Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2013

Open Access 01-12-2013 | Research

A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion

Authors: Helena W Morrison, Jessica A Filosa

Published in: Journal of Neuroinflammation | Issue 1/2013

Login to get access

Abstract

Background

Microglia cells continuously survey the healthy brain in a ramified morphology and, in response to injury, undergo progressive morphological and functional changes that encompass microglia activation. Although ideally positioned for immediate response to ischemic stroke (IS) and reperfusion, their progressive morphological transformation into activated cells has not been quantified. In addition, it is not well understood if diverse microglia morphologies correlate to diverse microglia functions. As such, the dichotomous nature of these cells continues to confound our understanding of microglia-mediated injury after IS and reperfusion. The purpose of this study was to quantitatively characterize the spatiotemporal pattern of microglia morphology during the evolution of cerebral injury after IS and reperfusion.

Methods

Male C57Bl/6 mice were subjected to focal cerebral ischemia and periods of reperfusion (0, 8 and 24 h). The microglia process length/cell and number of endpoints/cell was quantified from immunofluorescent confocal images of brain regions using a skeleton analysis method developed for this study. Live cell morphology and process activity were measured from movies acquired in acute brain slices from GFP-CX3CR1 transgenic mice after IS and 24-h reperfusion. Regional CD11b and iNOS expressions were measured from confocal images and Western blot, respectively, to assess microglia proinflammatory function.

Results

Quantitative analysis reveals a significant spatiotemporal relationship between microglia morphology and evolving cerebral injury in the ipsilateral hemisphere after IS and reperfusion. Microglia were both hyper- and de-ramified in striatal and cortical brain regions (respectively) after 60 min of focal cerebral ischemia. However, a de-ramified morphology was prominent when ischemia was coupled to reperfusion. Live microglia were de-ramified, and, in addition, process activity was severely blunted proximal to the necrotic core after IS and 24 h of reperfusion. CD11b expression, but not iNOS expression, was increased in regions of hyper- and de-ramified microglia during the course of ischemic stroke and 24 h of reperfusion.

Conclusions

Our findings illustrate that microglia activation after stroke includes both increased and decreased cell ramification. Importantly, quantitative analyses of microglial morphology and activity are feasible and, in future studies, would assist in the comprehensive identification and stratification of their dichotomous contribution toward cerebral injury and recovery during IS and reperfusion.
Literature
1.
go back to reference Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, et al.: Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation 2012, 125:e2-e220.CrossRefPubMed Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, et al.: Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation 2012, 125:e2-e220.CrossRefPubMed
3.
go back to reference Sandoval KE, Witt KA: Blood–brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 2008, 32:200–219.CrossRefPubMed Sandoval KE, Witt KA: Blood–brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 2008, 32:200–219.CrossRefPubMed
4.
go back to reference Lambertsen KL, Biber K, Finsen B: Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab 2012, 1:1–22. Lambertsen KL, Biber K, Finsen B: Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab 2012, 1:1–22.
5.
go back to reference Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T: Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 2009, 40:1849–1857.CrossRefPubMed Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T: Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 2009, 40:1849–1857.CrossRefPubMed
6.
go back to reference Ritter LS, Orozco JA, Coull BM, McDonagh PF, Rosenblum WI: Leukocyte accumulation and hemodynamic changes in the cerebral microcirculation during early reperfusion after stroke. Stroke 2000, 31:1153–1161.CrossRefPubMed Ritter LS, Orozco JA, Coull BM, McDonagh PF, Rosenblum WI: Leukocyte accumulation and hemodynamic changes in the cerebral microcirculation during early reperfusion after stroke. Stroke 2000, 31:1153–1161.CrossRefPubMed
7.
go back to reference Perry VH, Nicoll JA, Holmes C: Microglia in neurodegenerative disease. Nat Rev Neurol 2010, 6:193–201.CrossRefPubMed Perry VH, Nicoll JA, Holmes C: Microglia in neurodegenerative disease. Nat Rev Neurol 2010, 6:193–201.CrossRefPubMed
8.
9.
go back to reference Frank MM, Fries LF: The role of complement in inflammation and phagocytosis. Immunol Today 1991, 12:322–326.CrossRefPubMed Frank MM, Fries LF: The role of complement in inflammation and phagocytosis. Immunol Today 1991, 12:322–326.CrossRefPubMed
10.
go back to reference Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314–1318.CrossRefPubMed Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314–1318.CrossRefPubMed
11.
go back to reference Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB: ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005, 8:752–758.CrossRefPubMed Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB: ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005, 8:752–758.CrossRefPubMed
12.
go back to reference Lawson LJ, Perry VH, Dri P, Gordon S: Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990, 39:151–170.CrossRefPubMed Lawson LJ, Perry VH, Dri P, Gordon S: Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990, 39:151–170.CrossRefPubMed
13.
go back to reference Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A: The Role of Microglia in the Healthy Brain. J Neurosci 2011, 31:16064–16069.CrossRefPubMed Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A: The Role of Microglia in the Healthy Brain. J Neurosci 2011, 31:16064–16069.CrossRefPubMed
14.
15.
go back to reference Stence N, Waite M, Dailey ME: Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 2001, 33:256–266.CrossRefPubMed Stence N, Waite M, Dailey ME: Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 2001, 33:256–266.CrossRefPubMed
16.
go back to reference Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, Fariss RN, Li W, Wong WT: Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 2011, 6:e15973.CrossRefPubMedPubMedCentral Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, Fariss RN, Li W, Wong WT: Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 2011, 6:e15973.CrossRefPubMedPubMedCentral
17.
go back to reference Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev 2011, 91:461–553.CrossRefPubMed Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev 2011, 91:461–553.CrossRefPubMed
18.
go back to reference Perego C, Fumagalli S, De Simoni MG: Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation 2011, 8:174.CrossRefPubMedPubMedCentral Perego C, Fumagalli S, De Simoni MG: Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation 2011, 8:174.CrossRefPubMedPubMedCentral
19.
go back to reference Gyoneva S, Orr AG, Traynelis SF: Differential regulation of microglial motility by ATP/ADP and adenosine. Parkinsonism Relat Disord 2009, 15s3:S195-S199.CrossRef Gyoneva S, Orr AG, Traynelis SF: Differential regulation of microglial motility by ATP/ADP and adenosine. Parkinsonism Relat Disord 2009, 15s3:S195-S199.CrossRef
20.
go back to reference Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J: Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 2009, 29:3974–3980.CrossRefPubMed Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J: Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 2009, 29:3974–3980.CrossRefPubMed
22.
go back to reference Morrison H, McKee D, Ritter L: Systemic neutrophil activation in a mouse model of ischemic stroke and reperfusion. Biol ResNurs 2011, 13:154–163. Morrison H, McKee D, Ritter L: Systemic neutrophil activation in a mouse model of ischemic stroke and reperfusion. Biol ResNurs 2011, 13:154–163.
23.
go back to reference Bahmani P, Schellenberger E, Klohs J, Steinbrink J, Cordell R, Zille M, Muller J, Harhausen D, Hofstra L, Reutelingsperger C, et al.: Visualization of cell death in mice with focal cerebral ischemia using fluorescent annexin A5, propidium iodide, and TUNEL staining. J Cereb Blood Flow Metab 2011, 31:1311–1320.CrossRefPubMedPubMedCentral Bahmani P, Schellenberger E, Klohs J, Steinbrink J, Cordell R, Zille M, Muller J, Harhausen D, Hofstra L, Reutelingsperger C, et al.: Visualization of cell death in mice with focal cerebral ischemia using fluorescent annexin A5, propidium iodide, and TUNEL staining. J Cereb Blood Flow Metab 2011, 31:1311–1320.CrossRefPubMedPubMedCentral
24.
go back to reference Reeves AM, Shigetomi E, Khakh BS: Bulk loading of calcium indicator dyes to study astrocyte physiology: key limitations and improvements using morphological maps. J Neurosci 2011, 31:9353–9358.CrossRefPubMedPubMedCentral Reeves AM, Shigetomi E, Khakh BS: Bulk loading of calcium indicator dyes to study astrocyte physiology: key limitations and improvements using morphological maps. J Neurosci 2011, 31:9353–9358.CrossRefPubMedPubMedCentral
25.
go back to reference Schoenen J: The dendritic organization of the human spinal cord: the dorsal horn. Neuroscience 1982, 7:2057–2087.CrossRefPubMed Schoenen J: The dendritic organization of the human spinal cord: the dorsal horn. Neuroscience 1982, 7:2057–2087.CrossRefPubMed
26.
go back to reference Liu F, Schafer DP, McCullough LD: TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods 2009, 179:1–8.CrossRefPubMedPubMedCentral Liu F, Schafer DP, McCullough LD: TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods 2009, 179:1–8.CrossRefPubMedPubMedCentral
27.
go back to reference Terpolilli NA, Moskowitz MA, Plesnila N: Nitric oxide: considerations for the treatment of ischemic stroke. In J Cereb Blood Flow Metab 2012, 32:1332–1346.CrossRef Terpolilli NA, Moskowitz MA, Plesnila N: Nitric oxide: considerations for the treatment of ischemic stroke. In J Cereb Blood Flow Metab 2012, 32:1332–1346.CrossRef
28.
go back to reference Sehara Y, Hayashi T, Deguchi K, Nagotani S, Zhang H, Shoji M, Abe K: Distribution of inducible nitric oxide synthase and cell proliferation in rat brain after transient middle cerebral artery occlusion. In Brain Res 2006, 1093:190–197.CrossRef Sehara Y, Hayashi T, Deguchi K, Nagotani S, Zhang H, Shoji M, Abe K: Distribution of inducible nitric oxide synthase and cell proliferation in rat brain after transient middle cerebral artery occlusion. In Brain Res 2006, 1093:190–197.CrossRef
29.
30.
go back to reference Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D: The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 2006, 9:1512–1519.CrossRefPubMed Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D: The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 2006, 9:1512–1519.CrossRefPubMed
31.
go back to reference Kurpius D, Nolley EP, Dailey ME: Purines induce directed migration and rapid homing of microglia to injured pyramidal neurons in developing hippocampus. Glia 2007, 55:873–884.CrossRefPubMed Kurpius D, Nolley EP, Dailey ME: Purines induce directed migration and rapid homing of microglia to injured pyramidal neurons in developing hippocampus. Glia 2007, 55:873–884.CrossRefPubMed
32.
go back to reference del Zoppo GJ, Schmid-Schonbein GW, Mori E, Copeland BR, Chang CM: Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 1991, 22:1276–1283.CrossRefPubMed del Zoppo GJ, Schmid-Schonbein GW, Mori E, Copeland BR, Chang CM: Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 1991, 22:1276–1283.CrossRefPubMed
34.
go back to reference Masuda T, Croom D, Hida H, Kirov SA: Capillary blood flow around microglial somata determines dynamics of microglial processes in ischemic conditions. Glia 2011, 59:1744–1753.CrossRefPubMedPubMedCentral Masuda T, Croom D, Hida H, Kirov SA: Capillary blood flow around microglial somata determines dynamics of microglial processes in ischemic conditions. Glia 2011, 59:1744–1753.CrossRefPubMedPubMedCentral
35.
go back to reference Marcoux FW, Morawetz RB, Crowell RM, DeGirolami U, Halsey JH Jr: Differential regional vulnerability in transient focal cerebral ischemia. Stroke 1982, 13:339–346.CrossRefPubMed Marcoux FW, Morawetz RB, Crowell RM, DeGirolami U, Halsey JH Jr: Differential regional vulnerability in transient focal cerebral ischemia. Stroke 1982, 13:339–346.CrossRefPubMed
36.
go back to reference Pantoni L, Garcia JH, Gutierrez JA: Cerebral white matter is highly vulnerable to ischemia. Stroke 1996, 27:1641–1646.CrossRefPubMed Pantoni L, Garcia JH, Gutierrez JA: Cerebral white matter is highly vulnerable to ischemia. Stroke 1996, 27:1641–1646.CrossRefPubMed
37.
go back to reference Takano T, Oberheim N, Cotrina ML, Nedergaard M: Astrocytes and ischemic injury. Stroke 2009, 40:S8-S12.CrossRefPubMed Takano T, Oberheim N, Cotrina ML, Nedergaard M: Astrocytes and ischemic injury. Stroke 2009, 40:S8-S12.CrossRefPubMed
38.
go back to reference Nagaraja TN, Keenan KA, Fenstermacher JD, Knight RA: Acute leakage patterns of fluorescent plasma flow markers after transient focal cerebral ischemia suggest large openings in blood–brain barrier. Microcirculation 2008, 15:1–14.CrossRefPubMed Nagaraja TN, Keenan KA, Fenstermacher JD, Knight RA: Acute leakage patterns of fluorescent plasma flow markers after transient focal cerebral ischemia suggest large openings in blood–brain barrier. Microcirculation 2008, 15:1–14.CrossRefPubMed
39.
go back to reference Wiart M, Davoust N, Pialat JB, Desestret V, Moucharrafie S, Cho TH, Mutin M, Langlois JB, Beuf O, Honnorat J, et al.: MRI monitoring of neuroinflammation in mouse focal ischemia. Stroke 2007, 38:131–137.CrossRefPubMed Wiart M, Davoust N, Pialat JB, Desestret V, Moucharrafie S, Cho TH, Mutin M, Langlois JB, Beuf O, Honnorat J, et al.: MRI monitoring of neuroinflammation in mouse focal ischemia. Stroke 2007, 38:131–137.CrossRefPubMed
40.
go back to reference Dhawan J, Benveniste H, Nawrocky M, Smith SD, Biegon A: Transient focal ischemia results in persistent and widespread neuroinflammation and loss of glutamate NMDA receptors. Neuroimage 2010, 51:599–605.CrossRefPubMedPubMedCentral Dhawan J, Benveniste H, Nawrocky M, Smith SD, Biegon A: Transient focal ischemia results in persistent and widespread neuroinflammation and loss of glutamate NMDA receptors. Neuroimage 2010, 51:599–605.CrossRefPubMedPubMedCentral
41.
go back to reference Amantea D, Bagetta G, Tassorelli C, Mercuri NB, Corasaniti MT: Identification of distinct cellular pools of interleukin-1beta during the evolution of the neuroinflammatory response induced by transient middle cerebral artery occlusion in the brain of rat. Brain Res 2010, 1313:259–269.CrossRefPubMed Amantea D, Bagetta G, Tassorelli C, Mercuri NB, Corasaniti MT: Identification of distinct cellular pools of interleukin-1beta during the evolution of the neuroinflammatory response induced by transient middle cerebral artery occlusion in the brain of rat. Brain Res 2010, 1313:259–269.CrossRefPubMed
42.
go back to reference Clausen BH, Lambertsen KL, Babcock AA, Holm TH, Dagnaes-Hansen F, Finsen B: Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation 2008, 5:46.CrossRefPubMedPubMedCentral Clausen BH, Lambertsen KL, Babcock AA, Holm TH, Dagnaes-Hansen F, Finsen B: Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation 2008, 5:46.CrossRefPubMedPubMedCentral
43.
go back to reference del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ: Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain pathology 2000, 10:95.CrossRefPubMed del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ: Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain pathology 2000, 10:95.CrossRefPubMed
44.
go back to reference Shi Y, Chanana V, Watters JJ, Ferrazzano P, Sun D: Role of sodium/hydrogen exchanger isoform 1 in microglial activation and proinflammatory responses in ischemic brains. J Neurochem 2011, 119:124–135.CrossRefPubMedPubMedCentral Shi Y, Chanana V, Watters JJ, Ferrazzano P, Sun D: Role of sodium/hydrogen exchanger isoform 1 in microglial activation and proinflammatory responses in ischemic brains. J Neurochem 2011, 119:124–135.CrossRefPubMedPubMedCentral
45.
go back to reference Thored P, Heldmann U, Gomes-Leal W, Gisler R, Darsalia V, Taneera J, Nygren JM, Jacobsen SE, Ekdahl CT, Kokaia Z, Lindvall O: Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 2009, 57:835–849.CrossRefPubMed Thored P, Heldmann U, Gomes-Leal W, Gisler R, Darsalia V, Taneera J, Nygren JM, Jacobsen SE, Ekdahl CT, Kokaia Z, Lindvall O: Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 2009, 57:835–849.CrossRefPubMed
46.
go back to reference Morioka T, Kalehua AN, Streit WJ: Characterization of microglial reaction after middle cerebral artery occlusion in rat brain. J Comp Neurol 1993, 327:123–132.CrossRefPubMed Morioka T, Kalehua AN, Streit WJ: Characterization of microglial reaction after middle cerebral artery occlusion in rat brain. J Comp Neurol 1993, 327:123–132.CrossRefPubMed
47.
go back to reference Zarruk JG, Fernandez-Lopez D, Garcia-Yebenes I, Garcia-Gutierrez MS, Vivancos J, Nombela F, Torres M, Burguete MC, Manzanares J, Lizasoain I, Moro MA: Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotection. Stroke 2012, 43:211–219.CrossRefPubMed Zarruk JG, Fernandez-Lopez D, Garcia-Yebenes I, Garcia-Gutierrez MS, Vivancos J, Nombela F, Torres M, Burguete MC, Manzanares J, Lizasoain I, Moro MA: Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotection. Stroke 2012, 43:211–219.CrossRefPubMed
Metadata
Title
A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion
Authors
Helena W Morrison
Jessica A Filosa
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2013
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-10-4

Other articles of this Issue 1/2013

Journal of Neuroinflammation 1/2013 Go to the issue