Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2015

Open Access 01-12-2015 | NON-THEMATIC REVIEW

EPLIN: a fundamental actin regulator in cancer metastasis?

Authors: Ross J. Collins, Wen G. Jiang, Rachel Hargest, Malcolm D. Mason, Andrew J. Sanders

Published in: Cancer and Metastasis Reviews | Issue 4/2015

Login to get access

Abstract

Treatment of malignant disease is of paramount importance in modern medicine. In 2012, it was estimated that 162,000 people died from cancer in the UK which illustrates a fundamental problem. Traditional treatments for cancer have various drawbacks, and this creates a considerable need for specific, molecular targets to overcome cancer spread. Epithelial protein lost in neoplasm (EPLIN) is an actin-associated molecule which has been implicated in the development and progression of various cancers including breast, prostate, oesophageal and lung where EPLIN expression is frequently lost as the cancer progresses. EPLIN is important in the regulation of actin dynamics and has multiple associations at epithelial cells junctions. Thus, EPLIN loss in cancer may have significant effects on cancer cell migration and invasion, increasing metastatic potential. Overexpression of EPLIN has proved to be an effective tool for manipulating cancerous traits such as reducing cell growth and cell motility and rendering cells less invasive illustrating the therapeutic potential of EPLIN. Here, we review the current state of knowledge of EPLIN, highlighting EPLIN involvement in regulating cytoskeletal dynamics, signalling pathways and implications in cancer and metastasis.
Literature
1.
go back to reference Stewart, B., & Wild, C. (2014). World Cancer Report 2014. Stewart, B., & Wild, C. (2014). World Cancer Report 2014.
5.
go back to reference Chen, S., Maul, R. S., Kim, H. R., & Chang, D. D. (2000). Characterization of the human EPLIN (Epithelial Protein Lost in Neoplasm) gene reveals distinct promoters for the two EPLIN isoforms. Gene, 248(1–2), 69–76.CrossRefPubMed Chen, S., Maul, R. S., Kim, H. R., & Chang, D. D. (2000). Characterization of the human EPLIN (Epithelial Protein Lost in Neoplasm) gene reveals distinct promoters for the two EPLIN isoforms. Gene, 248(1–2), 69–76.CrossRefPubMed
6.
go back to reference Brown, M. C., Perrotta, J. A., & Turner, C. E. (1996). Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. Journal of Cell Biology, 135(4), 1109–1123.CrossRefPubMed Brown, M. C., Perrotta, J. A., & Turner, C. E. (1996). Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. Journal of Cell Biology, 135(4), 1109–1123.CrossRefPubMed
7.
go back to reference Song, Y., Maul, R. S., Gerbin, C. S., & Chang, D. D. (2002). Inhibition of anchorage-independent growth of transformed NIH3T3 cells by epithelial protein lost in neoplasm (EPLIN) requires localization of EPLIN to actin cytoskeleton. Molecular Biology of the Cell, 13(4), 1408–1416. doi:10.1091/mbc.01-08-0414.PubMedCentralCrossRefPubMed Song, Y., Maul, R. S., Gerbin, C. S., & Chang, D. D. (2002). Inhibition of anchorage-independent growth of transformed NIH3T3 cells by epithelial protein lost in neoplasm (EPLIN) requires localization of EPLIN to actin cytoskeleton. Molecular Biology of the Cell, 13(4), 1408–1416. doi:10.​1091/​mbc.​01-08-0414.PubMedCentralCrossRefPubMed
8.
go back to reference Maul, R. S., Sachi Gerbin, C., & Chang, D. D. (2001). Characterization of mouse epithelial protein lost in neoplasm (EPLIN) and comparison of mammalian and zebrafish EPLIN. Gene, 262(1–2), 155–160.CrossRefPubMed Maul, R. S., Sachi Gerbin, C., & Chang, D. D. (2001). Characterization of mouse epithelial protein lost in neoplasm (EPLIN) and comparison of mammalian and zebrafish EPLIN. Gene, 262(1–2), 155–160.CrossRefPubMed
9.
11.
go back to reference Liu, Y., Sanders, A. J., Zhang, L., & Jiang, W. G. (2012). EPLIN-alpha expression in human oesophageal cancer and its impact on cellular aggressiveness and clinical outcome. Anticancer Research, 32(4), 1283–1289.PubMed Liu, Y., Sanders, A. J., Zhang, L., & Jiang, W. G. (2012). EPLIN-alpha expression in human oesophageal cancer and its impact on cellular aggressiveness and clinical outcome. Anticancer Research, 32(4), 1283–1289.PubMed
13.
go back to reference Sanders, A. J., Ye, L., Mason, M. D., & Jiang, W. G. (2010). The impact of EPLINalpha (Epithelial protein lost in neoplasm) on endothelial cells, angiogenesis and tumorigenesis. Angiogenesis, 13(4), 317–326. doi:10.1007/s10456-010-9188-7.CrossRefPubMed Sanders, A. J., Ye, L., Mason, M. D., & Jiang, W. G. (2010). The impact of EPLINalpha (Epithelial protein lost in neoplasm) on endothelial cells, angiogenesis and tumorigenesis. Angiogenesis, 13(4), 317–326. doi:10.​1007/​s10456-010-9188-7.CrossRefPubMed
14.
go back to reference Liu, Y., Sanders, A. J., Zhang, L., & Jiang, W. G. (2012). Expression profile of Epithelial Protein Lost in Neoplasm-Alpha (EPLIN-α) in human pulmonary cancer and its impact on SKMES-1 cells in vitro. Journal of Cancer Therapy, 3, 452–459. doi:10.4236/jct.2012.324058.CrossRef Liu, Y., Sanders, A. J., Zhang, L., & Jiang, W. G. (2012). Expression profile of Epithelial Protein Lost in Neoplasm-Alpha (EPLIN-α) in human pulmonary cancer and its impact on SKMES-1 cells in vitro. Journal of Cancer Therapy, 3, 452–459. doi:10.​4236/​jct.​2012.​324058.CrossRef
16.
go back to reference Tsurumi, H., Harita, Y., Kurihara, H., Kosako, H., Hayashi, K., Matsunaga, A., et al. (2014). Epithelial protein lost in neoplasm modulates platelet-derived growth factor-mediated adhesion and motility of mesangial cells. Kidney International, 86(3), 548–557. doi:10.1038/ki.2014.85.CrossRefPubMed Tsurumi, H., Harita, Y., Kurihara, H., Kosako, H., Hayashi, K., Matsunaga, A., et al. (2014). Epithelial protein lost in neoplasm modulates platelet-derived growth factor-mediated adhesion and motility of mesangial cells. Kidney International, 86(3), 548–557. doi:10.​1038/​ki.​2014.​85.CrossRefPubMed
18.
go back to reference Smith, T. C., Fang, Z., & Luna, E. J. (2010). Novel interactors and a role for supervillin in early cytokinesis. Cytoskeleton (Hoboken), 67(6), 346–364. doi:10.1002/cm.20449. Smith, T. C., Fang, Z., & Luna, E. J. (2010). Novel interactors and a role for supervillin in early cytokinesis. Cytoskeleton (Hoboken), 67(6), 346–364. doi:10.​1002/​cm.​20449.
19.
go back to reference Karakose, E., Geiger, T., Flynn, K., Lorenz-Baath, K., Zent, R., Mann, M., et al. (2015). The focal adhesion protein PINCH-1 associates with EPLIN at integrin adhesion sites. Journal of Cell Science, 128(5), 1023–1033. doi:10.1242/jcs.162545.CrossRefPubMed Karakose, E., Geiger, T., Flynn, K., Lorenz-Baath, K., Zent, R., Mann, M., et al. (2015). The focal adhesion protein PINCH-1 associates with EPLIN at integrin adhesion sites. Journal of Cell Science, 128(5), 1023–1033. doi:10.​1242/​jcs.​162545.CrossRefPubMed
20.
go back to reference Han, M. Y., Kosako, H., Watanabe, T., & Hattori, S. (2007). Extracellular signal-regulated kinase/mitogen-activated protein kinase regulates actin organization and cell motility by phosphorylating the actin cross-linking protein EPLIN. Molecular and Cellular Biology, 27(23), 8190–8204. doi:10.1128/mcb.00661-07.PubMedCentralCrossRefPubMed Han, M. Y., Kosako, H., Watanabe, T., & Hattori, S. (2007). Extracellular signal-regulated kinase/mitogen-activated protein kinase regulates actin organization and cell motility by phosphorylating the actin cross-linking protein EPLIN. Molecular and Cellular Biology, 27(23), 8190–8204. doi:10.​1128/​mcb.​00661-07.PubMedCentralCrossRefPubMed
21.
go back to reference Steder, M., Alla, V., Meier, C., Spitschak, A., Pahnke, J., Furst, K., et al. (2013). DNp73 exerts function in metastasis initiation by disconnecting the inhibitory role of EPLIN on IGF1R-AKT/STAT3 signaling. Cancer Cell, 24(4), 512–527. doi:10.1016/j.ccr.2013.08.023.CrossRefPubMed Steder, M., Alla, V., Meier, C., Spitschak, A., Pahnke, J., Furst, K., et al. (2013). DNp73 exerts function in metastasis initiation by disconnecting the inhibitory role of EPLIN on IGF1R-AKT/STAT3 signaling. Cancer Cell, 24(4), 512–527. doi:10.​1016/​j.​ccr.​2013.​08.​023.CrossRefPubMed
22.
go back to reference Seong, B. K., Lau, J., Adderley, T., Kee, L., Chaukos, D., Pienkowska, M., et al. (2014). SATB2 enhances migration and invasion in osteosarcoma by regulating genes involved in cytoskeletal organization. Oncogene. doi:10.1038/onc.2014.289.PubMedCentral Seong, B. K., Lau, J., Adderley, T., Kee, L., Chaukos, D., Pienkowska, M., et al. (2014). SATB2 enhances migration and invasion in osteosarcoma by regulating genes involved in cytoskeletal organization. Oncogene. doi:10.​1038/​onc.​2014.​289.PubMedCentral
23.
go back to reference Ohoka, A., Kajita, M., Ikenouchi, J., Yako, Y., Kitamoto, S., Kon, S., et al. (2015). EPLIN is a crucial regulator for extrusion of RasV12-transformed cells. Journal of Cell Science, 128(4), 781–789. doi:10.1242/jcs.163113.CrossRefPubMed Ohoka, A., Kajita, M., Ikenouchi, J., Yako, Y., Kitamoto, S., Kon, S., et al. (2015). EPLIN is a crucial regulator for extrusion of RasV12-transformed cells. Journal of Cell Science, 128(4), 781–789. doi:10.​1242/​jcs.​163113.CrossRefPubMed
27.
go back to reference Ratheesh, A., & Yap, A. S. (2012). A bigger picture: classical cadherins and the dynamic actin cytoskeleton. Nature Reviews Molecular Cell Biology, 13(10), 673–679. doi:10.1038/nrm3431.CrossRefPubMed Ratheesh, A., & Yap, A. S. (2012). A bigger picture: classical cadherins and the dynamic actin cytoskeleton. Nature Reviews Molecular Cell Biology, 13(10), 673–679. doi:10.​1038/​nrm3431.CrossRefPubMed
36.
go back to reference Geiger, B., Tokuyasu, K. T., Dutton, A. H., & Singer, S. J. (1980). Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proceedings of the National Academy of Sciences of the United States of America, 77(7), 4127–4131.PubMedCentralCrossRefPubMed Geiger, B., Tokuyasu, K. T., Dutton, A. H., & Singer, S. J. (1980). Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proceedings of the National Academy of Sciences of the United States of America, 77(7), 4127–4131.PubMedCentralCrossRefPubMed
37.
go back to reference Sawyer, J. K., Harris, N. J., Slep, K. C., Gaul, U., & Peifer, M. (2009). The Drosophila afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction. Journal of Cell Biology, 186(1), 57–73. doi:10.1083/jcb.200904001.PubMedCentralCrossRefPubMed Sawyer, J. K., Harris, N. J., Slep, K. C., Gaul, U., & Peifer, M. (2009). The Drosophila afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction. Journal of Cell Biology, 186(1), 57–73. doi:10.​1083/​jcb.​200904001.PubMedCentralCrossRefPubMed
38.
go back to reference Chervin-Petinot, A., Courcon, M., Almagro, S., Nicolas, A., Grichine, A., Grunwald, D., et al. (2012). Epithelial protein lost in neoplasm (EPLIN) interacts with alpha-catenin and actin filaments in endothelial cells and stabilizes vascular capillary network in vitro. Journal of Biological Chemistry, 287(10), 7556–7572. doi:10.1074/jbc.M111.328682.PubMedCentralCrossRefPubMed Chervin-Petinot, A., Courcon, M., Almagro, S., Nicolas, A., Grichine, A., Grunwald, D., et al. (2012). Epithelial protein lost in neoplasm (EPLIN) interacts with alpha-catenin and actin filaments in endothelial cells and stabilizes vascular capillary network in vitro. Journal of Biological Chemistry, 287(10), 7556–7572. doi:10.​1074/​jbc.​M111.​328682.PubMedCentralCrossRefPubMed
41.
go back to reference Chircop, M., Oakes, V., Graham, M. E., Ma, M. P., Smith, C. M., Robinson, P. J., et al. (2009). The actin-binding and bundling protein, EPLIN, is required for cytokinesis. Cell Cycle, 8(5), 757–764.CrossRefPubMed Chircop, M., Oakes, V., Graham, M. E., Ma, M. P., Smith, C. M., Robinson, P. J., et al. (2009). The actin-binding and bundling protein, EPLIN, is required for cytokinesis. Cell Cycle, 8(5), 757–764.CrossRefPubMed
43.
go back to reference Pearson, L. L., Castle, B. E., & Kehry, M. R. (2001). CD40-mediated signaling in monocytic cells: up-regulation of tumor necrosis factor receptor-associated factor mRNAs and activation of mitogen-activated protein kinase signaling pathways. International Immunology, 13(3), 273–283.CrossRefPubMed Pearson, L. L., Castle, B. E., & Kehry, M. R. (2001). CD40-mediated signaling in monocytic cells: up-regulation of tumor necrosis factor receptor-associated factor mRNAs and activation of mitogen-activated protein kinase signaling pathways. International Immunology, 13(3), 273–283.CrossRefPubMed
44.
go back to reference Zhang, S., Wang, X., Iqbal, S., Wang, Y., Osunkoya, A. O., Chen, Z., et al. (2013). Epidermal growth factor promotes protein degradation of epithelial protein lost in neoplasm (EPLIN), a putative metastasis suppressor, during epithelial-mesenchymal transition. Journal of Biological Chemistry, 288(3), 1469–1479. doi:10.1074/jbc.M112.438341.PubMedCentralCrossRefPubMed Zhang, S., Wang, X., Iqbal, S., Wang, Y., Osunkoya, A. O., Chen, Z., et al. (2013). Epidermal growth factor promotes protein degradation of epithelial protein lost in neoplasm (EPLIN), a putative metastasis suppressor, during epithelial-mesenchymal transition. Journal of Biological Chemistry, 288(3), 1469–1479. doi:10.​1074/​jbc.​M112.​438341.PubMedCentralCrossRefPubMed
47.
go back to reference Zhang, S., Wang, X., Osunkoya, A. O., Iqbal, S., Wang, Y., Chen, Z., et al. (2011). EPLIN downregulation promotes epithelial-mesenchymal transition in prostate cancer cells and correlates with clinical lymph node metastasis. Oncogene, 30(50), 4941–4952. doi:10.1038/onc.2011.199.PubMedCentralCrossRefPubMed Zhang, S., Wang, X., Osunkoya, A. O., Iqbal, S., Wang, Y., Chen, Z., et al. (2011). EPLIN downregulation promotes epithelial-mesenchymal transition in prostate cancer cells and correlates with clinical lymph node metastasis. Oncogene, 30(50), 4941–4952. doi:10.​1038/​onc.​2011.​199.PubMedCentralCrossRefPubMed
Metadata
Title
EPLIN: a fundamental actin regulator in cancer metastasis?
Authors
Ross J. Collins
Wen G. Jiang
Rachel Hargest
Malcolm D. Mason
Andrew J. Sanders
Publication date
01-12-2015
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2015
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-015-9595-8

Other articles of this Issue 4/2015

Cancer and Metastasis Reviews 4/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine