Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2022

01-12-2022 | Parkinson's Disease | Research

The circadian clock protein Rev-erbα provides neuroprotection and attenuates neuroinflammation against Parkinson’s disease via the microglial NLRP3 inflammasome

Authors: Liang Kou, Xiaosa Chi, Yadi Sun, Chao Han, Fang Wan, Junjie Hu, Sijia Yin, Jiawei Wu, Yunna Li, Qiulu Zhou, Wenkai Zou, Nian Xiong, Jinsha Huang, Yun Xia, Tao Wang

Published in: Journal of Neuroinflammation | Issue 1/2022

Login to get access

Abstract

Background

Circadian disturbance is a common nonmotor complaint in Parkinson’s disease (PD). The molecular basis underlying circadian rhythm in PD is poorly understood. Neuroinflammation has been identified as a key contributor to PD pathology. In this study, we explored the potential link between the core clock molecule Rev-erbα and the microglia-mediated NLR family pyrin domain-containing 3 (NLRP3) inflammasome in PD pathogenesis.

Methods

We first examined the diurnal Rev-erbα rhythms and diurnal changes in microglia-mediated inflammatory cytokines expression in the SN of MPTP-induced PD mice. Further, we used BV2 cell to investigate the impacts of Rev-erbα on NLRP3 inflammasome and microglial polarization induced by 1-methyl-4-phenylpyridinium (MPP+) and αsyn pre-formed fibril. The role of Rev-erbα in regulating microglial activation via NF-κB and NLRP3 inflammasome pathway was then explored. Effects of SR9009 against NLRP3 inflammasome activation, microgliosis and nigrostriatal dopaminergic degeneration in the SN and striatum of MPTP-induced PD mice were studied in detail.

Results

BV2 cell-based experiments revealed the role of Rev-erbα in regulating microglial activation and polarization through the NF-κB and NLRP3 inflammasome pathways. Circadian oscillation of the core clock gene Rev-erbα in the substantia nigra (SN) disappeared in MPTP-induced PD mice, as well as diurnal changes in microglial morphology. The expression of inflammatory cytokines in SN of the MPTP-induced mice were significantly elevated. Furthermore, dopaminergic neurons loss in the nigrostriatal system were partially reversed by SR9009, a selective Rev-erbα agonist. In addition, SR9009 effectively reduced the MPTP-induced glial activation, microglial polarization and NLRP3 inflammasome activation in the nigrostriatal system.

Conclusions

These observations suggest that the circadian clock protein Rev-erbα plays an essential role in attenuating neuroinflammation in PD pathology, and provides a potential therapeutic target for PD treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Barone P, Antonini A, Colosimo C, et al. The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord. 2009;24(11):1641–9.CrossRefPubMed Barone P, Antonini A, Colosimo C, et al. The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord. 2009;24(11):1641–9.CrossRefPubMed
2.
go back to reference Videnovic A, Lazar AS, Barker RA, Overeem S. ’The clocks that time us’—circadian rhythms in neurodegenerative disorders. Nat Rev Neurol. 2014;10(12):683–93.CrossRefPubMedPubMedCentral Videnovic A, Lazar AS, Barker RA, Overeem S. ’The clocks that time us’—circadian rhythms in neurodegenerative disorders. Nat Rev Neurol. 2014;10(12):683–93.CrossRefPubMedPubMedCentral
3.
go back to reference Christopher L, Koshimori Y, Lang AE, Criaud M, Strafella AP. Uncovering the role of the insula in non-motor symptoms of Parkinson’s disease. Brain. 2014;137(Pt 8):2143–54.CrossRefPubMedPubMedCentral Christopher L, Koshimori Y, Lang AE, Criaud M, Strafella AP. Uncovering the role of the insula in non-motor symptoms of Parkinson’s disease. Brain. 2014;137(Pt 8):2143–54.CrossRefPubMedPubMedCentral
4.
go back to reference Leng Y, Musiek ES, Hu K, Cappuccio FP, Yaffe K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019;18(3):307–18.CrossRefPubMedPubMedCentral Leng Y, Musiek ES, Hu K, Cappuccio FP, Yaffe K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019;18(3):307–18.CrossRefPubMedPubMedCentral
5.
go back to reference Leng Y, Blackwell T, Cawthon PM, Ancoli-Israel S, Stone KL, Yaffe K. Association of circadian abnormalities in older adults with an increased risk of developing Parkinson disease. JAMA Neurol. 2020;77(10):1270–8.CrossRefPubMedPubMedCentral Leng Y, Blackwell T, Cawthon PM, Ancoli-Israel S, Stone KL, Yaffe K. Association of circadian abnormalities in older adults with an increased risk of developing Parkinson disease. JAMA Neurol. 2020;77(10):1270–8.CrossRefPubMedPubMedCentral
7.
go back to reference Lauretti E, Di Meco A, Merali S, Pratico D. Circadian rhythm dysfunction: a novel environmental risk factor for Parkinson’s disease. Mol Psychiatry. 2017;22(2):280–6.CrossRefPubMed Lauretti E, Di Meco A, Merali S, Pratico D. Circadian rhythm dysfunction: a novel environmental risk factor for Parkinson’s disease. Mol Psychiatry. 2017;22(2):280–6.CrossRefPubMed
8.
go back to reference Liu WW, Wei SZ, Huang GD, et al. BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson’s disease mouse model. FASEB J. 2020;34(5):6570–81.CrossRefPubMed Liu WW, Wei SZ, Huang GD, et al. BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson’s disease mouse model. FASEB J. 2020;34(5):6570–81.CrossRefPubMed
10.
go back to reference Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci. 2014;124(5):307–21.CrossRefPubMed Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci. 2014;124(5):307–21.CrossRefPubMed
11.
go back to reference Gordon R, Albornoz EA, Christie DC, et al. Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med. 2018;10(465):eaah4066.CrossRefPubMedPubMedCentral Gordon R, Albornoz EA, Christie DC, et al. Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med. 2018;10(465):eaah4066.CrossRefPubMedPubMedCentral
12.
go back to reference Han X, Sun S, Sun Y, et al. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease. Autophagy. 2019;15(11):1860–81.CrossRefPubMedPubMedCentral Han X, Sun S, Sun Y, et al. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease. Autophagy. 2019;15(11):1860–81.CrossRefPubMedPubMedCentral
13.
go back to reference Yan S, Wei X, Jian W, et al. Pharmacological inhibition of HDAC6 attenuates NLRP3 inflammatory response and protects dopaminergic neurons in experimental models of Parkinson’s disease. Front Aging Neurosci. 2020;12:78.CrossRefPubMedPubMedCentral Yan S, Wei X, Jian W, et al. Pharmacological inhibition of HDAC6 attenuates NLRP3 inflammatory response and protects dopaminergic neurons in experimental models of Parkinson’s disease. Front Aging Neurosci. 2020;12:78.CrossRefPubMedPubMedCentral
14.
go back to reference Trudler D, Nazor KL, Eisele YS, et al. Soluble alpha-synuclein-antibody complexes activate the NLRP3 inflammasome in hiPSC-derived microglia. Proc Natl Acad Sci USA. 2021;118(15):e2025847118.CrossRefPubMedPubMedCentral Trudler D, Nazor KL, Eisele YS, et al. Soluble alpha-synuclein-antibody complexes activate the NLRP3 inflammasome in hiPSC-derived microglia. Proc Natl Acad Sci USA. 2021;118(15):e2025847118.CrossRefPubMedPubMedCentral
15.
go back to reference von Herrmann KM, Salas LA, Martinez EM, et al. NLRP3 expression in mesencephalic neurons and characterization of a rare NLRP3 polymorphism associated with decreased risk of Parkinson’s disease. NPJ Parkinsons Dis. 2018;4:24.CrossRef von Herrmann KM, Salas LA, Martinez EM, et al. NLRP3 expression in mesencephalic neurons and characterization of a rare NLRP3 polymorphism associated with decreased risk of Parkinson’s disease. NPJ Parkinsons Dis. 2018;4:24.CrossRef
16.
go back to reference Li Q, Wang Z, Xing H, Wang Y, Guo Y. Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson’s disease. Mol Ther Nucleic Acids. 2021;23:1334–44.CrossRefPubMedPubMedCentral Li Q, Wang Z, Xing H, Wang Y, Guo Y. Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson’s disease. Mol Ther Nucleic Acids. 2021;23:1334–44.CrossRefPubMedPubMedCentral
17.
go back to reference Li Y, Xia Y, Yin S, et al. Targeting microglial α-synuclein/TLRs/NF-kappaB/NLRP3 inflammasome axis in Parkinson’s disease. Front Immunol. 2021;12:719807.CrossRefPubMedPubMedCentral Li Y, Xia Y, Yin S, et al. Targeting microglial α-synuclein/TLRs/NF-kappaB/NLRP3 inflammasome axis in Parkinson’s disease. Front Immunol. 2021;12:719807.CrossRefPubMedPubMedCentral
18.
go back to reference Musiek ES, Lim MM, Yang G, et al. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J Clin Invest. 2013;123(12):5389–400.CrossRefPubMedPubMedCentral Musiek ES, Lim MM, Yang G, et al. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J Clin Invest. 2013;123(12):5389–400.CrossRefPubMedPubMedCentral
19.
go back to reference Lananna BV, Nadarajah CJ, Izumo M, et al. Cell-autonomous regulation of astrocyte activation by the circadian clock protein BMAL1. Cell Rep. 2018;25(1):1-9.e5.CrossRefPubMedPubMedCentral Lananna BV, Nadarajah CJ, Izumo M, et al. Cell-autonomous regulation of astrocyte activation by the circadian clock protein BMAL1. Cell Rep. 2018;25(1):1-9.e5.CrossRefPubMedPubMedCentral
20.
go back to reference Griffin P, Sheehan PW, Dimitry JM, et al. REV-ERBalpha mediates complement expression and diurnal regulation of microglial synaptic phagocytosis. Elife. 2020;9:e58765.CrossRefPubMedPubMedCentral Griffin P, Sheehan PW, Dimitry JM, et al. REV-ERBalpha mediates complement expression and diurnal regulation of microglial synaptic phagocytosis. Elife. 2020;9:e58765.CrossRefPubMedPubMedCentral
21.
go back to reference Ni J, Wu Z, Meng J, et al. An impaired intrinsic microglial clock system induces neuroinflammatory alterations in the early stage of amyloid precursor protein knock-in mouse brain. J Neuroinflamm. 2019;16(1):173.CrossRef Ni J, Wu Z, Meng J, et al. An impaired intrinsic microglial clock system induces neuroinflammatory alterations in the early stage of amyloid precursor protein knock-in mouse brain. J Neuroinflamm. 2019;16(1):173.CrossRef
22.
go back to reference Griffin P, Dimitry JM, Sheehan PW, et al. Circadian clock protein Rev-erbalpha regulates neuroinflammation. Proc Natl Acad Sci USA. 2019;116(11):5102–7.CrossRefPubMedPubMedCentral Griffin P, Dimitry JM, Sheehan PW, et al. Circadian clock protein Rev-erbalpha regulates neuroinflammation. Proc Natl Acad Sci USA. 2019;116(11):5102–7.CrossRefPubMedPubMedCentral
23.
go back to reference Guo DK, Zhu Y, Sun HY, et al. Pharmacological activation of REV-ERBalpha represses LPS-induced microglial activation through the NF-kappaB pathway. Acta Pharmacol Sin. 2019;40(1):26–34.CrossRefPubMed Guo DK, Zhu Y, Sun HY, et al. Pharmacological activation of REV-ERBalpha represses LPS-induced microglial activation through the NF-kappaB pathway. Acta Pharmacol Sin. 2019;40(1):26–34.CrossRefPubMed
24.
go back to reference Kim J, Jang S, Choi M, et al. Abrogation of the circadian nuclear receptor REV-ERBalpha exacerbates 6-hydroxydopamine-induced dopaminergic neurodegeneration. Mol Cells. 2018;41(8):742–52.PubMedPubMedCentral Kim J, Jang S, Choi M, et al. Abrogation of the circadian nuclear receptor REV-ERBalpha exacerbates 6-hydroxydopamine-induced dopaminergic neurodegeneration. Mol Cells. 2018;41(8):742–52.PubMedPubMedCentral
25.
go back to reference Yan M, Xiong M, Dai L, et al. Cofilin 1 promotes the pathogenicity and transmission of pathological alpha-synuclein in mouse models of Parkinson’s disease. NPJ Parkinsons Dis. 2022;8(1):1.CrossRefPubMedPubMedCentral Yan M, Xiong M, Dai L, et al. Cofilin 1 promotes the pathogenicity and transmission of pathological alpha-synuclein in mouse models of Parkinson’s disease. NPJ Parkinsons Dis. 2022;8(1):1.CrossRefPubMedPubMedCentral
27.
go back to reference Harms AS, Ferreira SA, Romero-Ramos M. Periphery and brain, innate and adaptive immunity in Parkinson’s disease. Acta Neuropathol. 2021;141(4):527–45.CrossRefPubMedPubMedCentral Harms AS, Ferreira SA, Romero-Ramos M. Periphery and brain, innate and adaptive immunity in Parkinson’s disease. Acta Neuropathol. 2021;141(4):527–45.CrossRefPubMedPubMedCentral
28.
go back to reference Andersen MS, Bandres-Ciga S, Reynolds RH, et al. Heritability enrichment implicates microglia in Parkinson’s disease pathogenesis. Ann Neurol. 2021;89(5):942–51.CrossRefPubMedPubMedCentral Andersen MS, Bandres-Ciga S, Reynolds RH, et al. Heritability enrichment implicates microglia in Parkinson’s disease pathogenesis. Ann Neurol. 2021;89(5):942–51.CrossRefPubMedPubMedCentral
29.
30.
go back to reference Lee E, Hwang I, Park S, et al. MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ. 2019;26(2):213–28.CrossRefPubMed Lee E, Hwang I, Park S, et al. MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ. 2019;26(2):213–28.CrossRefPubMed
32.
go back to reference Fifel K. Alterations of the circadian system in Parkinson’s disease patients. Mov Disord. 2017;32(5):682–92.CrossRefPubMed Fifel K. Alterations of the circadian system in Parkinson’s disease patients. Mov Disord. 2017;32(5):682–92.CrossRefPubMed
33.
go back to reference Xia Y, Kou L, Zhang G, et al. Investigation on sleep and mental health of patients with Parkinson’s disease during the Coronavirus disease 2019 pandemic. Sleep Med. 2020;75:428–33.CrossRefPubMedPubMedCentral Xia Y, Kou L, Zhang G, et al. Investigation on sleep and mental health of patients with Parkinson’s disease during the Coronavirus disease 2019 pandemic. Sleep Med. 2020;75:428–33.CrossRefPubMedPubMedCentral
34.
go back to reference Preitner N, Damiola F, Lopez-Molina L, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110(2):251–60.CrossRefPubMed Preitner N, Damiola F, Lopez-Molina L, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110(2):251–60.CrossRefPubMed
36.
37.
go back to reference Shen W, Zhang W, Ye W, et al. SR9009 induces a REV-ERB dependent anti-small-cell lung cancer effect through inhibition of autophagy. Theranostics. 2020;10(10):4466–80.CrossRefPubMedPubMedCentral Shen W, Zhang W, Ye W, et al. SR9009 induces a REV-ERB dependent anti-small-cell lung cancer effect through inhibition of autophagy. Theranostics. 2020;10(10):4466–80.CrossRefPubMedPubMedCentral
38.
go back to reference Sulli G, Rommel A, Wang X, et al. Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature. 2018;553(7688):351–5.CrossRefPubMedPubMedCentral Sulli G, Rommel A, Wang X, et al. Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature. 2018;553(7688):351–5.CrossRefPubMedPubMedCentral
39.
go back to reference Gibbs JE, Blaikley J, Beesley S, et al. The nuclear receptor REV-ERBalpha mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci USA. 2012;109(2):582–7.CrossRefPubMed Gibbs JE, Blaikley J, Beesley S, et al. The nuclear receptor REV-ERBalpha mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci USA. 2012;109(2):582–7.CrossRefPubMed
40.
go back to reference Lee J, Kim DE, Griffin P, et al. Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer’s disease. Aging Cell. 2019;19(2):e13078.PubMedPubMedCentral Lee J, Kim DE, Griffin P, et al. Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer’s disease. Aging Cell. 2019;19(2):e13078.PubMedPubMedCentral
41.
go back to reference Yue J, He J, Wei Y, et al. Decreased expression of Rev-Erbalpha in the epileptic foci of temporal lobe epilepsy and activation of Rev-Erbalpha have anti-inflammatory and neuroprotective effects in the pilocarpine model. J Neuroinflamm. 2020;17(1):43.CrossRef Yue J, He J, Wei Y, et al. Decreased expression of Rev-Erbalpha in the epileptic foci of temporal lobe epilepsy and activation of Rev-Erbalpha have anti-inflammatory and neuroprotective effects in the pilocarpine model. J Neuroinflamm. 2020;17(1):43.CrossRef
43.
go back to reference Xia Y, Zhang G, Kou L, et al. Reactive microglia enhance the transmission of exosomal alpha-synuclein via toll-like receptor 2. Brain. 2021;144(7):2024–37.CrossRefPubMed Xia Y, Zhang G, Kou L, et al. Reactive microglia enhance the transmission of exosomal alpha-synuclein via toll-like receptor 2. Brain. 2021;144(7):2024–37.CrossRefPubMed
44.
go back to reference Shen Y, Guo X, Han C, et al. The implication of neuronimmunoendocrine (NIE) modulatory network in the pathophysiologic process of Parkinson’s disease. Cell Mol Life Sci. 2017;74(20):3741–68.CrossRefPubMed Shen Y, Guo X, Han C, et al. The implication of neuronimmunoendocrine (NIE) modulatory network in the pathophysiologic process of Parkinson’s disease. Cell Mol Life Sci. 2017;74(20):3741–68.CrossRefPubMed
45.
go back to reference Heneka MT, McManus RM, Latz E. Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci. 2018;19(10):610–21.CrossRefPubMed Heneka MT, McManus RM, Latz E. Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci. 2018;19(10):610–21.CrossRefPubMed
46.
go back to reference Pandey A, Shen C, Feng S, Man SM. Cell biology of inflammasome activation. Trends Cell Biol. 2021;31(11):924–39.CrossRefPubMed Pandey A, Shen C, Feng S, Man SM. Cell biology of inflammasome activation. Trends Cell Biol. 2021;31(11):924–39.CrossRefPubMed
47.
go back to reference Slusarczyk J, Trojan E, Glombik K, et al. Targeting the NLRP3 inflammasome-related pathways via tianeptine treatment-suppressed microglia polarization to the M1 phenotype in lipopolysaccharide-stimulated cultures. Int J Mol Sci. 2018;19(7):1965.CrossRefPubMedCentral Slusarczyk J, Trojan E, Glombik K, et al. Targeting the NLRP3 inflammasome-related pathways via tianeptine treatment-suppressed microglia polarization to the M1 phenotype in lipopolysaccharide-stimulated cultures. Int J Mol Sci. 2018;19(7):1965.CrossRefPubMedCentral
48.
go back to reference Wang S, Lin Y, Yuan X, Li F, Guo L, Wu B. REV-ERBalpha integrates colon clock with experimental colitis through regulation of NF-kappaB/NLRP3 axis. Nat Commun. 2018;9(1):4246.CrossRefPubMedPubMedCentral Wang S, Lin Y, Yuan X, Li F, Guo L, Wu B. REV-ERBalpha integrates colon clock with experimental colitis through regulation of NF-kappaB/NLRP3 axis. Nat Commun. 2018;9(1):4246.CrossRefPubMedPubMedCentral
49.
go back to reference Lei H, Ren R, Sun Y, et al. Neuroprotective effects of safflower flavonoid extract in 6-hydroxydopamine-induced model of Parkinson’s disease may be related to its anti-inflammatory action. Molecules. 2020;25(21):5206.CrossRefPubMedCentral Lei H, Ren R, Sun Y, et al. Neuroprotective effects of safflower flavonoid extract in 6-hydroxydopamine-induced model of Parkinson’s disease may be related to its anti-inflammatory action. Molecules. 2020;25(21):5206.CrossRefPubMedCentral
50.
go back to reference Zhang C, Zhao M, Wang B, et al. The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of Celastrol in Parkinson’s disease. Redox Biol. 2021;47:102134.CrossRefPubMedPubMedCentral Zhang C, Zhao M, Wang B, et al. The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of Celastrol in Parkinson’s disease. Redox Biol. 2021;47:102134.CrossRefPubMedPubMedCentral
51.
go back to reference Panicker N, Sarkar S, Harischandra DS, et al. Fyn kinase regulates misfolded alpha-synuclein uptake and NLRP3 inflammasome activation in microglia. J Exp Med. 2019;216(6):1411–30.CrossRefPubMedPubMedCentral Panicker N, Sarkar S, Harischandra DS, et al. Fyn kinase regulates misfolded alpha-synuclein uptake and NLRP3 inflammasome activation in microglia. J Exp Med. 2019;216(6):1411–30.CrossRefPubMedPubMedCentral
52.
go back to reference Zhou Y, Lu M, Du RH, et al. MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson’s disease. Mol Neurodegener. 2016;11:28.CrossRefPubMedPubMedCentral Zhou Y, Lu M, Du RH, et al. MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson’s disease. Mol Neurodegener. 2016;11:28.CrossRefPubMedPubMedCentral
53.
go back to reference Pourcet B, Zecchin M, Ferri L, et al. Nuclear Receptor Subfamily 1 Group D Member 1 regulates circadian activity of NLRP3 inflammasome to reduce the severity of fulminant hepatitis in mice. Gastroenterology. 2018;154(5):1449-1464.e1420.CrossRefPubMed Pourcet B, Zecchin M, Ferri L, et al. Nuclear Receptor Subfamily 1 Group D Member 1 regulates circadian activity of NLRP3 inflammasome to reduce the severity of fulminant hepatitis in mice. Gastroenterology. 2018;154(5):1449-1464.e1420.CrossRefPubMed
54.
go back to reference Pariollaud M, Gibbs JE, Hopwood TW, et al. Circadian clock component REV-ERBalpha controls homeostatic regulation of pulmonary inflammation. J Clin Invest. 2018;128(6):2281–96.CrossRefPubMedPubMedCentral Pariollaud M, Gibbs JE, Hopwood TW, et al. Circadian clock component REV-ERBalpha controls homeostatic regulation of pulmonary inflammation. J Clin Invest. 2018;128(6):2281–96.CrossRefPubMedPubMedCentral
55.
go back to reference Reitz CJ, Alibhai FJ, Khatua TN, et al. SR9009 administered for one day after myocardial ischemia-reperfusion prevents heart failure in mice by targeting the cardiac inflammasome. Commun Biol. 2019;2:353.CrossRefPubMedPubMedCentral Reitz CJ, Alibhai FJ, Khatua TN, et al. SR9009 administered for one day after myocardial ischemia-reperfusion prevents heart failure in mice by targeting the cardiac inflammasome. Commun Biol. 2019;2:353.CrossRefPubMedPubMedCentral
Metadata
Title
The circadian clock protein Rev-erbα provides neuroprotection and attenuates neuroinflammation against Parkinson’s disease via the microglial NLRP3 inflammasome
Authors
Liang Kou
Xiaosa Chi
Yadi Sun
Chao Han
Fang Wan
Junjie Hu
Sijia Yin
Jiawei Wu
Yunna Li
Qiulu Zhou
Wenkai Zou
Nian Xiong
Jinsha Huang
Yun Xia
Tao Wang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2022
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-022-02494-y

Other articles of this Issue 1/2022

Journal of Neuroinflammation 1/2022 Go to the issue