Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Review

Inflammatory monocytes and the pathogenesis of viral encephalitis

Authors: Rachael L Terry, Daniel R Getts, Celine Deffrasnes, Caryn van Vreden, Iain L Campbell, Nicholas JC King

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Monocytes are a heterogeneous population of bone marrow-derived cells that are recruited to sites of infection and inflammation in many models of human diseases, including those of the central nervous system (CNS). Ly6Chi/CCR2hi inflammatory monocytes have been identified as the circulating precursors of brain macrophages, dendritic cells and arguably microglia in experimental autoimmune encephalomyelitis; Alzheimer’s disease; stroke; and more recently in CNS infection caused by Herpes simplex virus, murine hepatitis virus, Theiler’s murine encephalomyelitis virus, Japanese encephalitis virus and West Nile virus. The precise differentiation pathways and functions of inflammatory monocyte-derived populations in the inflamed CNS remains a contentious issue, especially in regard to the existence of monocyte-derived microglia. Furthermore, the contributions of monocyte-derived subsets to viral clearance and immunopathology are not well-defined. Thus, understanding the pathways through which inflammatory monocytes migrate to the brain and their functional capacity within the CNS is critical to inform future therapeutic strategies. This review discusses some of the key aspects of inflammatory monocyte trafficking to the brain and addresses the role of these cells in viral encephalitis.
Literature
2.
go back to reference Whitley R, Gnann J: Viral encephalitis: familiar infections and emerging pathogens. Lancet 2002, 359:507–513.PubMedCrossRef Whitley R, Gnann J: Viral encephalitis: familiar infections and emerging pathogens. Lancet 2002, 359:507–513.PubMedCrossRef
3.
go back to reference Raschilas F, Wolff M, Delatour F, Chaffaut C, De Broucker T, Chevret S, Lebon P, Canton P, Rozenberg F: Outcome of and prognostic factors for herpes simplex encephalitis in adult patients: results of a multicenter study. Clin Infect Dis 2002, 35:254–260.PubMedCrossRef Raschilas F, Wolff M, Delatour F, Chaffaut C, De Broucker T, Chevret S, Lebon P, Canton P, Rozenberg F: Outcome of and prognostic factors for herpes simplex encephalitis in adult patients: results of a multicenter study. Clin Infect Dis 2002, 35:254–260.PubMedCrossRef
4.
go back to reference Lawrence DM, Major EO: HIV-1 and the brain: connections between HIV-1-associated dementia, neuropathology and neuroimmunology. Microbes Infect 2002, 4:301–308.PubMedCrossRef Lawrence DM, Major EO: HIV-1 and the brain: connections between HIV-1-associated dementia, neuropathology and neuroimmunology. Microbes Infect 2002, 4:301–308.PubMedCrossRef
5.
6.
go back to reference Utley TF, Ogden JA, Gibb A, McGrath N, Anderson NE: The long-term neuropsychological outcome of herpes simplex encephalitis in a series of unselected survivors. Neuropsychiatry Neuropsychol Behav Neurol 1997, 10:180–189.PubMed Utley TF, Ogden JA, Gibb A, McGrath N, Anderson NE: The long-term neuropsychological outcome of herpes simplex encephalitis in a series of unselected survivors. Neuropsychiatry Neuropsychol Behav Neurol 1997, 10:180–189.PubMed
7.
go back to reference McGrath N, Anderson NE, Croxson MC, Powell KF: Herpes simplex encephalitis treated with acyclovir: diagnosis and long term outcome. J Neurol Neurosurg Psychiatry 1997, 63:321–326.PubMedPubMedCentralCrossRef McGrath N, Anderson NE, Croxson MC, Powell KF: Herpes simplex encephalitis treated with acyclovir: diagnosis and long term outcome. J Neurol Neurosurg Psychiatry 1997, 63:321–326.PubMedPubMedCentralCrossRef
9.
go back to reference Ito Y, Kimura H, Yabuta Y, Ando Y, Murakami T, Shiomi M, Morishima T: Exacerbation of herpes simplex encephalitis after successful treatment with acyclovir. Clin Infect Dis 2000, 30:185–187.PubMedCrossRef Ito Y, Kimura H, Yabuta Y, Ando Y, Murakami T, Shiomi M, Morishima T: Exacerbation of herpes simplex encephalitis after successful treatment with acyclovir. Clin Infect Dis 2000, 30:185–187.PubMedCrossRef
11.
go back to reference Getts DR, Terry RL, Getts MT, Muller M, Rana S, Shrestha B, Radford J, Van Rooijen N, Campbell IL, King NJ: Ly6c+ "inflammatory monocytes" are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med 2008, 205:2319–2337.PubMedPubMedCentralCrossRef Getts DR, Terry RL, Getts MT, Muller M, Rana S, Shrestha B, Radford J, Van Rooijen N, Campbell IL, King NJ: Ly6c+ "inflammatory monocytes" are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med 2008, 205:2319–2337.PubMedPubMedCentralCrossRef
12.
go back to reference Christophi GP, Massa PT: Central neuroinvasion and demyelination by inflammatory macrophages after peripheral virus infection is controlled by SHP-1. Viral Immunol 2009, 22:371–387.PubMedPubMedCentralCrossRef Christophi GP, Massa PT: Central neuroinvasion and demyelination by inflammatory macrophages after peripheral virus infection is controlled by SHP-1. Viral Immunol 2009, 22:371–387.PubMedPubMedCentralCrossRef
13.
go back to reference Templeton S, Kim T, O'Malley K, Perlman S: Maturation and localization of macrophages and microglia during infection with a neurotropic murine coronavirus. Brain Pathol 2008, 18:40–51.PubMedCrossRef Templeton S, Kim T, O'Malley K, Perlman S: Maturation and localization of macrophages and microglia during infection with a neurotropic murine coronavirus. Brain Pathol 2008, 18:40–51.PubMedCrossRef
14.
go back to reference Marques CP, Cheeran MC, Palmquist JM, Hu S, Urban SL, Lokensgard JR: Prolonged microglial cell activation and lymphocyte infiltration following experimental herpes encephalitis. J Immunol 2008, 181:6417–6426.PubMedPubMedCentralCrossRef Marques CP, Cheeran MC, Palmquist JM, Hu S, Urban SL, Lokensgard JR: Prolonged microglial cell activation and lymphocyte infiltration following experimental herpes encephalitis. J Immunol 2008, 181:6417–6426.PubMedPubMedCentralCrossRef
15.
go back to reference Liang XH, Goldman JE, Jiang HH, Levine B: Resistance of interleukin-1beta-deficient mice to fatal Sindbis virus encephalitis. J Virol 1999, 73:2563–2567.PubMedPubMedCentral Liang XH, Goldman JE, Jiang HH, Levine B: Resistance of interleukin-1beta-deficient mice to fatal Sindbis virus encephalitis. J Virol 1999, 73:2563–2567.PubMedPubMedCentral
16.
go back to reference Sergerie Y, Rivest S, Boivin G: Tumor necrosis factor-alpha and interleukin-1 beta play a critical role in the resistance against lethal herpes simplex virus encephalitis. J Infect Dis 2007, 196:853–860.PubMedCrossRef Sergerie Y, Rivest S, Boivin G: Tumor necrosis factor-alpha and interleukin-1 beta play a critical role in the resistance against lethal herpes simplex virus encephalitis. J Infect Dis 2007, 196:853–860.PubMedCrossRef
17.
go back to reference Libbey JE, Kennett NJ, Wilcox KS, White HS, Fujinami RS: Interleukin-6, produced by resident cells of the central nervous system and infiltrating cells, contributes to the development of seizures following viral infection. J Virol 2011, 85:6913–6922.PubMedPubMedCentralCrossRef Libbey JE, Kennett NJ, Wilcox KS, White HS, Fujinami RS: Interleukin-6, produced by resident cells of the central nervous system and infiltrating cells, contributes to the development of seizures following viral infection. J Virol 2011, 85:6913–6922.PubMedPubMedCentralCrossRef
18.
go back to reference Shaftel SS, Carlson TJ, Olschowka JA, Kyrkanides S, Matousek SB, O'Banion MK: Chronic interleukin-1beta expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood brain barrier permeability without overt neurodegeneration. J Neurosci 2007, 27:9301–9309.PubMedCrossRef Shaftel SS, Carlson TJ, Olschowka JA, Kyrkanides S, Matousek SB, O'Banion MK: Chronic interleukin-1beta expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood brain barrier permeability without overt neurodegeneration. J Neurosci 2007, 27:9301–9309.PubMedCrossRef
19.
go back to reference Allan SM, Tyrrell PJ, Rothwell NJ: Interleukin-1 and neuronal injury. Nat Rev Immunol 2005, 5:629–640.PubMedCrossRef Allan SM, Tyrrell PJ, Rothwell NJ: Interleukin-1 and neuronal injury. Nat Rev Immunol 2005, 5:629–640.PubMedCrossRef
20.
go back to reference Spooren A, Kolmus K, Laureys G, Clinckers R, De Keyser J, Haegeman G, Gerlo S: Interleukin-6, a mental cytokine. Brain Res Rev 2011, 67:157–183.PubMedCrossRef Spooren A, Kolmus K, Laureys G, Clinckers R, De Keyser J, Haegeman G, Gerlo S: Interleukin-6, a mental cytokine. Brain Res Rev 2011, 67:157–183.PubMedCrossRef
21.
22.
go back to reference McCoy MK, Tansey MG: TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 2008, 5:45.PubMedPubMedCentralCrossRef McCoy MK, Tansey MG: TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 2008, 5:45.PubMedPubMedCentralCrossRef
23.
go back to reference Kapil P, Atkinson R, Ramakrishna C, Cua DJ, Bergmann CC, Stohlman SA: Interleukin-12 (IL-12), but not IL-23, deficiency ameliorates viral encephalitis without affecting viral control. J Virol 2009, 83:5978–5986.PubMedPubMedCentralCrossRef Kapil P, Atkinson R, Ramakrishna C, Cua DJ, Bergmann CC, Stohlman SA: Interleukin-12 (IL-12), but not IL-23, deficiency ameliorates viral encephalitis without affecting viral control. J Virol 2009, 83:5978–5986.PubMedPubMedCentralCrossRef
24.
go back to reference Komatsu T, Barna M, Reiss CS: Interleukin-12 promotes recovery from viral encephalitis. Viral Immunol 1997, 10:35–47.PubMedCrossRef Komatsu T, Barna M, Reiss CS: Interleukin-12 promotes recovery from viral encephalitis. Viral Immunol 1997, 10:35–47.PubMedCrossRef
25.
go back to reference Camelo S, Lafage M, Lafon M: Absence of the p55 Kd TNF-alpha receptor promotes survival in rabies virus acute encephalitis. J Neurovirol 2000, 6:507–518.PubMedCrossRef Camelo S, Lafage M, Lafon M: Absence of the p55 Kd TNF-alpha receptor promotes survival in rabies virus acute encephalitis. J Neurovirol 2000, 6:507–518.PubMedCrossRef
26.
go back to reference Ubol S, Sukwattanapan C, Maneerat Y: Inducible nitric oxide synthase inhibition delays death of rabies virus-infected mice. J Med Microbiol 2001, 50:238–242.PubMedCrossRef Ubol S, Sukwattanapan C, Maneerat Y: Inducible nitric oxide synthase inhibition delays death of rabies virus-infected mice. J Med Microbiol 2001, 50:238–242.PubMedCrossRef
27.
go back to reference Lobigs M, Mullbacher A, Wang Y, Pavy M, Lee E: Role of type I and type II interferon responses in recovery from infection with an encephalitic flavivirus. J Gen Virol 2003, 84:567–572.PubMedCrossRef Lobigs M, Mullbacher A, Wang Y, Pavy M, Lee E: Role of type I and type II interferon responses in recovery from infection with an encephalitic flavivirus. J Gen Virol 2003, 84:567–572.PubMedCrossRef
28.
go back to reference Gomez RM, Yep A, Schattner M, Berria MI: Junin virus-induced astrocytosis is impaired by iNOS inhibition. J Med Virol 2003, 69:145–149.PubMedCrossRef Gomez RM, Yep A, Schattner M, Berria MI: Junin virus-induced astrocytosis is impaired by iNOS inhibition. J Med Virol 2003, 69:145–149.PubMedCrossRef
29.
go back to reference Tucker PC, Griffin DE, Choi S, Bui N, Wesselingh S: Inhibition of nitric oxide synthesis increases mortality in Sindbis virus encephalitis. J Virol 1996, 70:3972–3977.PubMedPubMedCentral Tucker PC, Griffin DE, Choi S, Bui N, Wesselingh S: Inhibition of nitric oxide synthesis increases mortality in Sindbis virus encephalitis. J Virol 1996, 70:3972–3977.PubMedPubMedCentral
30.
go back to reference Getts DR, Terry RL, Getts MT, Muller MA, Radford J, Rana S, Ashhurst T, Deffrasnes C, Hofer M, Thomas S, Campbell IL, King NJ: Targeted blockade in lethal West Nile virus encephalitis shows a critical role for VLA-4-dependant recruitment of nitric oxide-producing macrophages. J Neuroinflammation 2012, 9:246.PubMedPubMedCentralCrossRef Getts DR, Terry RL, Getts MT, Muller MA, Radford J, Rana S, Ashhurst T, Deffrasnes C, Hofer M, Thomas S, Campbell IL, King NJ: Targeted blockade in lethal West Nile virus encephalitis shows a critical role for VLA-4-dependant recruitment of nitric oxide-producing macrophages. J Neuroinflammation 2012, 9:246.PubMedPubMedCentralCrossRef
31.
go back to reference Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM: Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 2007, 8:766–775.PubMedCrossRef Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM: Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 2007, 8:766–775.PubMedCrossRef
32.
go back to reference Wang P, Dai J, Bai F, Kong KF, Wong SJ, Montgomery RR, Madri JA, Fikrig E: Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. J Virol 2008, 82:8978–8985.PubMedPubMedCentralCrossRef Wang P, Dai J, Bai F, Kong KF, Wong SJ, Montgomery RR, Madri JA, Fikrig E: Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. J Virol 2008, 82:8978–8985.PubMedPubMedCentralCrossRef
33.
go back to reference Yong VW: Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 2005, 6:931–944.PubMedCrossRef Yong VW: Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 2005, 6:931–944.PubMedCrossRef
34.
go back to reference Yong VW, Power C, Forsyth P, Edwards DR: Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2001, 2:502–511.PubMedCrossRef Yong VW, Power C, Forsyth P, Edwards DR: Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2001, 2:502–511.PubMedCrossRef
35.
go back to reference Greene IP, Lee EY, Prow N, Ngwang B, Griffin DE: Protection from fatal viral encephalomyelitis: AMPA receptor antagonists have a direct effect on the inflammatory response to infection. Proc Natl Acad Sci USA 2008, 105:3575–3580.PubMedPubMedCentralCrossRef Greene IP, Lee EY, Prow N, Ngwang B, Griffin DE: Protection from fatal viral encephalomyelitis: AMPA receptor antagonists have a direct effect on the inflammatory response to infection. Proc Natl Acad Sci USA 2008, 105:3575–3580.PubMedPubMedCentralCrossRef
36.
go back to reference Nargi-Aizenman JL, Havert MB, Zhang M, Irani DN, Rothstein JD, Griffin DE: Glutamate receptor antagonists protect from virus-induced neural degeneration. Ann Neurol 2004, 55:541–549.PubMedCrossRef Nargi-Aizenman JL, Havert MB, Zhang M, Irani DN, Rothstein JD, Griffin DE: Glutamate receptor antagonists protect from virus-induced neural degeneration. Ann Neurol 2004, 55:541–549.PubMedCrossRef
37.
go back to reference Brison E, Jacomy H, Desforges M, Talbot PJ: Glutamate excitotoxicity is involved in the induction of paralysis in mice after infection by a human coronavirus with a single point mutation in its spike protein. J Virol 2011, 85:12464–12473.PubMedPubMedCentralCrossRef Brison E, Jacomy H, Desforges M, Talbot PJ: Glutamate excitotoxicity is involved in the induction of paralysis in mice after infection by a human coronavirus with a single point mutation in its spike protein. J Virol 2011, 85:12464–12473.PubMedPubMedCentralCrossRef
38.
go back to reference Hendriks JJ, Teunissen CE, de Vries HE, Dijkstra CD: Macrophages and neurodegeneration. Brain Res Brain Res Rev 2005, 48:185–195.PubMedCrossRef Hendriks JJ, Teunissen CE, de Vries HE, Dijkstra CD: Macrophages and neurodegeneration. Brain Res Brain Res Rev 2005, 48:185–195.PubMedCrossRef
39.
go back to reference Akashi K, Traver D, Miyamoto T, Weissman IL: A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000, 404:193–197.PubMedCrossRef Akashi K, Traver D, Miyamoto T, Weissman IL: A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000, 404:193–197.PubMedCrossRef
40.
go back to reference Spangrude GJ, Heimfeld S, Weissman IL: Purification and characterization of mouse hematopoietic stem cells. Science 1988, 241:58–62.PubMedCrossRef Spangrude GJ, Heimfeld S, Weissman IL: Purification and characterization of mouse hematopoietic stem cells. Science 1988, 241:58–62.PubMedCrossRef
41.
go back to reference Kondo M, Weissman IL, Akashi K: Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997, 91:661–672.PubMedCrossRef Kondo M, Weissman IL, Akashi K: Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997, 91:661–672.PubMedCrossRef
42.
go back to reference Morrison SJ, Weissman IL: The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1994, 1:661–673.PubMedCrossRef Morrison SJ, Weissman IL: The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1994, 1:661–673.PubMedCrossRef
43.
go back to reference Reddy MA, Yang BS, Yue X, Barnett CJ, Ross IL, Sweet MJ, Hume DA, Ostrowski MC: Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes. J Exp Med 1994, 180:2309–2319.PubMedCrossRef Reddy MA, Yang BS, Yue X, Barnett CJ, Ross IL, Sweet MJ, Hume DA, Ostrowski MC: Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes. J Exp Med 1994, 180:2309–2319.PubMedCrossRef
44.
go back to reference Krysinska H, Hoogenkamp M, Ingram R, Wilson N, Tagoh H, Laslo P, Singh H, Bonifer C: A two-step, PU.1-dependent mechanism for developmentally regulated chromatin remodeling and transcription of the c-fms gene. Mol Cell Biol 2007, 27:878–887.PubMedCrossRef Krysinska H, Hoogenkamp M, Ingram R, Wilson N, Tagoh H, Laslo P, Singh H, Bonifer C: A two-step, PU.1-dependent mechanism for developmentally regulated chromatin remodeling and transcription of the c-fms gene. Mol Cell Biol 2007, 27:878–887.PubMedCrossRef
45.
go back to reference DeKoter RP, Walsh JC, Singh H: PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J 1998, 17:4456–4468.PubMedPubMedCentralCrossRef DeKoter RP, Walsh JC, Singh H: PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J 1998, 17:4456–4468.PubMedPubMedCentralCrossRef
46.
go back to reference Tagoh H, Himes R, Clarke D, Leenen PJ, Riggs AD, Hume D, Bonifer C: Transcription factor complex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells. Genes Dev 2002, 16:1721–1737.PubMedPubMedCentralCrossRef Tagoh H, Himes R, Clarke D, Leenen PJ, Riggs AD, Hume D, Bonifer C: Transcription factor complex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells. Genes Dev 2002, 16:1721–1737.PubMedPubMedCentralCrossRef
47.
go back to reference Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P, Littman DR, Cumano A, Geissmann F: A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 2006, 311:83–87.PubMedCrossRef Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P, Littman DR, Cumano A, Geissmann F: A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 2006, 311:83–87.PubMedCrossRef
48.
go back to reference Auffray C, Fogg D, Narni-Mancinelli E, Senechal B, Trouillet C, Saederup N, Leemput J, Bigot K, Campisi L, Abitbol M, Molina T, Charo I, Hume DA, Cumano A, Lauvau G, Geissmann F: CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J Exp Med 2009, 206:595–606.PubMedPubMedCentralCrossRef Auffray C, Fogg D, Narni-Mancinelli E, Senechal B, Trouillet C, Saederup N, Leemput J, Bigot K, Campisi L, Abitbol M, Molina T, Charo I, Hume DA, Cumano A, Lauvau G, Geissmann F: CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J Exp Med 2009, 206:595–606.PubMedPubMedCentralCrossRef
49.
go back to reference Fogg D, Sibon C, Miled C, Jung S, Aucouturier P, Littman D, Cumano A, Geissmann F: A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 2006, 311:83–87.PubMedCrossRef Fogg D, Sibon C, Miled C, Jung S, Aucouturier P, Littman D, Cumano A, Geissmann F: A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 2006, 311:83–87.PubMedCrossRef
50.
go back to reference Auffray C, Sieweke MH, Geissmann F: Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 2009, 27:669–692.PubMedCrossRef Auffray C, Sieweke MH, Geissmann F: Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 2009, 27:669–692.PubMedCrossRef
51.
go back to reference Geissmann F, Jung S, Littman D: Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003, 19:71–82.PubMedCrossRef Geissmann F, Jung S, Littman D: Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003, 19:71–82.PubMedCrossRef
52.
go back to reference Strauss-Ayali A, Conrad SM, Mosser D: Monocyte subpopulations and their differentiation patterns during infection. JLB 2007, 82:244–252.PubMedCrossRef Strauss-Ayali A, Conrad SM, Mosser D: Monocyte subpopulations and their differentiation patterns during infection. JLB 2007, 82:244–252.PubMedCrossRef
53.
54.
go back to reference Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ: Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009, 325:612–616.PubMedPubMedCentralCrossRef Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ: Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009, 325:612–616.PubMedPubMedCentralCrossRef
55.
go back to reference Leuschner F, Panizzi P, Chico-Calero I, Lee WW, Ueno T, Cortez-Retamozo V, Waterman P, Gorbatov R, Marinelli B, Iwamoto Y, Chudnovskiy A, Figueiredo JL, Sosnovik DE, Pittet MJ, Swirski FK, Weissleder R, Nahrendorf M: Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res 2010, 107:1364–1373.PubMedPubMedCentralCrossRef Leuschner F, Panizzi P, Chico-Calero I, Lee WW, Ueno T, Cortez-Retamozo V, Waterman P, Gorbatov R, Marinelli B, Iwamoto Y, Chudnovskiy A, Figueiredo JL, Sosnovik DE, Pittet MJ, Swirski FK, Weissleder R, Nahrendorf M: Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res 2010, 107:1364–1373.PubMedPubMedCentralCrossRef
56.
go back to reference Leuschner F, Rauch PJ, Ueno T, Gorbatov R, Marinelli B, Lee WW, Dutta P, Wei Y, Robbins C, Iwamoto Y, Sena B, Chudnovskiy A, Panizzi P, Keliher E, Higgins JM, Libby P, Moskowitz MA, Pittet MJ, Swirski FK, Weissleder R, Nahrendorf M: Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med 2012, 209:123–137.PubMedPubMedCentralCrossRef Leuschner F, Rauch PJ, Ueno T, Gorbatov R, Marinelli B, Lee WW, Dutta P, Wei Y, Robbins C, Iwamoto Y, Sena B, Chudnovskiy A, Panizzi P, Keliher E, Higgins JM, Libby P, Moskowitz MA, Pittet MJ, Swirski FK, Weissleder R, Nahrendorf M: Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med 2012, 209:123–137.PubMedPubMedCentralCrossRef
57.
58.
go back to reference Sunderkötter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, Leenen PJM: Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 2004, 172:4410–4417.PubMedCrossRef Sunderkötter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, Leenen PJM: Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 2004, 172:4410–4417.PubMedCrossRef
60.
go back to reference Swirski FK, Weissleder R, Pittet MJ: Heterogeneous in vivo behavior of monocyte subsets in atherosclerosis. Arterioscler Thromb Vasc Biol 2009, 29:1424–1432.PubMedPubMedCentralCrossRef Swirski FK, Weissleder R, Pittet MJ: Heterogeneous in vivo behavior of monocyte subsets in atherosclerosis. Arterioscler Thromb Vasc Biol 2009, 29:1424–1432.PubMedPubMedCentralCrossRef
61.
go back to reference Tacke F, Alvarez D, Kaplan T, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N, Lira SA, Habenicht AJ, Randolph GJ: Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 2007, 117:185–194.PubMedPubMedCentralCrossRef Tacke F, Alvarez D, Kaplan T, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N, Lira SA, Habenicht AJ, Randolph GJ: Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 2007, 117:185–194.PubMedPubMedCentralCrossRef
62.
go back to reference Swirski F, Libby P, Aikawa E, Alcaide P, Luscinskas F, Weissleder R, Pittet M: Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 2007, 117:195–205.PubMedPubMedCentralCrossRef Swirski F, Libby P, Aikawa E, Alcaide P, Luscinskas F, Weissleder R, Pittet M: Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 2007, 117:195–205.PubMedPubMedCentralCrossRef
63.
go back to reference Bruhl H, Cihak J, Plachy J, Kunz-Schughart L, Niedermeier M, Denzel A, Rodriguez Gomez M, Talke Y, Luckow B, Stangassinger M, Mack M: Targeting of Gr-1+,CCR2+ monocytes in collagen-induced arthritis. Arthritis Rheum 2007, 56:2975–2985.PubMedCrossRef Bruhl H, Cihak J, Plachy J, Kunz-Schughart L, Niedermeier M, Denzel A, Rodriguez Gomez M, Talke Y, Luckow B, Stangassinger M, Mack M: Targeting of Gr-1+,CCR2+ monocytes in collagen-induced arthritis. Arthritis Rheum 2007, 56:2975–2985.PubMedCrossRef
64.
go back to reference Waddell A, Ahrens R, Steinbrecher K, Donovan B, Rothenberg ME, Munitz A, Hogan SP: Colonic eosinophilic inflammation in experimental colitis is mediated by Ly6C(high) CCR2(+) inflammatory monocyte/macrophage-derived CCL11. J Immunol 2011, 186:5993–6003.PubMedPubMedCentralCrossRef Waddell A, Ahrens R, Steinbrecher K, Donovan B, Rothenberg ME, Munitz A, Hogan SP: Colonic eosinophilic inflammation in experimental colitis is mediated by Ly6C(high) CCR2(+) inflammatory monocyte/macrophage-derived CCL11. J Immunol 2011, 186:5993–6003.PubMedPubMedCentralCrossRef
65.
go back to reference Nahrendorf M, Swirski F, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo J, Libby P, Weissleder R, Pittet M: The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 2007, 204:3037–3047.PubMedPubMedCentralCrossRef Nahrendorf M, Swirski F, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo J, Libby P, Weissleder R, Pittet M: The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 2007, 204:3037–3047.PubMedPubMedCentralCrossRef
66.
go back to reference King IL, Dickendesher TL, Segal BM: Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 2009, 113:3190–3197.PubMedPubMedCentralCrossRef King IL, Dickendesher TL, Segal BM: Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 2009, 113:3190–3197.PubMedPubMedCentralCrossRef
67.
go back to reference Mildner A, Mack M, Schmidt H, Bruck W, Djukic M, Zabel MD, Hille A, Priller J, Prinz M: CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 2009, 132:2487–2500.PubMedCrossRef Mildner A, Mack M, Schmidt H, Bruck W, Djukic M, Zabel MD, Hille A, Priller J, Prinz M: CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 2009, 132:2487–2500.PubMedCrossRef
68.
go back to reference Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B, Murugaiyan G, Doykan CE, Wu PM, Gali RR, Iyer LK, Lawson R, Berry J, Krichevsky AM, Cudkowicz ME, Weiner HL: Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 2012, 122:3063–3087.PubMedPubMedCentralCrossRef Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B, Murugaiyan G, Doykan CE, Wu PM, Gali RR, Iyer LK, Lawson R, Berry J, Krichevsky AM, Cudkowicz ME, Weiner HL: Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 2012, 122:3063–3087.PubMedPubMedCentralCrossRef
69.
go back to reference Christophi GP, Hudson CA, Panos M, Gruber RC, Massa PT: Modulation of macrophage infiltration and inflammatory activity by the phosphatase SHP-1 in virus-induced demyelinating disease. J Virol 2009, 83:522–539.PubMedCrossRef Christophi GP, Hudson CA, Panos M, Gruber RC, Massa PT: Modulation of macrophage infiltration and inflammatory activity by the phosphatase SHP-1 in virus-induced demyelinating disease. J Virol 2009, 83:522–539.PubMedCrossRef
70.
go back to reference Tacke F, Randolph G: Migratory fate and differentiation of blood monocyte subsets. Immunobiology 2006, 211:609–618.PubMedCrossRef Tacke F, Randolph G: Migratory fate and differentiation of blood monocyte subsets. Immunobiology 2006, 211:609–618.PubMedCrossRef
71.
go back to reference Varol C, Landsman L, Fogg D, Greenshtein L, Gildor B, Margalit R, Kalchenko V, Geissmann F, Jung S: Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med 2007, 204:171–180.PubMedPubMedCentralCrossRef Varol C, Landsman L, Fogg D, Greenshtein L, Gildor B, Margalit R, Kalchenko V, Geissmann F, Jung S: Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med 2007, 204:171–180.PubMedPubMedCentralCrossRef
72.
go back to reference Davison AM, King NJ: Accelerated dendritic cell differentiation from migrating Ly6C(lo) bone marrow monocytes in early dermal West Nile virus infection. J Immunol 2011, 186:2382–2396.PubMedCrossRef Davison AM, King NJ: Accelerated dendritic cell differentiation from migrating Ly6C(lo) bone marrow monocytes in early dermal West Nile virus infection. J Immunol 2011, 186:2382–2396.PubMedCrossRef
73.
go back to reference Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F: Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007, 317:666–670.PubMedCrossRef Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F: Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007, 317:666–670.PubMedCrossRef
74.
go back to reference Saederup N, Cardona A, Croft K, Mizutani M, Cotleur A, Tsou C, Ransohoff R, Charo I: Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 2010, 5:e13693.PubMedPubMedCentralCrossRef Saederup N, Cardona A, Croft K, Mizutani M, Cotleur A, Tsou C, Ransohoff R, Charo I: Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 2010, 5:e13693.PubMedPubMedCentralCrossRef
75.
go back to reference Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T: Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996, 382:635–638.PubMedCrossRef Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T: Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996, 382:635–638.PubMedCrossRef
76.
go back to reference Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR: Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998, 393:595–599.PubMedCrossRef Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR: Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998, 393:595–599.PubMedCrossRef
77.
go back to reference Hidalgo A, Sanz-Rodriguez F, Rodriguez-Fernandez JL, Albella B, Blaya C, Wright N, Cabanas C, Prosper F, Gutierrez-Ramos JC, Teixido J: Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells. Exp Hematol 2001, 29:345–355.PubMedCrossRef Hidalgo A, Sanz-Rodriguez F, Rodriguez-Fernandez JL, Albella B, Blaya C, Wright N, Cabanas C, Prosper F, Gutierrez-Ramos JC, Teixido J: Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells. Exp Hematol 2001, 29:345–355.PubMedCrossRef
78.
go back to reference Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA: A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 1996, 184:1101–1109.PubMedCrossRef Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA: A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 1996, 184:1101–1109.PubMedCrossRef
79.
go back to reference Katayama Y, Hidalgo A, Peired A, Frenette PS: Integrin alpha4beta7 and its counterreceptor MAdCAM-1 contribute to hematopoietic progenitor recruitment into bone marrow following transplantation. Blood 2004, 104:2020–2026.PubMedCrossRef Katayama Y, Hidalgo A, Peired A, Frenette PS: Integrin alpha4beta7 and its counterreceptor MAdCAM-1 contribute to hematopoietic progenitor recruitment into bone marrow following transplantation. Blood 2004, 104:2020–2026.PubMedCrossRef
80.
go back to reference Sanz-Rodriguez F, Hidalgo A, Teixido J: Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 2001, 97:346–351.PubMedCrossRef Sanz-Rodriguez F, Hidalgo A, Teixido J: Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 2001, 97:346–351.PubMedCrossRef
81.
go back to reference Serbina N, Pamer E: Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 2006, 7:311–317.PubMedCrossRef Serbina N, Pamer E: Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 2006, 7:311–317.PubMedCrossRef
82.
go back to reference Shi C, Velazquez P, Hohl T, Leiner I, Dustin M, Pamer E: Monocyte trafficking to hepatic sites of bacterial infection is chemokine independent and directed by focal intercellular adhesion molecule-1 expression. J Immunol 2010, 184:6266–6274.PubMedPubMedCentralCrossRef Shi C, Velazquez P, Hohl T, Leiner I, Dustin M, Pamer E: Monocyte trafficking to hepatic sites of bacterial infection is chemokine independent and directed by focal intercellular adhesion molecule-1 expression. J Immunol 2010, 184:6266–6274.PubMedPubMedCentralCrossRef
83.
go back to reference Jia T, Serbina NV, Brandl K, Zhong MX, Leiner IM, Charo IF, Pamer EG: Additive roles for MCP-1 and MCP-3 in CCR2-mediated recruitment of inflammatory monocytes during Listeria monocytogenes infection. J Immunol 2008, 180:6846–6853.PubMedPubMedCentralCrossRef Jia T, Serbina NV, Brandl K, Zhong MX, Leiner IM, Charo IF, Pamer EG: Additive roles for MCP-1 and MCP-3 in CCR2-mediated recruitment of inflammatory monocytes during Listeria monocytogenes infection. J Immunol 2008, 180:6846–6853.PubMedPubMedCentralCrossRef
84.
go back to reference Engel D, Maurer J, Tittel A, Weisheit C, Cavlar T, Schumak B, Limmer A, van Rooijen N, Trautwein C, Tacke F, Kurts C: CCR2 mediates homeostatic and inflammatory release of Gr1(high) monocytes from the bone marrow, but is dispensable for bladder infiltration in bacterial urinary tract infection. J Immunol 2008, 181:5579–5586.PubMedCrossRef Engel D, Maurer J, Tittel A, Weisheit C, Cavlar T, Schumak B, Limmer A, van Rooijen N, Trautwein C, Tacke F, Kurts C: CCR2 mediates homeostatic and inflammatory release of Gr1(high) monocytes from the bone marrow, but is dispensable for bladder infiltration in bacterial urinary tract infection. J Immunol 2008, 181:5579–5586.PubMedCrossRef
85.
go back to reference Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, Mack M, Charo IF: Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 2007, 117:902–909.PubMedPubMedCentralCrossRef Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, Mack M, Charo IF: Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 2007, 117:902–909.PubMedPubMedCentralCrossRef
86.
go back to reference Wang Y, Cui L, Gonsiorek W, Min SH, Anilkumar G, Rosenblum S, Kozlowski J, Lundell D, Fine JS, Grant EP: CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis. J Inflamm (Lond) 2009, 6:32.CrossRef Wang Y, Cui L, Gonsiorek W, Min SH, Anilkumar G, Rosenblum S, Kozlowski J, Lundell D, Fine JS, Grant EP: CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis. J Inflamm (Lond) 2009, 6:32.CrossRef
87.
go back to reference Boivin N, Menasria R, Gosselin D, Rivest S, Boivin G: Impact of deficiency in CCR2 and CX3CR1 receptors on monocytes trafficking in herpes simplex virus encephalitis. J Gen Virol 2012, 93:1294–1304.PubMedCrossRef Boivin N, Menasria R, Gosselin D, Rivest S, Boivin G: Impact of deficiency in CCR2 and CX3CR1 receptors on monocytes trafficking in herpes simplex virus encephalitis. J Gen Virol 2012, 93:1294–1304.PubMedCrossRef
88.
go back to reference Chen BP, Kuziel WA, Lane TE: Lack of CCR2 results in increased mortality and impaired leukocyte activation and trafficking following infection of the central nervous system with a neurotropic coronavirus. J Immunol 2001, 167:4585–4592.PubMedCrossRef Chen BP, Kuziel WA, Lane TE: Lack of CCR2 results in increased mortality and impaired leukocyte activation and trafficking following infection of the central nervous system with a neurotropic coronavirus. J Immunol 2001, 167:4585–4592.PubMedCrossRef
89.
go back to reference Ruzek D, Salat J, Singh SK, Kopecky J: Breakdown of the blood–brain barrier during tick-borne encephalitis in mice is not dependent on CD8+ T-cells. PLoS One 2011, 6:e20472.PubMedPubMedCentralCrossRef Ruzek D, Salat J, Singh SK, Kopecky J: Breakdown of the blood–brain barrier during tick-borne encephalitis in mice is not dependent on CD8+ T-cells. PLoS One 2011, 6:e20472.PubMedPubMedCentralCrossRef
90.
go back to reference Glass WG, Lim JK, Cholera R, Pletnev AG, Gao JL, Murphy PM: Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 2005, 202:1087–1098.PubMedPubMedCentralCrossRef Glass WG, Lim JK, Cholera R, Pletnev AG, Gao JL, Murphy PM: Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 2005, 202:1087–1098.PubMedPubMedCentralCrossRef
91.
go back to reference Glass WG, Liu MT, Kuziel WA, Lane TE: Reduced macrophage infiltration and demyelination in mice lacking the chemokine receptor CCR5 following infection with a neurotropic coronavirus. Virology 2001, 288:8–17.PubMedCrossRef Glass WG, Liu MT, Kuziel WA, Lane TE: Reduced macrophage infiltration and demyelination in mice lacking the chemokine receptor CCR5 following infection with a neurotropic coronavirus. Virology 2001, 288:8–17.PubMedCrossRef
92.
go back to reference Vilela MC, Mansur DS, Lacerda-Queiroz N, Rodrigues DH, Lima GK, Arantes RM, Kroon EG, Da Silva Campos MA, Teixeira MM, Teixeira AL: The chemokine CCL5 is essential for leukocyte recruitment in a model of severe Herpes simplex encephalitis. Ann N Y Acad Sci 2009, 1153:256–263.PubMedCrossRef Vilela MC, Mansur DS, Lacerda-Queiroz N, Rodrigues DH, Lima GK, Arantes RM, Kroon EG, Da Silva Campos MA, Teixeira MM, Teixeira AL: The chemokine CCL5 is essential for leukocyte recruitment in a model of severe Herpes simplex encephalitis. Ann N Y Acad Sci 2009, 1153:256–263.PubMedCrossRef
93.
go back to reference Malik M, Chen YY, Kienzle MF, Tomkowicz BE, Collman RG, Ptasznik A: Monocyte migration and LFA-1-mediated attachment to brain microvascular endothelia is regulated by SDF-1 alpha through Lyn kinase. J Immunol 2008, 181:4632–4637.PubMedPubMedCentralCrossRef Malik M, Chen YY, Kienzle MF, Tomkowicz BE, Collman RG, Ptasznik A: Monocyte migration and LFA-1-mediated attachment to brain microvascular endothelia is regulated by SDF-1 alpha through Lyn kinase. J Immunol 2008, 181:4632–4637.PubMedPubMedCentralCrossRef
94.
go back to reference McCandless EE, Wang Q, Woerner BM, Harper JM, Klein RS: CXCL12 limits inflammation by localizing mononuclear infiltrates to the perivascular space during experimental autoimmune encephalomyelitis. J Immunol 2006, 177:8053–8064.PubMedCrossRef McCandless EE, Wang Q, Woerner BM, Harper JM, Klein RS: CXCL12 limits inflammation by localizing mononuclear infiltrates to the perivascular space during experimental autoimmune encephalomyelitis. J Immunol 2006, 177:8053–8064.PubMedCrossRef
95.
go back to reference Peng H, Erdmann N, Whitney N, Dou H, Gorantla S, Gendelman HE, Ghorpade A, Zheng J: HIV-1-infected and/or immune activated macrophages regulate astrocyte SDF-1 production through IL-1beta. Glia 2006, 54:619–629.PubMedPubMedCentralCrossRef Peng H, Erdmann N, Whitney N, Dou H, Gorantla S, Gendelman HE, Ghorpade A, Zheng J: HIV-1-infected and/or immune activated macrophages regulate astrocyte SDF-1 production through IL-1beta. Glia 2006, 54:619–629.PubMedPubMedCentralCrossRef
96.
go back to reference McCandless EE, Zhang B, Diamond MS, Klein RS: CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis. Proc Natl Acad Sci USA 2008, 105:11270–11275.PubMedPubMedCentralCrossRef McCandless EE, Zhang B, Diamond MS, Klein RS: CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis. Proc Natl Acad Sci USA 2008, 105:11270–11275.PubMedPubMedCentralCrossRef
97.
go back to reference D'Mello C, Le T, Swain M: Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci 2009, 29:2089–2102.PubMedCrossRef D'Mello C, Le T, Swain M: Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci 2009, 29:2089–2102.PubMedCrossRef
98.
99.
go back to reference Mildner A, Schlevogt B, Kierdorf K, Bottcher C, Erny D, Kummer MP, Quinn M, Bruck W, Bechmann I, Heneka MT, Priller J, Prinz M: Distinct and Non-Redundant Roles of Microglia and Myeloid Subsets in Mouse Models of Alzheimer's Disease. J Neurosci 2011, 31:11159–11171.PubMedCrossRef Mildner A, Schlevogt B, Kierdorf K, Bottcher C, Erny D, Kummer MP, Quinn M, Bruck W, Bechmann I, Heneka MT, Priller J, Prinz M: Distinct and Non-Redundant Roles of Microglia and Myeloid Subsets in Mouse Models of Alzheimer's Disease. J Neurosci 2011, 31:11159–11171.PubMedCrossRef
100.
go back to reference Izikson L, Klein RS, Charo IF, Weiner HL, Luster AD: Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J Exp Med 2000, 192:1075–1080.PubMedPubMedCentralCrossRef Izikson L, Klein RS, Charo IF, Weiner HL, Luster AD: Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J Exp Med 2000, 192:1075–1080.PubMedPubMedCentralCrossRef
101.
go back to reference Dogan RN, Elhofy A, Karpus WJ: Production of CCL2 by central nervous system cells regulates development of murine experimental autoimmune encephalomyelitis through the recruitment of TNF- and iNOS-expressing macrophages and myeloid dendritic cells. J Immunol 2008, 180:7376–7384.PubMedCrossRef Dogan RN, Elhofy A, Karpus WJ: Production of CCL2 by central nervous system cells regulates development of murine experimental autoimmune encephalomyelitis through the recruitment of TNF- and iNOS-expressing macrophages and myeloid dendritic cells. J Immunol 2008, 180:7376–7384.PubMedCrossRef
103.
go back to reference Persidsky Y, Ghorpade A, Rasmussen J, Limoges J, Liu XJ, Stins M, Fiala M, Way D, Kim KS, Witte MH, Weinand M, Carhart L, Gendelman HE: Microglial and astrocyte chemokines regulate monocyte migration through the blood–brain barrier in human immunodeficiency virus-1 encephalitis. Am J Pathol 1999, 155:1599–1611.PubMedPubMedCentralCrossRef Persidsky Y, Ghorpade A, Rasmussen J, Limoges J, Liu XJ, Stins M, Fiala M, Way D, Kim KS, Witte MH, Weinand M, Carhart L, Gendelman HE: Microglial and astrocyte chemokines regulate monocyte migration through the blood–brain barrier in human immunodeficiency virus-1 encephalitis. Am J Pathol 1999, 155:1599–1611.PubMedPubMedCentralCrossRef
104.
go back to reference Marques CP, Hu S, Sheng W, Lokensgard JR: Microglial cells initiate vigorous yet non-protective immune responses during HSV-1 brain infection. Virus Res 2006, 121:1–10.PubMedCrossRef Marques CP, Hu S, Sheng W, Lokensgard JR: Microglial cells initiate vigorous yet non-protective immune responses during HSV-1 brain infection. Virus Res 2006, 121:1–10.PubMedCrossRef
105.
go back to reference Savarin C, Stohlman SA, Atkinson R, Ransohoff RM, Bergmann CC: Monocytes regulate T cell migration through the glia limitans during acute viral encephalitis. J Virol 2010, 84:4878–4888.PubMedPubMedCentralCrossRef Savarin C, Stohlman SA, Atkinson R, Ransohoff RM, Bergmann CC: Monocytes regulate T cell migration through the glia limitans during acute viral encephalitis. J Virol 2010, 84:4878–4888.PubMedPubMedCentralCrossRef
106.
go back to reference Held KS, Chen BP, Kuziel WA, Rollins BJ, Lane TE: Differential roles of CCL2 and CCR2 in host defense to coronavirus infection. Virology 2004, 329:251–260.PubMedCrossRef Held KS, Chen BP, Kuziel WA, Rollins BJ, Lane TE: Differential roles of CCL2 and CCR2 in host defense to coronavirus infection. Virology 2004, 329:251–260.PubMedCrossRef
107.
108.
go back to reference Bennett JL, Elhofy A, Charo I, Miller SD, Dal Canto MC, Karpus WJ: CCR2 regulates development of Theiler's murine encephalomyelitis virus-induced demyelinating disease. Viral Immunol 2007, 20:19–33.PubMedCrossRef Bennett JL, Elhofy A, Charo I, Miller SD, Dal Canto MC, Karpus WJ: CCR2 regulates development of Theiler's murine encephalomyelitis virus-induced demyelinating disease. Viral Immunol 2007, 20:19–33.PubMedCrossRef
109.
go back to reference Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N: Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 1992, 356:63–66.PubMedCrossRef Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N: Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 1992, 356:63–66.PubMedCrossRef
110.
go back to reference Gordon EJ, Myers KJ, Dougherty JP, Rosen H, Ron Y: Both anti-CD11a (LFA-1) and anti-CD11b (MAC-1) therapy delay the onset and diminish the severity of experimental autoimmune encephalomyelitis. J Neuroimmunol 1995, 62:153–160.PubMedCrossRef Gordon EJ, Myers KJ, Dougherty JP, Rosen H, Ron Y: Both anti-CD11a (LFA-1) and anti-CD11b (MAC-1) therapy delay the onset and diminish the severity of experimental autoimmune encephalomyelitis. J Neuroimmunol 1995, 62:153–160.PubMedCrossRef
111.
go back to reference Ceulemans AG, Zgavc T, Kooijman R, Hachimi-Idrissi S, Sarre S, Michotte Y: The dual role of the neuroinflammatory response after ischemic stroke: modulatory effects of hypothermia. J Neuroinflammation 2010, 7:74.PubMedPubMedCentralCrossRef Ceulemans AG, Zgavc T, Kooijman R, Hachimi-Idrissi S, Sarre S, Michotte Y: The dual role of the neuroinflammatory response after ischemic stroke: modulatory effects of hypothermia. J Neuroinflammation 2010, 7:74.PubMedPubMedCentralCrossRef
112.
go back to reference Persidsky Y, Buttini M, Limoges J, Bock P, Gendelman HE: An analysis of HIV-1-associated inflammatory products in brain tissue of humans and SCID mice with HIV-1 encephalitis. J Neurovirol 1997, 3:401–416.PubMedCrossRef Persidsky Y, Buttini M, Limoges J, Bock P, Gendelman HE: An analysis of HIV-1-associated inflammatory products in brain tissue of humans and SCID mice with HIV-1 encephalitis. J Neurovirol 1997, 3:401–416.PubMedCrossRef
113.
go back to reference Lewandowski G, Hobbs MV: Evidence for deficiencies in intracerebral cytokine production, adhesion molecule induction, and T cell recruitment in herpes simplex virus type-2 infected mice. J Neuroimmunol 1998, 81:58–65.PubMedCrossRef Lewandowski G, Hobbs MV: Evidence for deficiencies in intracerebral cytokine production, adhesion molecule induction, and T cell recruitment in herpes simplex virus type-2 infected mice. J Neuroimmunol 1998, 81:58–65.PubMedCrossRef
114.
go back to reference Sharma A, Bhomia M, Honnold SP, Maheshwari RK: Role of adhesion molecules and inflammation in Venezuelan equine encephalitis virus infected mouse brain. Virol J 2011, 8:197.PubMedPubMedCentralCrossRef Sharma A, Bhomia M, Honnold SP, Maheshwari RK: Role of adhesion molecules and inflammation in Venezuelan equine encephalitis virus infected mouse brain. Virol J 2011, 8:197.PubMedPubMedCentralCrossRef
115.
go back to reference Mishra MK, Dutta K, Saheb SK, Basu A: Understanding the molecular mechanism of blood–brain barrier damage in an experimental model of Japanese encephalitis: correlation with minocycline administration as a therapeutic agent. Neurochem Int 2009, 55:717–723.PubMedCrossRef Mishra MK, Dutta K, Saheb SK, Basu A: Understanding the molecular mechanism of blood–brain barrier damage in an experimental model of Japanese encephalitis: correlation with minocycline administration as a therapeutic agent. Neurochem Int 2009, 55:717–723.PubMedCrossRef
116.
go back to reference Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos JC, Connelly PW, Milstone DS: A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 2001, 107:1255–1262.PubMedPubMedCentralCrossRef Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos JC, Connelly PW, Milstone DS: A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 2001, 107:1255–1262.PubMedPubMedCentralCrossRef
117.
go back to reference Barringhaus KG, Phillips JW, Thatte JS, Sanders JM, Czarnik AC, Bennett DK, Ley KF, Sarembock IJ: Alpha4beta1 integrin (VLA-4) blockade attenuates both early and late leukocyte recruitment and neointimal growth following carotid injury in apolipoprotein E (−/−) mice. J Vasc Res 2004, 41:252–260.PubMedCrossRef Barringhaus KG, Phillips JW, Thatte JS, Sanders JM, Czarnik AC, Bennett DK, Ley KF, Sarembock IJ: Alpha4beta1 integrin (VLA-4) blockade attenuates both early and late leukocyte recruitment and neointimal growth following carotid injury in apolipoprotein E (−/−) mice. J Vasc Res 2004, 41:252–260.PubMedCrossRef
118.
go back to reference Huo Y, Hafezi-Moghadam A, Ley K: Role of vascular cell adhesion molecule-1 and fibronectin connecting segment-1 in monocyte rolling and adhesion on early atherosclerotic lesions. Circ Res 2000, 87:153–159.PubMedCrossRef Huo Y, Hafezi-Moghadam A, Ley K: Role of vascular cell adhesion molecule-1 and fibronectin connecting segment-1 in monocyte rolling and adhesion on early atherosclerotic lesions. Circ Res 2000, 87:153–159.PubMedCrossRef
119.
go back to reference Henderson RB, Hobbs JA, Mathies M, Hogg N: Rapid recruitment of inflammatory monocytes is independent of neutrophil migration. Blood 2003, 102:328–335.PubMedCrossRef Henderson RB, Hobbs JA, Mathies M, Hogg N: Rapid recruitment of inflammatory monocytes is independent of neutrophil migration. Blood 2003, 102:328–335.PubMedCrossRef
120.
go back to reference Fleming JC, Bao F, Chen Y, Hamilton EF, Gonzalez-Lara LE, Foster PJ, Weaver LC: Timing and duration of anti-alpha4beta1 integrin treatment after spinal cord injury: effect on therapeutic efficacy. J Neurosurg Spine 2009, 11:575–587.PubMedCrossRef Fleming JC, Bao F, Chen Y, Hamilton EF, Gonzalez-Lara LE, Foster PJ, Weaver LC: Timing and duration of anti-alpha4beta1 integrin treatment after spinal cord injury: effect on therapeutic efficacy. J Neurosurg Spine 2009, 11:575–587.PubMedCrossRef
121.
go back to reference Watanabe T, Fan J: Atherosclerosis and inflammation mononuclear cell recruitment and adhesion molecules with reference to the implication of ICAM-1/LFA-1 pathway in atherogenesis. Int J Cardiol 1998,66(1):S45-S53. discussion S55PubMedCrossRef Watanabe T, Fan J: Atherosclerosis and inflammation mononuclear cell recruitment and adhesion molecules with reference to the implication of ICAM-1/LFA-1 pathway in atherogenesis. Int J Cardiol 1998,66(1):S45-S53. discussion S55PubMedCrossRef
122.
go back to reference Patel SS, Thiagarajan R, Willerson JT, Yeh ET: Inhibition of alpha4 integrin and ICAM-1 markedly attenuate macrophage homing to atherosclerotic plaques in ApoE-deficient mice. Circulation 1998, 97:75–81.PubMedCrossRef Patel SS, Thiagarajan R, Willerson JT, Yeh ET: Inhibition of alpha4 integrin and ICAM-1 markedly attenuate macrophage homing to atherosclerotic plaques in ApoE-deficient mice. Circulation 1998, 97:75–81.PubMedCrossRef
123.
go back to reference Alliot F, Godin I, Pessac B: Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 1999, 117:145–152.PubMedCrossRef Alliot F, Godin I, Pessac B: Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 1999, 117:145–152.PubMedCrossRef
124.
go back to reference Takahashi K, Naito M, Takeya M: Development and heterogeneity of macrophages and their related cells through their differentiation pathways. Pathol Int 1996, 46:473–485.PubMedCrossRef Takahashi K, Naito M, Takeya M: Development and heterogeneity of macrophages and their related cells through their differentiation pathways. Pathol Int 1996, 46:473–485.PubMedCrossRef
125.
go back to reference Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330:841–845.PubMedPubMedCentralCrossRef Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330:841–845.PubMedPubMedCentralCrossRef
126.
go back to reference Sedgwick JD, Schwender S, Imrich H, Dorries R, Butcher GW, ter Meulen V: Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci USA 1991, 88:7438–7442.PubMedPubMedCentralCrossRef Sedgwick JD, Schwender S, Imrich H, Dorries R, Butcher GW, ter Meulen V: Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci USA 1991, 88:7438–7442.PubMedPubMedCentralCrossRef
127.
go back to reference Mack CL, Vanderlugt-Castaneda CL, Neville KL, Miller SD: Microglia are activated to become competent antigen presenting and effector cells in the inflammatory environment of the Theiler's virus model of multiple sclerosis. J Neuroimmunol 2003, 144:68–79.PubMedCrossRef Mack CL, Vanderlugt-Castaneda CL, Neville KL, Miller SD: Microglia are activated to become competent antigen presenting and effector cells in the inflammatory environment of the Theiler's virus model of multiple sclerosis. J Neuroimmunol 2003, 144:68–79.PubMedCrossRef
128.
go back to reference Simard AR, Soulet D, Gowing G, Julien JP, Rivest S: Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 2006, 49:489–502.PubMedCrossRef Simard AR, Soulet D, Gowing G, Julien JP, Rivest S: Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 2006, 49:489–502.PubMedCrossRef
129.
go back to reference Malm TM, Koistinaho M, Parepalo M, Vatanen T, Ooka A, Karlsson S, Koistinaho J: Bone-marrow-derived cells contribute to the recruitment of microglial cells in response to beta-amyloid deposition in APP/PS1 double transgenic Alzheimer mice. Neurobiol Dis 2005, 18:134–142.PubMedCrossRef Malm TM, Koistinaho M, Parepalo M, Vatanen T, Ooka A, Karlsson S, Koistinaho J: Bone-marrow-derived cells contribute to the recruitment of microglial cells in response to beta-amyloid deposition in APP/PS1 double transgenic Alzheimer mice. Neurobiol Dis 2005, 18:134–142.PubMedCrossRef
130.
go back to reference Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T, Prinz M, Priller J, Becher B, Aguzzi A: Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 2005, 11:146–152.PubMedCrossRef Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T, Prinz M, Priller J, Becher B, Aguzzi A: Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 2005, 11:146–152.PubMedCrossRef
131.
go back to reference Kokovay E, Cunningham LA: Bone marrow-derived microglia contribute to the neuroinflammatory response and express iNOS in the MPTP mouse model of Parkinson's disease. Neurobiol Dis 2005, 19:471–478.PubMedCrossRef Kokovay E, Cunningham LA: Bone marrow-derived microglia contribute to the neuroinflammatory response and express iNOS in the MPTP mouse model of Parkinson's disease. Neurobiol Dis 2005, 19:471–478.PubMedCrossRef
132.
go back to reference Priller J, Prinz M, Heikenwalder M, Zeller N, Schwarz P, Heppner FL, Aguzzi A: Early and rapid engraftment of bone marrow-derived microglia in scrapie. J Neurosci 2006, 26:11753–11762.PubMedCrossRef Priller J, Prinz M, Heikenwalder M, Zeller N, Schwarz P, Heppner FL, Aguzzi A: Early and rapid engraftment of bone marrow-derived microglia in scrapie. J Neurosci 2006, 26:11753–11762.PubMedCrossRef
133.
go back to reference Djukic M, Mildner A, Schmidt H, Czesnik D, Bruck W, Priller J, Nau R, Prinz M: Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain 2006, 129:2394–2403.PubMedCrossRef Djukic M, Mildner A, Schmidt H, Czesnik D, Bruck W, Priller J, Nau R, Prinz M: Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain 2006, 129:2394–2403.PubMedCrossRef
134.
go back to reference Stalder AK, Ermini F, Bondolfi L, Krenger W, Burbach GJ, Deller T, Coomaraswamy J, Staufenbiel M, Landmann R, Jucker M: Invasion of hematopoietic cells into the brain of amyloid precursor protein transgenic mice. J Neurosci 2005, 25:11125–11132.PubMedCrossRef Stalder AK, Ermini F, Bondolfi L, Krenger W, Burbach GJ, Deller T, Coomaraswamy J, Staufenbiel M, Landmann R, Jucker M: Invasion of hematopoietic cells into the brain of amyloid precursor protein transgenic mice. J Neurosci 2005, 25:11125–11132.PubMedCrossRef
135.
go back to reference El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 2007, 13:432–438.PubMedCrossRef El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 2007, 13:432–438.PubMedCrossRef
136.
go back to reference Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M: Microglia in the adult brain arise from Ly-6C(hi)CCR2(+) monocytes only under defined host conditions. Nat Neurosci 2007, 10:1544–1553.PubMedCrossRef Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M: Microglia in the adult brain arise from Ly-6C(hi)CCR2(+) monocytes only under defined host conditions. Nat Neurosci 2007, 10:1544–1553.PubMedCrossRef
137.
go back to reference Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM: Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 2011, 14:1142–1149.PubMedCrossRef Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM: Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 2011, 14:1142–1149.PubMedCrossRef
138.
go back to reference Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM: Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 2007, 10:1538–1543.PubMedCrossRef Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM: Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 2007, 10:1538–1543.PubMedCrossRef
139.
go back to reference Robben PM, LaRegina M, Kuziel WA, Sibley LD: Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis. J Exp Med 2005, 201:1761–1769.PubMedPubMedCentralCrossRef Robben PM, LaRegina M, Kuziel WA, Sibley LD: Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis. J Exp Med 2005, 201:1761–1769.PubMedPubMedCentralCrossRef
140.
go back to reference Dunay IR, Fuchs A, Sibley LD: Inflammatory monocytes but not neutrophils are necessary to control infection with Toxoplasma gondii in mice. Infect Immun 2010, 78:1564–1570.PubMedPubMedCentralCrossRef Dunay IR, Fuchs A, Sibley LD: Inflammatory monocytes but not neutrophils are necessary to control infection with Toxoplasma gondii in mice. Infect Immun 2010, 78:1564–1570.PubMedPubMedCentralCrossRef
141.
go back to reference Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG: TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 2003, 19:59–70.PubMedCrossRef Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG: TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 2003, 19:59–70.PubMedCrossRef
142.
go back to reference Osterholzer JJ, Curtis JL, Polak T, Ames T, Chen GH, McDonald R, Huffnagle GB, Toews GB: CCR2 mediates conventional dendritic cell recruitment and the formation of bronchovascular mononuclear cell infiltrates in the lungs of mice infected with Cryptococcus neoformans. J Immunol 2008, 181:610–620.PubMedPubMedCentralCrossRef Osterholzer JJ, Curtis JL, Polak T, Ames T, Chen GH, McDonald R, Huffnagle GB, Toews GB: CCR2 mediates conventional dendritic cell recruitment and the formation of bronchovascular mononuclear cell infiltrates in the lungs of mice infected with Cryptococcus neoformans. J Immunol 2008, 181:610–620.PubMedPubMedCentralCrossRef
143.
go back to reference Traynor TR, Kuziel WA, Toews GB, Huffnagle GB: CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J Immunol 2000, 164:2021–2027.PubMedCrossRef Traynor TR, Kuziel WA, Toews GB, Huffnagle GB: CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J Immunol 2000, 164:2021–2027.PubMedCrossRef
144.
go back to reference Ye Z, Uittenbogaard AM, Cohen DA, Kaplan AM, Ambati J, Straley SC: Distinct CCR2(+) Gr1(+) cells control growth of the Yersinia pestis DeltayopM mutant in liver and spleen during systemic plague. Infect Immun 2011, 79:674–687.PubMedCrossRef Ye Z, Uittenbogaard AM, Cohen DA, Kaplan AM, Ambati J, Straley SC: Distinct CCR2(+) Gr1(+) cells control growth of the Yersinia pestis DeltayopM mutant in liver and spleen during systemic plague. Infect Immun 2011, 79:674–687.PubMedCrossRef
145.
go back to reference Iijima N, Mattei LM, Iwasaki A: Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue. Proc Natl Acad Sci USA 2011, 108:284–289.PubMedCrossRef Iijima N, Mattei LM, Iwasaki A: Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue. Proc Natl Acad Sci USA 2011, 108:284–289.PubMedCrossRef
146.
go back to reference Sheahan T, Morrison TE, Funkhouser W, Uematsu S, Akira S, Baric RS, Heise MT: MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. PLoS Pathog 2008, 4:e1000240.PubMedPubMedCentralCrossRef Sheahan T, Morrison TE, Funkhouser W, Uematsu S, Akira S, Baric RS, Heise MT: MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. PLoS Pathog 2008, 4:e1000240.PubMedPubMedCentralCrossRef
147.
go back to reference Martinat C, Mena I, Brahic M: Theiler's virus infection of primary cultures of bone marrow-derived monocytes/macrophages. J Virol 2002, 76:12823–12833.PubMedPubMedCentralCrossRef Martinat C, Mena I, Brahic M: Theiler's virus infection of primary cultures of bone marrow-derived monocytes/macrophages. J Virol 2002, 76:12823–12833.PubMedPubMedCentralCrossRef
148.
go back to reference Lipton HL, Twaddle G, Jelachich ML: The predominant virus antigen burden is present in macrophages in Theiler's murine encephalomyelitis virus-induced demyelinating disease. J Virol 1995, 69:2525–2533.PubMedPubMedCentral Lipton HL, Twaddle G, Jelachich ML: The predominant virus antigen burden is present in macrophages in Theiler's murine encephalomyelitis virus-induced demyelinating disease. J Virol 1995, 69:2525–2533.PubMedPubMedCentral
149.
go back to reference Clatch RJ, Miller SD, Metzner R, Dal Canto MC, Lipton HL: Monocytes/macrophages isolated from the mouse central nervous system contain infectious Theiler's murine encephalomyelitis virus (TMEV). Virology 1990, 176:244–254.PubMedCrossRef Clatch RJ, Miller SD, Metzner R, Dal Canto MC, Lipton HL: Monocytes/macrophages isolated from the mouse central nervous system contain infectious Theiler's murine encephalomyelitis virus (TMEV). Virology 1990, 176:244–254.PubMedCrossRef
150.
go back to reference Blakemore WF, Welsh CJ, Tonks P, Nash AA: Observations on demyelinating lesions induced by Theiler's virus in CBA mice. Acta Neuropathol 1988, 76:581–589.PubMedCrossRef Blakemore WF, Welsh CJ, Tonks P, Nash AA: Observations on demyelinating lesions induced by Theiler's virus in CBA mice. Acta Neuropathol 1988, 76:581–589.PubMedCrossRef
151.
go back to reference Aubert C, Chamorro M, Brahic M: Identification of Theiler's virus infected cells in the central nervous system of the mouse during demyelinating disease. Microb Pathog 1987, 3:319–326.PubMedCrossRef Aubert C, Chamorro M, Brahic M: Identification of Theiler's virus infected cells in the central nervous system of the mouse during demyelinating disease. Microb Pathog 1987, 3:319–326.PubMedCrossRef
152.
go back to reference Wang H, Sun J, Goldstein H: Human immunodeficiency virus type 1 infection increases the in vivo capacity of peripheral monocytes to cross the blood–brain barrier into the brain and the in vivo sensitivity of the blood–brain barrier to disruption by lipopolysaccharide. J Virol 2008, 82:7591–7600.PubMedPubMedCentralCrossRef Wang H, Sun J, Goldstein H: Human immunodeficiency virus type 1 infection increases the in vivo capacity of peripheral monocytes to cross the blood–brain barrier into the brain and the in vivo sensitivity of the blood–brain barrier to disruption by lipopolysaccharide. J Virol 2008, 82:7591–7600.PubMedPubMedCentralCrossRef
153.
go back to reference Drevets DA, Dillon MJ, Schawang JS, Van Rooijen N, Ehrchen J, Sunderkotter C, Leenen PJ: The Ly-6Chigh monocyte subpopulation transports Listeria monocytogenes into the brain during systemic infection of mice. J Immunol 2004, 172:4418–4424.PubMedCrossRef Drevets DA, Dillon MJ, Schawang JS, Van Rooijen N, Ehrchen J, Sunderkotter C, Leenen PJ: The Ly-6Chigh monocyte subpopulation transports Listeria monocytogenes into the brain during systemic infection of mice. J Immunol 2004, 172:4418–4424.PubMedCrossRef
154.
go back to reference Drevets D, Dillon M, Schawang J, Stoner J, Leenen P: IFN-gamma triggers CCR2-independent monocyte entry into the brain during systemic infection by virulent Listeria monocytogenes. Brain Behav Immun 2010, 24:919–929.PubMedCrossRef Drevets D, Dillon M, Schawang J, Stoner J, Leenen P: IFN-gamma triggers CCR2-independent monocyte entry into the brain during systemic infection by virulent Listeria monocytogenes. Brain Behav Immun 2010, 24:919–929.PubMedCrossRef
155.
go back to reference Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F, Dromer F: Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun 2009, 77:120–127.PubMedCrossRef Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F, Dromer F: Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun 2009, 77:120–127.PubMedCrossRef
156.
go back to reference Courret N, Darche S, Sonigo P, Milon G, Buzoni-Gatel D, Tardieux I: CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood 2006, 107:309–316.PubMedPubMedCentralCrossRef Courret N, Darche S, Sonigo P, Milon G, Buzoni-Gatel D, Tardieux I: CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood 2006, 107:309–316.PubMedPubMedCentralCrossRef
157.
go back to reference Schilling M, Strecker JK, Ringelstein EB, Schabitz WR, Kiefer R: The role of CC chemokine receptor 2 on microglia activation and blood-borne cell recruitment after transient focal cerebral ischemia in mice. Brain Res 2009, 1289:79–84.PubMedCrossRef Schilling M, Strecker JK, Ringelstein EB, Schabitz WR, Kiefer R: The role of CC chemokine receptor 2 on microglia activation and blood-borne cell recruitment after transient focal cerebral ischemia in mice. Brain Res 2009, 1289:79–84.PubMedCrossRef
158.
go back to reference Schilling M, Strecker JK, Schabitz WR, Ringelstein EB, Kiefer R: Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice. Neuroscience 2009, 161:806–812.PubMedCrossRef Schilling M, Strecker JK, Schabitz WR, Ringelstein EB, Kiefer R: Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice. Neuroscience 2009, 161:806–812.PubMedCrossRef
159.
go back to reference Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC: Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2−/− mice. J Cereb Blood Flow Metab 2010, 30:769–782.PubMedCrossRef Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC: Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2−/− mice. J Cereb Blood Flow Metab 2010, 30:769–782.PubMedCrossRef
160.
go back to reference Fife BT, Huffnagle GB, Kuziel WA, Karpus WJ: CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J Exp Med 2000, 192:899–905.PubMedPubMedCentralCrossRef Fife BT, Huffnagle GB, Kuziel WA, Karpus WJ: CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J Exp Med 2000, 192:899–905.PubMedPubMedCentralCrossRef
161.
go back to reference Kennedy KJ, Strieter RM, Kunkel SL, Lukacs NW, Karpus WJ: Acute and relapsing experimental autoimmune encephalomyelitis are regulated by differential expression of the CC chemokines macrophage inflammatory protein-1alpha and monocyte chemotactic protein-1. J Neuroimmunol 1998, 92:98–108.PubMedCrossRef Kennedy KJ, Strieter RM, Kunkel SL, Lukacs NW, Karpus WJ: Acute and relapsing experimental autoimmune encephalomyelitis are regulated by differential expression of the CC chemokines macrophage inflammatory protein-1alpha and monocyte chemotactic protein-1. J Neuroimmunol 1998, 92:98–108.PubMedCrossRef
Metadata
Title
Inflammatory monocytes and the pathogenesis of viral encephalitis
Authors
Rachael L Terry
Daniel R Getts
Celine Deffrasnes
Caryn van Vreden
Iain L Campbell
Nicholas JC King
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-270

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue