an analysis of muscle effort and fatigue in the operating room between laparoscopic and robotic surgery
Authors
Priscila R. Armijo
Chun-Kai Huang
Robin High
Melissa Leon
Ka-Chun Siu
Dmitry Oleynikov
Publication date
01-07-2019
Publisher
Springer US
Published in
Surgical Endoscopy / Issue 7/2019
Print ISSN: 0930-2794
Electronic ISSN: 1432-2218
DOI
https://doi.org/10.1007/s00464-018-6515-3

Other articles of this Issue 7/2019

Surgical Endoscopy 7/2019 Go to the issue