Skip to main content
Top
Published in: Molecular Cancer 1/2010

Open Access 01-12-2010 | Short communication

Epithelial Protein Lost in Neoplasm α (Eplin-α) is transcriptionally regulated by G-actin and MAL/MRTF coactivators

Authors: Laura Leitner, Dmitry Shaposhnikov, Arnaud Descot, Reinhard Hoffmann, Guido Posern

Published in: Molecular Cancer | Issue 1/2010

Login to get access

Abstract

Epithelial Protein Lost in Neoplasm α is a novel cytoskeleton-associated tumor suppressor whose expression inversely correlates with cell growth, motility, invasion and cancer mortality. Here we show that Eplin-α transcription is regulated by actin-MAL-SRF signalling. Upon signal induction, the coactivator MAL/MRTF is released from a repressive complex with monomeric actin, binds the transcription factor SRF and activates target gene expression. In a transcriptome analysis with a combination of actin binding drugs which specifically and differentially interfere with the actin-MAL complex (Descot et al., 2009), we identified Eplin to be primarily controlled by monomeric actin. Further analysis revealed that induction of the Eplin-α mRNA and its promoter was sensitive to drugs and mutant actins which stabilise the repressive actin-MAL complex. In contrast, the Eplin-β isoform remained unaffected. Knockdown of MRTFs or dominant negative MAL which inhibits SRF-mediated transcription impaired Eplin-α expression. Conversely, constitutively active mutant actins and MAL induced Eplin-α. MAL and SRF were bound to a consensus SRF binding site of the Eplin-α promoter; the recruitment of MAL to this region was enhanced severalfold upon induction. The tumor suppressor Eplin-α is thus a novel cytoskeletal target gene transcriptionally regulated by the actin-MAL-SRF pathway, which supports a role in cancer biology.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jiang WG, Martin TA, Lewis-Russell JM, Douglas-Jones A, Ye L, Mansel RE: Eplin-alpha expression in human breast cancer, the impact on cellular migration and clinical outcome. Mol Cancer. 2008, 7: 71- 10.1186/1476-4598-7-71PubMedCentralCrossRefPubMed Jiang WG, Martin TA, Lewis-Russell JM, Douglas-Jones A, Ye L, Mansel RE: Eplin-alpha expression in human breast cancer, the impact on cellular migration and clinical outcome. Mol Cancer. 2008, 7: 71- 10.1186/1476-4598-7-71PubMedCentralCrossRefPubMed
2.
go back to reference Maul RS, Chang DD: EPLIN, epithelial protein lost in neoplasm. Oncogene. 1999, 18 (54): 7838-7841. 10.1038/sj.onc.1203206CrossRefPubMed Maul RS, Chang DD: EPLIN, epithelial protein lost in neoplasm. Oncogene. 1999, 18 (54): 7838-7841. 10.1038/sj.onc.1203206CrossRefPubMed
3.
go back to reference Maul RS, Song Y, Amann KJ, Gerbin SC, Pollard TD, Chang DD: EPLIN regulates actin dynamics by cross-linking and stabilizing filaments. J Cell Biol. 2003, 160 (3): 399-407. 10.1083/jcb.200212057PubMedCentralCrossRefPubMed Maul RS, Song Y, Amann KJ, Gerbin SC, Pollard TD, Chang DD: EPLIN regulates actin dynamics by cross-linking and stabilizing filaments. J Cell Biol. 2003, 160 (3): 399-407. 10.1083/jcb.200212057PubMedCentralCrossRefPubMed
4.
go back to reference Song Y, Maul RS, Gerbin CS, Chang DD: Inhibition of anchorage-independent growth of transformed NIH3T3 cells by epithelial protein lost in neoplasm (EPLIN) requires localization of EPLIN to actin cytoskeleton. Mol Biol Cell. 2002, 13 (4): 1408-1416. 10.1091/mbc.01-08-0414PubMedCentralCrossRefPubMed Song Y, Maul RS, Gerbin CS, Chang DD: Inhibition of anchorage-independent growth of transformed NIH3T3 cells by epithelial protein lost in neoplasm (EPLIN) requires localization of EPLIN to actin cytoskeleton. Mol Biol Cell. 2002, 13 (4): 1408-1416. 10.1091/mbc.01-08-0414PubMedCentralCrossRefPubMed
5.
go back to reference Han MY, Kosako H, Watanabe T, Hattori S: Extracellular signal-regulated kinase/mitogen-activated protein kinase regulates actin organization and cell motility by phosphorylating the actin cross-linking protein EPLIN. Mol Cell Biol. 2007, 27 (23): 8190-8204. 10.1128/MCB.00661-07PubMedCentralCrossRefPubMed Han MY, Kosako H, Watanabe T, Hattori S: Extracellular signal-regulated kinase/mitogen-activated protein kinase regulates actin organization and cell motility by phosphorylating the actin cross-linking protein EPLIN. Mol Cell Biol. 2007, 27 (23): 8190-8204. 10.1128/MCB.00661-07PubMedCentralCrossRefPubMed
6.
go back to reference Abe K, Takeichi M: EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc Natl Acad Sci USA. 2008, 105 (1): 13-19. 10.1073/pnas.0710504105PubMedCentralCrossRefPubMed Abe K, Takeichi M: EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc Natl Acad Sci USA. 2008, 105 (1): 13-19. 10.1073/pnas.0710504105PubMedCentralCrossRefPubMed
7.
go back to reference Chen S, Maul RS, Kim HR, Chang DD: Characterization of the human EPLIN (Epithelial Protein Lost in Neoplasm) gene reveals distinct promoters for the two EPLIN isoforms. Gene. 2000, 248 (1-2): 69-76. 10.1016/S0378-1119(00)00144-XCrossRefPubMed Chen S, Maul RS, Kim HR, Chang DD: Characterization of the human EPLIN (Epithelial Protein Lost in Neoplasm) gene reveals distinct promoters for the two EPLIN isoforms. Gene. 2000, 248 (1-2): 69-76. 10.1016/S0378-1119(00)00144-XCrossRefPubMed
8.
go back to reference Miralles F, Posern G, Zaromytidou AI, Treisman R: Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell. 2003, 113 (3): 329-342. 10.1016/S0092-8674(03)00278-2CrossRefPubMed Miralles F, Posern G, Zaromytidou AI, Treisman R: Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell. 2003, 113 (3): 329-342. 10.1016/S0092-8674(03)00278-2CrossRefPubMed
9.
go back to reference Posern G, Treisman R: Actin' together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol. 2006, 16 (11): 588-596. 10.1016/j.tcb.2006.09.008CrossRefPubMed Posern G, Treisman R: Actin' together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol. 2006, 16 (11): 588-596. 10.1016/j.tcb.2006.09.008CrossRefPubMed
10.
go back to reference Pipes GC, Creemers EE, Olson EN: The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev. 2006, 20 (12): 1545-1556. 10.1101/gad.1428006CrossRefPubMed Pipes GC, Creemers EE, Olson EN: The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev. 2006, 20 (12): 1545-1556. 10.1101/gad.1428006CrossRefPubMed
11.
go back to reference Cen B, Selvaraj A, Burgess RC, Hitzler JK, Ma Z, Morris SW, Prywes R: Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes. Mol Cell Biol. 2003, 23 (18): 6597-6608. 10.1128/MCB.23.18.6597-6608.2003PubMedCentralCrossRefPubMed Cen B, Selvaraj A, Burgess RC, Hitzler JK, Ma Z, Morris SW, Prywes R: Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes. Mol Cell Biol. 2003, 23 (18): 6597-6608. 10.1128/MCB.23.18.6597-6608.2003PubMedCentralCrossRefPubMed
12.
go back to reference Wang DZ, Li S, Hockemeyer D, Sutherland L, Wang Z, Schratt G, Richardson JA, Nordheim A, Olson EN: Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc Natl Acad Sci USA. 2002, 99 (23): 14855-14860. 10.1073/pnas.222561499PubMedCentralCrossRefPubMed Wang DZ, Li S, Hockemeyer D, Sutherland L, Wang Z, Schratt G, Richardson JA, Nordheim A, Olson EN: Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc Natl Acad Sci USA. 2002, 99 (23): 14855-14860. 10.1073/pnas.222561499PubMedCentralCrossRefPubMed
13.
go back to reference Zaromytidou AI, Miralles F, Treisman R: MAL and ternary complex factor use different mechanisms to contact a common surface on the serum response factor DNA-binding domain. Mol Cell Biol. 2006, 26 (11): 4134-4148. 10.1128/MCB.01902-05PubMedCentralCrossRefPubMed Zaromytidou AI, Miralles F, Treisman R: MAL and ternary complex factor use different mechanisms to contact a common surface on the serum response factor DNA-binding domain. Mol Cell Biol. 2006, 26 (11): 4134-4148. 10.1128/MCB.01902-05PubMedCentralCrossRefPubMed
14.
go back to reference Gineitis D, Treisman R: Differential usage of signal transduction pathways defines two types of serum response factor target gene. J Biol Chem. 2001, 276 (27): 24531-24539. 10.1074/jbc.M102678200CrossRefPubMed Gineitis D, Treisman R: Differential usage of signal transduction pathways defines two types of serum response factor target gene. J Biol Chem. 2001, 276 (27): 24531-24539. 10.1074/jbc.M102678200CrossRefPubMed
15.
go back to reference Vartiainen MK, Guettler S, Larijani B, Treisman R: Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science. 2007, 316 (5832): 1749-1752. 10.1126/science.1141084CrossRefPubMed Vartiainen MK, Guettler S, Larijani B, Treisman R: Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science. 2007, 316 (5832): 1749-1752. 10.1126/science.1141084CrossRefPubMed
16.
go back to reference Posern G, Miralles F, Guettler S, Treisman R: Mutant actins that stabilise F-actin use distinct mechanisms to activate the SRF coactivator MAL. Embo J. 2004, 23 (20): 3973-3983. 10.1038/sj.emboj.7600404PubMedCentralCrossRefPubMed Posern G, Miralles F, Guettler S, Treisman R: Mutant actins that stabilise F-actin use distinct mechanisms to activate the SRF coactivator MAL. Embo J. 2004, 23 (20): 3973-3983. 10.1038/sj.emboj.7600404PubMedCentralCrossRefPubMed
17.
go back to reference Posern G, Sotiropoulos A, Treisman R: Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor. Mol Biol Cell. 2002, 13 (12): 4167-4178. 10.1091/mbc.02-05-0068PubMedCentralCrossRefPubMed Posern G, Sotiropoulos A, Treisman R: Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor. Mol Biol Cell. 2002, 13 (12): 4167-4178. 10.1091/mbc.02-05-0068PubMedCentralCrossRefPubMed
18.
go back to reference Mouilleron S, Guettler S, Langer CA, Treisman R, McDonald NQ: Molecular basis for G-actin binding to RPEL motifs from the serum response factor coactivator MAL. Embo J. 2008, 27 (23): 3198-3208. 10.1038/emboj.2008.235PubMedCentralCrossRefPubMed Mouilleron S, Guettler S, Langer CA, Treisman R, McDonald NQ: Molecular basis for G-actin binding to RPEL motifs from the serum response factor coactivator MAL. Embo J. 2008, 27 (23): 3198-3208. 10.1038/emboj.2008.235PubMedCentralCrossRefPubMed
19.
go back to reference Descot A, Hoffmann R, Shaposhnikov D, Reschke M, Ullrich A, Posern G: Negative regulation of the EGFR-MAPK cascade by actin-MAL-mediated Mig6/Errfi-1 induction. Mol Cell. 2009, 35 (3): 291-304. 10.1016/j.molcel.2009.07.015CrossRefPubMed Descot A, Hoffmann R, Shaposhnikov D, Reschke M, Ullrich A, Posern G: Negative regulation of the EGFR-MAPK cascade by actin-MAL-mediated Mig6/Errfi-1 induction. Mol Cell. 2009, 35 (3): 291-304. 10.1016/j.molcel.2009.07.015CrossRefPubMed
20.
go back to reference Busche S, Descot A, Julien S, Genth H, Posern G: Epithelial cell-cell contacts regulate SRF-mediated transcription via Rac-actin-MAL signalling. J Cell Sci. 2008, 121 (Pt 7): 1025-1035. 10.1242/jcs.014456CrossRefPubMed Busche S, Descot A, Julien S, Genth H, Posern G: Epithelial cell-cell contacts regulate SRF-mediated transcription via Rac-actin-MAL signalling. J Cell Sci. 2008, 121 (Pt 7): 1025-1035. 10.1242/jcs.014456CrossRefPubMed
21.
go back to reference Wang Z, Wang DZ, Hockemeyer D, McAnally J, Nordheim A, Olson EN: Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature. 2004, 428 (6979): 185-189. 10.1038/nature02382CrossRefPubMed Wang Z, Wang DZ, Hockemeyer D, McAnally J, Nordheim A, Olson EN: Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature. 2004, 428 (6979): 185-189. 10.1038/nature02382CrossRefPubMed
22.
go back to reference Knoll B, Kretz O, Fiedler C, Alberti S, Schutz G, Frotscher M, Nordheim A: Serum response factor controls neuronal circuit assembly in the hippocampus. Nat Neurosci. 2006, 9 (2): 195-204. 10.1038/nn1627CrossRefPubMed Knoll B, Kretz O, Fiedler C, Alberti S, Schutz G, Frotscher M, Nordheim A: Serum response factor controls neuronal circuit assembly in the hippocampus. Nat Neurosci. 2006, 9 (2): 195-204. 10.1038/nn1627CrossRefPubMed
23.
go back to reference Medjkane S, Perez-Sanchez C, Gaggioli C, Sahai E, Treisman R: Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat Cell Biol. 2009, 11 (3): 257-268. 10.1038/ncb1833CrossRefPubMed Medjkane S, Perez-Sanchez C, Gaggioli C, Sahai E, Treisman R: Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat Cell Biol. 2009, 11 (3): 257-268. 10.1038/ncb1833CrossRefPubMed
24.
go back to reference Schratt G, Philippar U, Berger J, Schwarz H, Heidenreich O, Nordheim A: Serum response factor is crucial for actin cytoskeletal organization and focal adhesion assembly in embryonic stem cells. J Cell Biol. 2002, 156 (4): 737-750. 10.1083/jcb.200106008PubMedCentralCrossRefPubMed Schratt G, Philippar U, Berger J, Schwarz H, Heidenreich O, Nordheim A: Serum response factor is crucial for actin cytoskeletal organization and focal adhesion assembly in embryonic stem cells. J Cell Biol. 2002, 156 (4): 737-750. 10.1083/jcb.200106008PubMedCentralCrossRefPubMed
25.
go back to reference Milyavsky M, Shats I, Cholostoy A, Brosh R, Buganim Y, Weisz L, Kogan I, Cohen M, Shatz M, Madar S: Inactivation of myocardin and p16 during malignant transformation contributes to a differentiation defect. Cancer Cell. 2007, 11 (2): 133-146. 10.1016/j.ccr.2006.11.022CrossRefPubMed Milyavsky M, Shats I, Cholostoy A, Brosh R, Buganim Y, Weisz L, Kogan I, Cohen M, Shatz M, Madar S: Inactivation of myocardin and p16 during malignant transformation contributes to a differentiation defect. Cancer Cell. 2007, 11 (2): 133-146. 10.1016/j.ccr.2006.11.022CrossRefPubMed
Metadata
Title
Epithelial Protein Lost in Neoplasm α (Eplin-α) is transcriptionally regulated by G-actin and MAL/MRTF coactivators
Authors
Laura Leitner
Dmitry Shaposhnikov
Arnaud Descot
Reinhard Hoffmann
Guido Posern
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2010
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-60

Other articles of this Issue 1/2010

Molecular Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine