Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2022

Open Access 01-12-2022 | Epilepsy | Research

Inflammatory monocytes and microglia play independent roles in inflammatory ictogenesis

Authors: Charles L. Howe, Reghann G. LaFrance-Corey, Brittany L. Overlee, Renee K. Johnson, Benjamin D. S. Clarkson, Emma N. Goddery

Published in: Journal of Neuroinflammation | Issue 1/2022

Login to get access

Abstract

Background

The pathogenic contribution of neuroinflammation to ictogenesis and epilepsy may provide a therapeutic target for reduction of seizure burden in patients that are currently underserved by traditional anti-seizure medications. The Theiler's murine encephalomyelitis virus (TMEV) model has provided important insights into the role of inflammation in ictogenesis, but questions remain regarding the relative contribution of microglia and inflammatory monocytes in this model.

Methods

Female C57BL/6 mice were inoculated by intracranial injection of 2 × 105, 5 × 104, 1.25 × 104, or 3.125 × 103 plaque-forming units (PFU) of the Daniel’s strain of TMEV at 4–6 weeks of age. Infiltration of inflammatory monocytes, microglial activation, and cytokine production were measured at 24 h post-infection (hpi). Viral load, hippocampal injury, cognitive performance, and seizure burden were assessed at several timepoints.

Results

The intensity of inflammatory infiltration and the extent of hippocampal injury induced during TMEV encephalitis scaled with the amount of infectious virus in the initial inoculum. Cognitive performance was preserved in mice inoculated with 1.25 × 104 PFU TMEV relative to 2 × 105 PFU TMEV, but peak viral load at 72 hpi was equivalent between the inocula. CCL2 production in the brain was attenuated by 90% and TNFα and IL6 production was absent in mice inoculated with 1.25 × 104 PFU TMEV. Acute infiltration of inflammatory monocytes was attenuated by more than 80% in mice inoculated with 1.25 × 104 PFU TMEV relative to 2 × 105 PFU TMEV but microglial activation was equivalent between groups. Seizure burden was attenuated and the threshold to kainic acid-induced seizures was higher in mice inoculated with 1.25 × 104 PFU TMEV but low-level behavioral seizures persisted and the EEG exhibited reduced but detectable abnormalities.

Conclusions

The size of the inflammatory monocyte response induced by TMEV scales with the amount of infectious virus in the initial inoculum, despite the development of equivalent peak infectious viral load. In contrast, the microglial response does not scale with the inoculum, as microglial hyper-ramification and increased Iba-1 expression were evident in mice inoculated with either 1.25 × 104 or 2 × 105 PFU TMEV. Inoculation conditions that drive inflammatory monocyte infiltration resulted in robust behavioral seizures and EEG abnormalities, but the low inoculum condition, associated with only microglial activation, drove a more subtle seizure and EEG phenotype.
Appendix
Available only for authorised users
Literature
1.
go back to reference Broekaart DWM, Anink JJ, Baayen JC, Idema S, de Vries HE, Aronica E, Gorter JA, van Vliet EA. Activation of the innate immune system is evident throughout epileptogenesis and is associated with blood-brain barrier dysfunction and seizure progression. Epilepsia. 2018;59:1931–44.PubMedCrossRef Broekaart DWM, Anink JJ, Baayen JC, Idema S, de Vries HE, Aronica E, Gorter JA, van Vliet EA. Activation of the innate immune system is evident throughout epileptogenesis and is associated with blood-brain barrier dysfunction and seizure progression. Epilepsia. 2018;59:1931–44.PubMedCrossRef
3.
go back to reference Ravizza T, Vezzani A. Pharmacological targeting of brain inflammation in epilepsy: therapeutic perspectives from experimental and clinical studies. Epilepsia Open. 2018;3:133–42.PubMedPubMedCentralCrossRef Ravizza T, Vezzani A. Pharmacological targeting of brain inflammation in epilepsy: therapeutic perspectives from experimental and clinical studies. Epilepsia Open. 2018;3:133–42.PubMedPubMedCentralCrossRef
6.
go back to reference Guilliams M, Mildner A, Yona S. Developmental and functional heterogeneity of monocytes. Immunity. 2018;49:595–613.PubMedCrossRef Guilliams M, Mildner A, Yona S. Developmental and functional heterogeneity of monocytes. Immunity. 2018;49:595–613.PubMedCrossRef
7.
go back to reference Stegelmeier AA, van Vloten JP, Mould RC, Klafuric EM, Minott JA, Wootton SK, Bridle BW, Karimi K. Myeloid cells during viral infections and inflammation. Viruses. 2019;11. Stegelmeier AA, van Vloten JP, Mould RC, Klafuric EM, Minott JA, Wootton SK, Bridle BW, Karimi K. Myeloid cells during viral infections and inflammation. Viruses. 2019;11.
8.
9.
go back to reference Aronica E, Bauer S, Bozzi Y, Caleo M, Dingledine R, Gorter JA, Henshall DC, Kaufer D, Koh S, Loscher W, et al. Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia. 2017;58(Suppl 3):27–38.PubMedPubMedCentralCrossRef Aronica E, Bauer S, Bozzi Y, Caleo M, Dingledine R, Gorter JA, Henshall DC, Kaufer D, Koh S, Loscher W, et al. Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia. 2017;58(Suppl 3):27–38.PubMedPubMedCentralCrossRef
10.
go back to reference Varvel NH, Neher JJ, Bosch A, Wang W, Ransohoff RM, Miller RJ, Dingledine R. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc Natl Acad Sci USA. 2016;113:E5665-5674.PubMedPubMedCentralCrossRef Varvel NH, Neher JJ, Bosch A, Wang W, Ransohoff RM, Miller RJ, Dingledine R. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc Natl Acad Sci USA. 2016;113:E5665-5674.PubMedPubMedCentralCrossRef
11.
go back to reference Bozzi Y, Caleo M. Epilepsy, seizures, and inflammation: role of the C-C Motif ligand 2 chemokine. DNA Cell Biol. 2016;35:257–60.PubMedCrossRef Bozzi Y, Caleo M. Epilepsy, seizures, and inflammation: role of the C-C Motif ligand 2 chemokine. DNA Cell Biol. 2016;35:257–60.PubMedCrossRef
12.
go back to reference Ashhurst TM, van Vreden C, Niewold P, King NJ. The plasticity of inflammatory monocyte responses to the inflamed central nervous system. Cell Immunol. 2014;291:49–57.PubMedPubMedCentralCrossRef Ashhurst TM, van Vreden C, Niewold P, King NJ. The plasticity of inflammatory monocyte responses to the inflamed central nervous system. Cell Immunol. 2014;291:49–57.PubMedPubMedCentralCrossRef
13.
14.
16.
go back to reference Venkatesan A, Michael BD, Probasco JC, Geocadin RG, Solomon T. Acute encephalitis in immunocompetent adults. Lancet. 2019;393:702–16.PubMedCrossRef Venkatesan A, Michael BD, Probasco JC, Geocadin RG, Solomon T. Acute encephalitis in immunocompetent adults. Lancet. 2019;393:702–16.PubMedCrossRef
17.
go back to reference DePaula-Silva AB, Hanak TJ, Libbey JE, Fujinami RS. Theiler’s murine encephalomyelitis virus infection of SJL/J and C57BL/6J mice: models for multiple sclerosis and epilepsy. J Neuroimmunol. 2017;308:30–42.PubMedPubMedCentralCrossRef DePaula-Silva AB, Hanak TJ, Libbey JE, Fujinami RS. Theiler’s murine encephalomyelitis virus infection of SJL/J and C57BL/6J mice: models for multiple sclerosis and epilepsy. J Neuroimmunol. 2017;308:30–42.PubMedPubMedCentralCrossRef
18.
go back to reference Gerhauser I, Hansmann F, Ciurkiewicz M, Loscher W, Beineke A. Facets of Theiler’s murine encephalomyelitis virus-induced diseases: an update. Int J Mol Sci. 2019;20:448.PubMedCentralCrossRef Gerhauser I, Hansmann F, Ciurkiewicz M, Loscher W, Beineke A. Facets of Theiler’s murine encephalomyelitis virus-induced diseases: an update. Int J Mol Sci. 2019;20:448.PubMedCentralCrossRef
19.
go back to reference Barker-Haliski ML, Loscher W, White HS, Galanopoulou AS. Neuroinflammation in epileptogenesis: insights and translational perspectives from new models of epilepsy. Epilepsia. 2017;58(Suppl 3):39–47.PubMedPubMedCentralCrossRef Barker-Haliski ML, Loscher W, White HS, Galanopoulou AS. Neuroinflammation in epileptogenesis: insights and translational perspectives from new models of epilepsy. Epilepsia. 2017;58(Suppl 3):39–47.PubMedPubMedCentralCrossRef
20.
go back to reference Broer S, Hage E, Kaufer C, Gerhauser I, Anjum M, Li L, Baumgartner W, Schulz TF, Loscher W. Viral mouse models of multiple sclerosis and epilepsy: marked differences in neuropathogenesis following infection with two naturally occurring variants of Theiler’s virus BeAn strain. Neurobiol Dis. 2017;99:121–32.PubMedCrossRef Broer S, Hage E, Kaufer C, Gerhauser I, Anjum M, Li L, Baumgartner W, Schulz TF, Loscher W. Viral mouse models of multiple sclerosis and epilepsy: marked differences in neuropathogenesis following infection with two naturally occurring variants of Theiler’s virus BeAn strain. Neurobiol Dis. 2017;99:121–32.PubMedCrossRef
21.
go back to reference Broer S, Kaufer C, Haist V, Li L, Gerhauser I, Anjum M, Bankstahl M, Baumgartner W, Loscher W. Brain inflammation, neurodegeneration and seizure development following picornavirus infection markedly differ among virus and mouse strains and substrains. Exp Neurol. 2016;279:57–74.PubMedCrossRef Broer S, Kaufer C, Haist V, Li L, Gerhauser I, Anjum M, Bankstahl M, Baumgartner W, Loscher W. Brain inflammation, neurodegeneration and seizure development following picornavirus infection markedly differ among virus and mouse strains and substrains. Exp Neurol. 2016;279:57–74.PubMedCrossRef
22.
go back to reference Howe CL, LaFrance-Corey RG, Goddery EN, Johnson RK, Mirchia K. Neuronal CCL2 expression drives inflammatory monocyte infiltration into the brain during acute virus infection. J Neuroinflammation. 2017;14:238.PubMedPubMedCentralCrossRef Howe CL, LaFrance-Corey RG, Goddery EN, Johnson RK, Mirchia K. Neuronal CCL2 expression drives inflammatory monocyte infiltration into the brain during acute virus infection. J Neuroinflammation. 2017;14:238.PubMedPubMedCentralCrossRef
23.
go back to reference Howe CL, LaFrance-Corey RG, Mirchia K, Sauer BM, McGovern RM, Reid JM, Buenz EJ. Neuroprotection mediated by inhibition of calpain during acute viral encephalitis. Sci Rep. 2016;6:28699.PubMedPubMedCentralCrossRef Howe CL, LaFrance-Corey RG, Mirchia K, Sauer BM, McGovern RM, Reid JM, Buenz EJ. Neuroprotection mediated by inhibition of calpain during acute viral encephalitis. Sci Rep. 2016;6:28699.PubMedPubMedCentralCrossRef
24.
go back to reference Howe CL, Lafrance-Corey RG, Sundsbak RS, Lafrance SJ. Inflammatory monocytes damage the hippocampus during acute picornavirus infection of the brain. J Neuroinflammation. 2012;9:50.PubMedPubMedCentralCrossRef Howe CL, Lafrance-Corey RG, Sundsbak RS, Lafrance SJ. Inflammatory monocytes damage the hippocampus during acute picornavirus infection of the brain. J Neuroinflammation. 2012;9:50.PubMedPubMedCentralCrossRef
25.
go back to reference Howe CL, Lafrance-Corey RG, Sundsbak RS, Sauer BM, Lafrance SJ, Buenz EJ, Schmalstieg WF. Hippocampal protection in mice with an attenuated inflammatory monocyte response to acute CNS picornavirus infection. Sci Rep. 2012;2:545.PubMedPubMedCentralCrossRef Howe CL, Lafrance-Corey RG, Sundsbak RS, Sauer BM, Lafrance SJ, Buenz EJ, Schmalstieg WF. Hippocampal protection in mice with an attenuated inflammatory monocyte response to acute CNS picornavirus infection. Sci Rep. 2012;2:545.PubMedPubMedCentralCrossRef
26.
go back to reference Kaufer C, Chhatbar C, Broer S, Waltl I, Ghita L, Gerhauser I, Kalinke U, Loscher W. Chemokine receptors CCR2 and CX3CR1 regulate viral encephalitis-induced hippocampal damage but not seizures. Proc Natl Acad Sci USA. 2018;115:E8929–38.PubMedPubMedCentralCrossRef Kaufer C, Chhatbar C, Broer S, Waltl I, Ghita L, Gerhauser I, Kalinke U, Loscher W. Chemokine receptors CCR2 and CX3CR1 regulate viral encephalitis-induced hippocampal damage but not seizures. Proc Natl Acad Sci USA. 2018;115:E8929–38.PubMedPubMedCentralCrossRef
27.
go back to reference Libbey JE, Kennett NJ, Wilcox KS, White HS, Fujinami RS. Interleukin-6, produced by resident cells of the central nervous system and infiltrating cells, contributes to the development of seizures following viral infection. J Virol. 2011;85:6913–22.PubMedPubMedCentralCrossRef Libbey JE, Kennett NJ, Wilcox KS, White HS, Fujinami RS. Interleukin-6, produced by resident cells of the central nervous system and infiltrating cells, contributes to the development of seizures following viral infection. J Virol. 2011;85:6913–22.PubMedPubMedCentralCrossRef
28.
go back to reference Waltl I, Kaufer C, Gerhauser I, Chhatbar C, Ghita L, Kalinke U, Loscher W. Microglia have a protective role in viral encephalitis-induced seizure development and hippocampal damage. Brain Behav Immun. 2018;74:186–204.PubMedPubMedCentralCrossRef Waltl I, Kaufer C, Gerhauser I, Chhatbar C, Ghita L, Kalinke U, Loscher W. Microglia have a protective role in viral encephalitis-induced seizure development and hippocampal damage. Brain Behav Immun. 2018;74:186–204.PubMedPubMedCentralCrossRef
29.
go back to reference Patel DC, Wallis G, Dahle EJ, McElroy PB, Thomson KE, Tesi RJ, Szymkowski DE, West PJ, Smeal RM, Patel M, et al: Hippocampal TNFalpha signaling contributes to seizure generation in an infection-induced mouse model of limbic epilepsy. eNeuro. 2017;4. Patel DC, Wallis G, Dahle EJ, McElroy PB, Thomson KE, Tesi RJ, Szymkowski DE, West PJ, Smeal RM, Patel M, et al: Hippocampal TNFalpha signaling contributes to seizure generation in an infection-induced mouse model of limbic epilepsy. eNeuro. 2017;4.
30.
go back to reference Bijalwan M, Young CR, Tingling J, Zhou XJ, Rimmelin AR, Leibowitz JL, Welsh CJ. Characterization of plaque-sized variants of Daniel’s (DA) strain in Theiler’s virus-induced epilepsy. Sci Rep. 2019;9:3444.PubMedPubMedCentralCrossRef Bijalwan M, Young CR, Tingling J, Zhou XJ, Rimmelin AR, Leibowitz JL, Welsh CJ. Characterization of plaque-sized variants of Daniel’s (DA) strain in Theiler’s virus-induced epilepsy. Sci Rep. 2019;9:3444.PubMedPubMedCentralCrossRef
31.
go back to reference Buenz EJ, Rodriguez M, Howe CL. Disrupted spatial memory is a consequence of picornavirus infection. Neurobiol Dis. 2006;24:266–73.PubMedCrossRef Buenz EJ, Rodriguez M, Howe CL. Disrupted spatial memory is a consequence of picornavirus infection. Neurobiol Dis. 2006;24:266–73.PubMedCrossRef
32.
go back to reference Buenz EJ, Sauer BM, Lafrance-Corey RG, Deb C, Denic A, German CL, Howe CL. Apoptosis of hippocampal pyramidal neurons is virus independent in a mouse model of acute neurovirulent picornavirus infection. Am J Pathol. 2009;175:668–84.PubMedPubMedCentralCrossRef Buenz EJ, Sauer BM, Lafrance-Corey RG, Deb C, Denic A, German CL, Howe CL. Apoptosis of hippocampal pyramidal neurons is virus independent in a mouse model of acute neurovirulent picornavirus infection. Am J Pathol. 2009;175:668–84.PubMedPubMedCentralCrossRef
33.
go back to reference Lehrich JR, Arnason BG, Hochberg FH. Demyelinative myelopathy in mice induced by the DA virus. J Neurol Sci. 1976;29:149–60.PubMedCrossRef Lehrich JR, Arnason BG, Hochberg FH. Demyelinative myelopathy in mice induced by the DA virus. J Neurol Sci. 1976;29:149–60.PubMedCrossRef
35.
go back to reference Lafrance-Corey RG, Howe CL. Isolation of brain-infiltrating leukocytes. J Vis Exp. 2011;52:2747. Lafrance-Corey RG, Howe CL. Isolation of brain-infiltrating leukocytes. J Vis Exp. 2011;52:2747.
36.
go back to reference Stark JC, Wallace E, Lim R, Leaw B. Characterization and isolation of mouse primary microglia by density gradient centrifugation. J Vis Exp. 2018. Stark JC, Wallace E, Lim R, Leaw B. Characterization and isolation of mouse primary microglia by density gradient centrifugation. J Vis Exp. 2018.
37.
go back to reference Barnes CA. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol. 1979;93:74–104.PubMedCrossRef Barnes CA. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol. 1979;93:74–104.PubMedCrossRef
38.
go back to reference Rosenfeld CS, Ferguson SA. Barnes maze testing strategies with small and large rodent models. J Vis Exp. 2014;2014:e51194. Rosenfeld CS, Ferguson SA. Barnes maze testing strategies with small and large rodent models. J Vis Exp. 2014;2014:e51194.
39.
40.
go back to reference Illouz T, Madar R, Clague C, Griffioen KJ, Louzoun Y, Okun E. Unbiased classification of spatial strategies in the Barnes maze. Bioinformatics. 2016;32:3314–20.PubMedCrossRef Illouz T, Madar R, Clague C, Griffioen KJ, Louzoun Y, Okun E. Unbiased classification of spatial strategies in the Barnes maze. Bioinformatics. 2016;32:3314–20.PubMedCrossRef
42.
go back to reference Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32:281–94.PubMedCrossRef Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32:281–94.PubMedCrossRef
43.
go back to reference Bergstrom RA, Choi JH, Manduca A, Shin HS, Worrell GA, Howe CL. Automated identification of multiple seizure-related and interictal epileptiform event types in the EEG of mice. Sci Rep. 2013;3:1483.PubMedPubMedCentralCrossRef Bergstrom RA, Choi JH, Manduca A, Shin HS, Worrell GA, Howe CL. Automated identification of multiple seizure-related and interictal epileptiform event types in the EEG of mice. Sci Rep. 2013;3:1483.PubMedPubMedCentralCrossRef
44.
go back to reference Umpierre AD, Bennett IV, Nebeker LD, Newell TG, Tian BB, Thomson KE, White HS, White JA, Wilcox KS. Repeated low-dose kainate administration in C57BL/6J mice produces temporal lobe epilepsy pathology but infrequent spontaneous seizures. Exp Neurol. 2016;279:116–26.PubMedPubMedCentralCrossRef Umpierre AD, Bennett IV, Nebeker LD, Newell TG, Tian BB, Thomson KE, White HS, White JA, Wilcox KS. Repeated low-dose kainate administration in C57BL/6J mice produces temporal lobe epilepsy pathology but infrequent spontaneous seizures. Exp Neurol. 2016;279:116–26.PubMedPubMedCentralCrossRef
45.
go back to reference Curran-Everett D, Benos DJ. Guidelines for reporting statistics in journals published by the American Physiological Society. Am J Physiol Endocrinol Metab. 2004;287:E189-191.PubMedCrossRef Curran-Everett D, Benos DJ. Guidelines for reporting statistics in journals published by the American Physiological Society. Am J Physiol Endocrinol Metab. 2004;287:E189-191.PubMedCrossRef
46.
go back to reference Sakia RM. The Box-Cox transformation technique: a review. J R Stat Soc Ser D (Statist). 1992;41:169–78. Sakia RM. The Box-Cox transformation technique: a review. J R Stat Soc Ser D (Statist). 1992;41:169–78.
48.
go back to reference Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507.CrossRef Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507.CrossRef
49.
go back to reference Goddery EN, Fain CE, Lipovsky CG, Ayasoufi K, Yokanovich LT, Malo CS, Khadka RH, Tritz ZP, Jin F, Hansen MJ, Johnson AJ. Microglia and perivascular macrophages act as antigen presenting cells to promote CD8 T Cell infiltration of the brain. Front Immunol. 2021;12:726421.PubMedPubMedCentralCrossRef Goddery EN, Fain CE, Lipovsky CG, Ayasoufi K, Yokanovich LT, Malo CS, Khadka RH, Tritz ZP, Jin F, Hansen MJ, Johnson AJ. Microglia and perivascular macrophages act as antigen presenting cells to promote CD8 T Cell infiltration of the brain. Front Immunol. 2021;12:726421.PubMedPubMedCentralCrossRef
50.
51.
go back to reference Morrison HW, Filosa JA. A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflammation. 2013;10:4.PubMedPubMedCentralCrossRef Morrison HW, Filosa JA. A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflammation. 2013;10:4.PubMedPubMedCentralCrossRef
52.
go back to reference Saiwai H, Ohkawa Y, Yamada H, Kumamaru H, Harada A, Okano H, Yokomizo T, Iwamoto Y, Okada S. The LTB4-BLT1 axis mediates neutrophil infiltration and secondary injury in experimental spinal cord injury. Am J Pathol. 2010;176:2352–66.PubMedPubMedCentralCrossRef Saiwai H, Ohkawa Y, Yamada H, Kumamaru H, Harada A, Okano H, Yokomizo T, Iwamoto Y, Okada S. The LTB4-BLT1 axis mediates neutrophil infiltration and secondary injury in experimental spinal cord injury. Am J Pathol. 2010;176:2352–66.PubMedPubMedCentralCrossRef
53.
go back to reference Stirling DP, Yong VW. Dynamics of the inflammatory response after murine spinal cord injury revealed by flow cytometry. J Neurosci Res. 2008;86:1944–58.PubMedCrossRef Stirling DP, Yong VW. Dynamics of the inflammatory response after murine spinal cord injury revealed by flow cytometry. J Neurosci Res. 2008;86:1944–58.PubMedCrossRef
54.
go back to reference Sanchez JMS, DePaula-Silva AB, Doty DJ, Truong A, Libbey JE, Fujinami RS. Microglial cell depletion is fatal with low level picornavirus infection of the central nervous system. J Neurovirol. 2019;25:415–21.PubMedPubMedCentralCrossRef Sanchez JMS, DePaula-Silva AB, Doty DJ, Truong A, Libbey JE, Fujinami RS. Microglial cell depletion is fatal with low level picornavirus infection of the central nervous system. J Neurovirol. 2019;25:415–21.PubMedPubMedCentralCrossRef
55.
go back to reference Dias Junior AG, Sampaio NG, Rehwinkel J. A balancing act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol. 2019;27:75–85.PubMedCrossRef Dias Junior AG, Sampaio NG, Rehwinkel J. A balancing act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol. 2019;27:75–85.PubMedCrossRef
56.
go back to reference Freundt EC, Drappier M, Michiels T. Innate immune detection of cardioviruses and viral disruption of interferon signaling. Front Microbiol. 2018;9:2448.PubMedPubMedCentralCrossRef Freundt EC, Drappier M, Michiels T. Innate immune detection of cardioviruses and viral disruption of interferon signaling. Front Microbiol. 2018;9:2448.PubMedPubMedCentralCrossRef
57.
go back to reference Ricour C, Borghese F, Sorgeloos F, Hato SV, van Kuppeveld FJ, Michiels T. Random mutagenesis defines a domain of Theiler’s virus leader protein that is essential for antagonism of nucleocytoplasmic trafficking and cytokine gene expression. J Virol. 2009;83:11223–32.PubMedPubMedCentralCrossRef Ricour C, Borghese F, Sorgeloos F, Hato SV, van Kuppeveld FJ, Michiels T. Random mutagenesis defines a domain of Theiler’s virus leader protein that is essential for antagonism of nucleocytoplasmic trafficking and cytokine gene expression. J Virol. 2009;83:11223–32.PubMedPubMedCentralCrossRef
58.
go back to reference Vezzani A, Fujinami RS, White HS, Preux PM, Blumcke I, Sander JW, Loscher W. Infections, inflammation and epilepsy. Acta Neuropathol. 2016;131:211–34.PubMedCrossRef Vezzani A, Fujinami RS, White HS, Preux PM, Blumcke I, Sander JW, Loscher W. Infections, inflammation and epilepsy. Acta Neuropathol. 2016;131:211–34.PubMedCrossRef
Metadata
Title
Inflammatory monocytes and microglia play independent roles in inflammatory ictogenesis
Authors
Charles L. Howe
Reghann G. LaFrance-Corey
Brittany L. Overlee
Renee K. Johnson
Benjamin D. S. Clarkson
Emma N. Goddery
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2022
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-022-02394-1

Other articles of this Issue 1/2022

Journal of Neuroinflammation 1/2022 Go to the issue