Skip to main content
Top

Open Access 26-04-2024 | Diabetes | Review

Emerging Perspectives on the Impact of Diabetes Mellitus and Anti-Diabetic Drugs on Premenstrual Syndrome. A Narrative Review

Authors: Omnia Azmy Nabeh, Alaa Amr, Aml Medhat Faoosa, Eshraka Esmat, Alaa Osama, Amira Samy Khedr, Basma Amin, Alaa I. Saud, Soha Aly Elmorsy

Published in: Diabetes Therapy

Login to get access

Abstract

Diabetes mellitus (DM) and premenstrual syndrome (PMS) are global health challenges. Both disorders are often linked to a range of physical and psychological symptoms that significantly impact the quality of life of many women. Yet, the exact relation between DM and PMS is not clear, and the management of both conditions poses a considerable challenge. In this review, we aimed to investigate the interplay between DM, anti-diabetic drugs, and the different theories and symptoms of PMS. Female sex hormones are implicated in the pathophysiology of PMS and can also impair blood glucose control. In addition, patients with diabetes face a higher susceptibility to anxiety and depression disorders, with a significant number of patients experiencing symptoms such as fatigue and difficulty concentrating, which are reported in patients with PMS as well. Complications related to diabetic medications, such as hypoglycemia (with sulfonylurea) and fluid retention (with thiazolidinediones) may also mediate PMS-like symptoms. DM can, in addition, disturb the normal gut microbiota (GM), with a consequent loss of beneficial GM metabolites that guard against PMS, particularly the short-chain fatty acids and serotonin. Among the several available anti-diabetic drugs, those (1) with an anti-inflammatory potential, (2) that can preserve the beneficial GM, and (3) possessing a lower risk for hypoglycemia, might have a favorable outcome in PMS women. Yet, well-designed clinical trials are needed to investigate the anti-diabetic drug(s) of choice for patients with diabetes and PMS.
Literature
1.
go back to reference Gao M, Zhang H, Gao Z, Cheng X, Sun Y, Qiao M, Gao D. Global and regional prevalence and burden for premenstrual syndrome and premenstrual dysphoric disorder: a study protocol for systematic review and meta-analysis. Medicine. 2022;101(1): e28528.PubMedPubMedCentralCrossRef Gao M, Zhang H, Gao Z, Cheng X, Sun Y, Qiao M, Gao D. Global and regional prevalence and burden for premenstrual syndrome and premenstrual dysphoric disorder: a study protocol for systematic review and meta-analysis. Medicine. 2022;101(1): e28528.PubMedPubMedCentralCrossRef
2.
go back to reference Direkvand-Moghadam A, Sayehmiri K, Delpisheh A, Kaikhavandi S. Epidemiology of premenstrual syndrome (PMS)—a systematic review and meta-analysis study. J Clin Diagn Res JCDR. 2014;8(2):106. Direkvand-Moghadam A, Sayehmiri K, Delpisheh A, Kaikhavandi S. Epidemiology of premenstrual syndrome (PMS)—a systematic review and meta-analysis study. J Clin Diagn Res JCDR. 2014;8(2):106.
3.
go back to reference Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JC, Mbanya JC, Pavkov ME. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183: 109119.PubMedCrossRef Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JC, Mbanya JC, Pavkov ME. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183: 109119.PubMedCrossRef
4.
go back to reference Magliano DJ, Martin VJ, Owen AJ, Zomer E, Liew D. The productivity burden of diabetes at a population level. Diabetes Care. 2018;41(5):979–84.PubMedCrossRef Magliano DJ, Martin VJ, Owen AJ, Zomer E, Liew D. The productivity burden of diabetes at a population level. Diabetes Care. 2018;41(5):979–84.PubMedCrossRef
5.
go back to reference Thiyagarajan DK, Basit H, Jeanmonod R. Physiology, menstrual cycle. Treasure Island, FL: StatPearls Publishing; 2021. Thiyagarajan DK, Basit H, Jeanmonod R. Physiology, menstrual cycle. Treasure Island, FL: StatPearls Publishing; 2021.
6.
go back to reference Martucci CP, Fishman J. P450 enzymes of estrogen metabolism. Pharmacol Ther. 1993;57(2–3):237–57.PubMedCrossRef Martucci CP, Fishman J. P450 enzymes of estrogen metabolism. Pharmacol Ther. 1993;57(2–3):237–57.PubMedCrossRef
7.
go back to reference Wang H, Napoli KL, Strobel HW. Cytochrome P450 3A9 catalyzes the metabolism of progesterone and other steroid hormones. Mol Cell Biochem. 2000;213(1):127–35.PubMedCrossRef Wang H, Napoli KL, Strobel HW. Cytochrome P450 3A9 catalyzes the metabolism of progesterone and other steroid hormones. Mol Cell Biochem. 2000;213(1):127–35.PubMedCrossRef
8.
go back to reference Catenaccio E, Mu W, Lipton ML. Estrogen-and progesterone-mediated structural neuroplasticity in women: evidence from neuroimaging. Brain Struct Funct. 2016;221:3845–67.PubMedPubMedCentralCrossRef Catenaccio E, Mu W, Lipton ML. Estrogen-and progesterone-mediated structural neuroplasticity in women: evidence from neuroimaging. Brain Struct Funct. 2016;221:3845–67.PubMedPubMedCentralCrossRef
9.
go back to reference Corpechot C, Young J, Calvel M, Wehrey C, Veltz JN, Touyer G, Mouren M, Prasad VV, Banner C, Sjövall J. Neurosteroids: 3 alpha-hydroxy-5 alpha-pregnan-20-one and its precursors in the brain, plasma, and steroidogenic glands of male and female rats. Endocrinology. 1993;133(3):1003–9.PubMedCrossRef Corpechot C, Young J, Calvel M, Wehrey C, Veltz JN, Touyer G, Mouren M, Prasad VV, Banner C, Sjövall J. Neurosteroids: 3 alpha-hydroxy-5 alpha-pregnan-20-one and its precursors in the brain, plasma, and steroidogenic glands of male and female rats. Endocrinology. 1993;133(3):1003–9.PubMedCrossRef
10.
go back to reference Nappi RE, Cucinella L, Bosoni D, Righi A, Battista F, Molinaro P, Stincardini G, Piccinino M, Rossini R, Tiranini L. Premenstrual syndrome and premenstrual dysphoric disorder as centrally based disorders. Endocrines. 2022;3(1):127–38.CrossRef Nappi RE, Cucinella L, Bosoni D, Righi A, Battista F, Molinaro P, Stincardini G, Piccinino M, Rossini R, Tiranini L. Premenstrual syndrome and premenstrual dysphoric disorder as centrally based disorders. Endocrines. 2022;3(1):127–38.CrossRef
11.
go back to reference Johnson SR. Premenstrual syndrome, premenstrual dysphoric disorder, and beyond: a clinical primer for practitioners. Obstet Gynecol. 2004;104(4):845–59.PubMedCrossRef Johnson SR. Premenstrual syndrome, premenstrual dysphoric disorder, and beyond: a clinical primer for practitioners. Obstet Gynecol. 2004;104(4):845–59.PubMedCrossRef
12.
go back to reference Redei E, Freeman EW. Daily plasma estradiol and progesterone levels over the menstrual cycle and their relation to premenstrual symptoms. Psychoneuroendocrinology. 1995;20(3):259–67.PubMedCrossRef Redei E, Freeman EW. Daily plasma estradiol and progesterone levels over the menstrual cycle and their relation to premenstrual symptoms. Psychoneuroendocrinology. 1995;20(3):259–67.PubMedCrossRef
13.
go back to reference Sundström-Poromaa I, Comasco E, Sumner R, Luders E. Progesterone-friend or foe? Front Neuroendocrinol. 2020;59: 100856.PubMedCrossRef Sundström-Poromaa I, Comasco E, Sumner R, Luders E. Progesterone-friend or foe? Front Neuroendocrinol. 2020;59: 100856.PubMedCrossRef
14.
go back to reference Brandes JL. The influence of estrogen on migraine: a systematic review. JAMA. 2006;295(15):1824–30.PubMedCrossRef Brandes JL. The influence of estrogen on migraine: a systematic review. JAMA. 2006;295(15):1824–30.PubMedCrossRef
15.
go back to reference Roomruangwong C, Carvalho AF, Comhaire F, Maes M. Lowered plasma steady-state levels of progesterone combined with declining progesterone levels during the luteal phase predict peri-menstrual syndrome and its major subdomains. Front Psychol. 2019;10:2446.PubMedPubMedCentralCrossRef Roomruangwong C, Carvalho AF, Comhaire F, Maes M. Lowered plasma steady-state levels of progesterone combined with declining progesterone levels during the luteal phase predict peri-menstrual syndrome and its major subdomains. Front Psychol. 2019;10:2446.PubMedPubMedCentralCrossRef
16.
go back to reference Noviyanti NI, Mappaware NA, Ahmad M. The effect of estrogen hormone on premenstrual syndrome (PMS) occurrences in teenage girls at Pesantren Darul Arqam Makassar. Gac Sanit. 2021;35:S571–5.PubMedCrossRef Noviyanti NI, Mappaware NA, Ahmad M. The effect of estrogen hormone on premenstrual syndrome (PMS) occurrences in teenage girls at Pesantren Darul Arqam Makassar. Gac Sanit. 2021;35:S571–5.PubMedCrossRef
17.
go back to reference Bäckström T, Bixo M, Strömberg J. GABAA receptor-modulating steroids in relation to women’s behavioral health. Curr Psychiatry Rep. 2015;17(11):1–7.CrossRef Bäckström T, Bixo M, Strömberg J. GABAA receptor-modulating steroids in relation to women’s behavioral health. Curr Psychiatry Rep. 2015;17(11):1–7.CrossRef
18.
go back to reference Walsh S, Ismaili E, Naheed B, O’Brien S. Diagnosis, pathophysiology and management of premenstrual syndrome. Obstet Gynaecol. 2015;17(2):99–104.CrossRef Walsh S, Ismaili E, Naheed B, O’Brien S. Diagnosis, pathophysiology and management of premenstrual syndrome. Obstet Gynaecol. 2015;17(2):99–104.CrossRef
19.
go back to reference Thibeault AA, Sanderson JT, Vaillancourt C. Serotonin–estrogen interactions: what can we learn from pregnancy? Biochimie. 2019;161:88–108.CrossRef Thibeault AA, Sanderson JT, Vaillancourt C. Serotonin–estrogen interactions: what can we learn from pregnancy? Biochimie. 2019;161:88–108.CrossRef
20.
go back to reference Benmansour S, Weaver RS, Barton AK, Adeniji OS, Frazer A. Comparison of the effects of estradiol and progesterone on serotonergic function. Biol Psychiat. 2012;71(7):633–41.PubMedCrossRef Benmansour S, Weaver RS, Barton AK, Adeniji OS, Frazer A. Comparison of the effects of estradiol and progesterone on serotonergic function. Biol Psychiat. 2012;71(7):633–41.PubMedCrossRef
21.
go back to reference Birzniece V, Bäckström T, Johansson IM, Lindblad C, Lundgren P, Löfgren M, Olsson T, Ragagnin G, Taube M, Turkmen S, Wahlström G. Neuroactive steroid effects on cognitive functions with a focus on the serotonin and GABA systems. Brain Res Rev. 2006;51(2):212–39.PubMedCrossRef Birzniece V, Bäckström T, Johansson IM, Lindblad C, Lundgren P, Löfgren M, Olsson T, Ragagnin G, Taube M, Turkmen S, Wahlström G. Neuroactive steroid effects on cognitive functions with a focus on the serotonin and GABA systems. Brain Res Rev. 2006;51(2):212–39.PubMedCrossRef
22.
go back to reference Pluchino N, Russo M, Santoro AN, Litta P, Cela V, Genazzani AR. Steroid hormones and BDNF. Neuroscience. 2013;239:271–9.PubMedCrossRef Pluchino N, Russo M, Santoro AN, Litta P, Cela V, Genazzani AR. Steroid hormones and BDNF. Neuroscience. 2013;239:271–9.PubMedCrossRef
23.
go back to reference Stachenfeld NS, Taylor HS. Effects of estrogen and progesterone administration on extracellular fluid. J Appl Physiol. 2004;96(3):1011–8.PubMedCrossRef Stachenfeld NS, Taylor HS. Effects of estrogen and progesterone administration on extracellular fluid. J Appl Physiol. 2004;96(3):1011–8.PubMedCrossRef
24.
go back to reference McNeill AM, Zhang C, Stanczyk FZ, Duckles SP, Krause DN. Estrogen increases endothelial nitric oxide synthase via estrogen receptors in rat cerebral blood vessels: effect preserved after concurrent treatment with medroxyprogesterone acetate or progesterone. Stroke. 2002;33(6):1685–91.PubMedCrossRef McNeill AM, Zhang C, Stanczyk FZ, Duckles SP, Krause DN. Estrogen increases endothelial nitric oxide synthase via estrogen receptors in rat cerebral blood vessels: effect preserved after concurrent treatment with medroxyprogesterone acetate or progesterone. Stroke. 2002;33(6):1685–91.PubMedCrossRef
25.
go back to reference Selles J, Polini N, Alvarez C, Massheimer V. Progesterone and 17 β-estradiol acutely stimulate nitric oxide synthase activity in rat aorta and inhibit platelet aggregation. Life Sci. 2001;69(7):815–27.PubMedCrossRef Selles J, Polini N, Alvarez C, Massheimer V. Progesterone and 17 β-estradiol acutely stimulate nitric oxide synthase activity in rat aorta and inhibit platelet aggregation. Life Sci. 2001;69(7):815–27.PubMedCrossRef
26.
go back to reference Hirschberg AL. Sex hormones, appetite and eating behaviour in women. Maturitas. 2012;71(3):248–56.PubMedCrossRef Hirschberg AL. Sex hormones, appetite and eating behaviour in women. Maturitas. 2012;71(3):248–56.PubMedCrossRef
27.
go back to reference Herrera AY, Nielsen SE, Mather M. Stress-induced increases in progesterone and cortisol in naturally cycling women. Neurobiology of Stress. 2016;3:96–104.PubMedPubMedCentralCrossRef Herrera AY, Nielsen SE, Mather M. Stress-induced increases in progesterone and cortisol in naturally cycling women. Neurobiology of Stress. 2016;3:96–104.PubMedPubMedCentralCrossRef
29.
go back to reference Etgen AM, Ungar S, Petitti N. Estradiol and progesterone modulation of norepinephrine neurotransmission: implications for the regulation of female reproductive behavior. J Neuroendocrinol. 1992;4(3):255–71.PubMedCrossRef Etgen AM, Ungar S, Petitti N. Estradiol and progesterone modulation of norepinephrine neurotransmission: implications for the regulation of female reproductive behavior. J Neuroendocrinol. 1992;4(3):255–71.PubMedCrossRef
30.
go back to reference Granda D, Szmidt MK, Kaluza J. Is premenstrual syndrome associated with inflammation, oxidative stress and antioxidant status? A systematic review of case–control and cross-sectional studies. Antioxidants. 2021;10(4):604.PubMedPubMedCentralCrossRef Granda D, Szmidt MK, Kaluza J. Is premenstrual syndrome associated with inflammation, oxidative stress and antioxidant status? A systematic review of case–control and cross-sectional studies. Antioxidants. 2021;10(4):604.PubMedPubMedCentralCrossRef
31.
go back to reference Bertone-Johnson ER, Ronnenberg AG, Houghton SC, Nobles C, Zagarins SE, Takashima-Uebelhoer BB, Faraj JL, Whitcomb BW. Association of inflammation markers with menstrual symptom severity and premenstrual syndrome in young women. Hum Reprod. 2014;29(9):1987–94.PubMedCrossRef Bertone-Johnson ER, Ronnenberg AG, Houghton SC, Nobles C, Zagarins SE, Takashima-Uebelhoer BB, Faraj JL, Whitcomb BW. Association of inflammation markers with menstrual symptom severity and premenstrual syndrome in young women. Hum Reprod. 2014;29(9):1987–94.PubMedCrossRef
32.
go back to reference Puder JJ, Blum CA, Mueller B, De Geyter C, Dye L, Keller U. Menstrual cycle symptoms are associated with changes in low-grade inflammation. Eur J Clin Invest. 2006;36(1):58–64.PubMedCrossRef Puder JJ, Blum CA, Mueller B, De Geyter C, Dye L, Keller U. Menstrual cycle symptoms are associated with changes in low-grade inflammation. Eur J Clin Invest. 2006;36(1):58–64.PubMedCrossRef
33.
go back to reference Gold EB, Wells C, Rasor MO. The association of inflammation with premenstrual symptoms. J Womens Health. 2016;25(9):865–74.CrossRef Gold EB, Wells C, Rasor MO. The association of inflammation with premenstrual symptoms. J Womens Health. 2016;25(9):865–74.CrossRef
34.
go back to reference Dantzer R, O’connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.PubMedPubMedCentralCrossRef Dantzer R, O’connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.PubMedPubMedCentralCrossRef
35.
go back to reference Reed SC, Levin FR, Evans SM. Changes in mood, cognitive performance and appetite in the late luteal and follicular phases of the menstrual cycle in women with and without PMDD (premenstrual dysphoric disorder). Horm Behav. 2008;54(1):185–93.PubMedPubMedCentralCrossRef Reed SC, Levin FR, Evans SM. Changes in mood, cognitive performance and appetite in the late luteal and follicular phases of the menstrual cycle in women with and without PMDD (premenstrual dysphoric disorder). Horm Behav. 2008;54(1):185–93.PubMedPubMedCentralCrossRef
36.
go back to reference Kaul K, Apostolopoulou M, Roden M. Insulin resistance in type 1 diabetes mellitus. Metabolism. 2015;64(12):1629–39.PubMedCrossRef Kaul K, Apostolopoulou M, Roden M. Insulin resistance in type 1 diabetes mellitus. Metabolism. 2015;64(12):1629–39.PubMedCrossRef
37.
go back to reference Soumya D, Srilatha B. Late stage complications of diabetes and insulin resistance. J Diabetes Metab. 2011;2(9):1000167. Soumya D, Srilatha B. Late stage complications of diabetes and insulin resistance. J Diabetes Metab. 2011;2(9):1000167.
38.
go back to reference Pitocco D, Tesauro M, Alessandro R, Ghirlanda G, Cardillo C. Oxidative stress in diabetes: implications for vascular and other complications. Int J Mol Sci. 2013;14(11):21525–50.PubMedPubMedCentralCrossRef Pitocco D, Tesauro M, Alessandro R, Ghirlanda G, Cardillo C. Oxidative stress in diabetes: implications for vascular and other complications. Int J Mol Sci. 2013;14(11):21525–50.PubMedPubMedCentralCrossRef
39.
go back to reference Jansen EC, Stern D, Peterson KE, Lajous M, López-Ridaura R. Early menstrual factors are associated with adulthood cardio-metabolic health in a survey of Mexican teachers. Matern Child Health J. 2019;23(3):356–68.PubMedPubMedCentralCrossRef Jansen EC, Stern D, Peterson KE, Lajous M, López-Ridaura R. Early menstrual factors are associated with adulthood cardio-metabolic health in a survey of Mexican teachers. Matern Child Health J. 2019;23(3):356–68.PubMedPubMedCentralCrossRef
40.
go back to reference Petersohn I, Zarate-Ortiz AG, Cepeda-Lopez AC, Melse-Boonstra A. Time trends in age at menarche and related non-communicable disease risk during the 20th century in Mexico. Nutrients. 2019;11(2):394.PubMedPubMedCentralCrossRef Petersohn I, Zarate-Ortiz AG, Cepeda-Lopez AC, Melse-Boonstra A. Time trends in age at menarche and related non-communicable disease risk during the 20th century in Mexico. Nutrients. 2019;11(2):394.PubMedPubMedCentralCrossRef
41.
go back to reference Livshits A, Seidman DS. Fertility issues in women with diabetes. Women’s Health. 2009;5(6):701–7.PubMed Livshits A, Seidman DS. Fertility issues in women with diabetes. Women’s Health. 2009;5(6):701–7.PubMed
42.
go back to reference Creţu D, Cernea S, Onea CR, Pop RM. Reproductive health in women with type 2 diabetes mellitus. Hormones. 2020;19(3):291–300.PubMedCrossRef Creţu D, Cernea S, Onea CR, Pop RM. Reproductive health in women with type 2 diabetes mellitus. Hormones. 2020;19(3):291–300.PubMedCrossRef
43.
go back to reference Dupont J, Scaramuzzi RJ. Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem J. 2016;473(11):1483–501.PubMedCrossRef Dupont J, Scaramuzzi RJ. Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem J. 2016;473(11):1483–501.PubMedCrossRef
44.
go back to reference Munir I, Yen HW, Geller DH, Torbati D, Bierden RM, Weitsman SR, Agarwal SK, Magoffin DA. Insulin augmentation of 17α-hydroxylase activity is mediated by phosphatidyl inositol 3-kinase but not extracellular signal-regulated kinase-1/2 in human ovarian theca cells. Endocrinology. 2004;145(1):175–83.PubMedCrossRef Munir I, Yen HW, Geller DH, Torbati D, Bierden RM, Weitsman SR, Agarwal SK, Magoffin DA. Insulin augmentation of 17α-hydroxylase activity is mediated by phosphatidyl inositol 3-kinase but not extracellular signal-regulated kinase-1/2 in human ovarian theca cells. Endocrinology. 2004;145(1):175–83.PubMedCrossRef
45.
go back to reference Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61(2):203–12.PubMedCrossRef Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61(2):203–12.PubMedCrossRef
46.
go back to reference Gallet C, Dupont J, Campbell BK, Monniaux D, Guillaume D, Scaramuzzi RJ. The infusion of glucose in ewes during the luteal phase increases the number of follicles but reduces oestradiol production and some correlates of metabolic function in the large follicles. Anim Reprod Sci. 2011;127(3–4):154–63.PubMedCrossRef Gallet C, Dupont J, Campbell BK, Monniaux D, Guillaume D, Scaramuzzi RJ. The infusion of glucose in ewes during the luteal phase increases the number of follicles but reduces oestradiol production and some correlates of metabolic function in the large follicles. Anim Reprod Sci. 2011;127(3–4):154–63.PubMedCrossRef
47.
go back to reference Nestler JE, Jakubowicz DJ, Falcon de Vargas A, Brik C, Quintero N, Medina F. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab. 1998;83(6):2001–5.PubMed Nestler JE, Jakubowicz DJ, Falcon de Vargas A, Brik C, Quintero N, Medina F. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab. 1998;83(6):2001–5.PubMed
48.
go back to reference Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981–1030.PubMedPubMedCentralCrossRef Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981–1030.PubMedPubMedCentralCrossRef
49.
go back to reference Gregorio KC, Laurindo CP, Machado UF. Estrogen and glycemic homeostasis: the fundamental role of nuclear estrogen receptors ESR1/ESR2 in glucose transporter GLUT4 regulation. Cells. 2021;10(1):99.PubMedPubMedCentralCrossRef Gregorio KC, Laurindo CP, Machado UF. Estrogen and glycemic homeostasis: the fundamental role of nuclear estrogen receptors ESR1/ESR2 in glucose transporter GLUT4 regulation. Cells. 2021;10(1):99.PubMedPubMedCentralCrossRef
50.
go back to reference Alonso-Magdalena P, Ropero AB, Carrera MP, Cederroth CR, Baquie M, Gauthier BR, Nef S, Stefani E, Nadal A. Pancreatic insulin content regulation by the estrogen receptor ERα. PLoS ONE. 2008;3(4): e2069.PubMedPubMedCentralCrossRef Alonso-Magdalena P, Ropero AB, Carrera MP, Cederroth CR, Baquie M, Gauthier BR, Nef S, Stefani E, Nadal A. Pancreatic insulin content regulation by the estrogen receptor ERα. PLoS ONE. 2008;3(4): e2069.PubMedPubMedCentralCrossRef
51.
go back to reference Korach-André M, Gustafsson JÅ. Liver X receptors as regulators of metabolism. Biomol Concepts. 2015;6(3):177–90.PubMedCrossRef Korach-André M, Gustafsson JÅ. Liver X receptors as regulators of metabolism. Biomol Concepts. 2015;6(3):177–90.PubMedCrossRef
52.
go back to reference Cooke PS, Heine PA, Taylor JA, Lubahn DB. The role of estrogen and estrogen receptor-α in male adipose tissue. Mol Cell Endocrinol. 2001;178(1–2):147–54.PubMedCrossRef Cooke PS, Heine PA, Taylor JA, Lubahn DB. The role of estrogen and estrogen receptor-α in male adipose tissue. Mol Cell Endocrinol. 2001;178(1–2):147–54.PubMedCrossRef
53.
go back to reference Musatov S, Chen W, Pfaff DW, Mobbs CV, Yang XJ, Clegg DJ, Kaplitt MG, Ogawa S. Silencing of estrogen receptor α in the ventromedial nucleus of hypothalamus leads to metabolic syndrome. Proc Natl Acad Sci. 2007;104(7):2501–6.PubMedPubMedCentralCrossRef Musatov S, Chen W, Pfaff DW, Mobbs CV, Yang XJ, Clegg DJ, Kaplitt MG, Ogawa S. Silencing of estrogen receptor α in the ventromedial nucleus of hypothalamus leads to metabolic syndrome. Proc Natl Acad Sci. 2007;104(7):2501–6.PubMedPubMedCentralCrossRef
54.
go back to reference Picard F, Wanatabe M, Schoonjans K, Lydon J, O’Malley BW, Auwerx J. Progesterone receptor knockout mice have an improved glucose homeostasis secondary to β-cell proliferation. Proc Natl Acad Sci. 2002;99(24):15644–8.PubMedPubMedCentralCrossRef Picard F, Wanatabe M, Schoonjans K, Lydon J, O’Malley BW, Auwerx J. Progesterone receptor knockout mice have an improved glucose homeostasis secondary to β-cell proliferation. Proc Natl Acad Sci. 2002;99(24):15644–8.PubMedPubMedCentralCrossRef
56.
go back to reference Bełtowski J, Rachańczyk J, Włodarczyk M. Thiazolidinedione-induced fluid retention: recent insights into the molecular mechanisms. PPAR Res. 2013;2013:1–8.CrossRef Bełtowski J, Rachańczyk J, Włodarczyk M. Thiazolidinedione-induced fluid retention: recent insights into the molecular mechanisms. PPAR Res. 2013;2013:1–8.CrossRef
57.
go back to reference Grigsby AB, Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. Prevalence of anxiety in adults with diabetes: a systematic review. J Psychosom Res. 2002;53(6):1053–60.PubMedCrossRef Grigsby AB, Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. Prevalence of anxiety in adults with diabetes: a systematic review. J Psychosom Res. 2002;53(6):1053–60.PubMedCrossRef
59.
go back to reference Collins MM, Corcoran P, Perry IJ. Anxiety and depression symptoms in patients with diabetes. Diabet Med. 2009;26(2):153–61.PubMedCrossRef Collins MM, Corcoran P, Perry IJ. Anxiety and depression symptoms in patients with diabetes. Diabet Med. 2009;26(2):153–61.PubMedCrossRef
60.
go back to reference Prabhakar V, Gupta D, Kanade P, Radhakrishnan M. Diabetes-associated depression: the serotonergic system as a novel multifunctional target. Indian J Pharmacol. 2015;47(1):4.PubMedPubMedCentralCrossRef Prabhakar V, Gupta D, Kanade P, Radhakrishnan M. Diabetes-associated depression: the serotonergic system as a novel multifunctional target. Indian J Pharmacol. 2015;47(1):4.PubMedPubMedCentralCrossRef
61.
go back to reference Alagiakrishnan K, Sclater A. Psychiatric disorders presenting in the elderly with type 2 diabetes mellitus. Am J Geriatr Psychiatry. 2012;20(8):645–52.PubMedCrossRef Alagiakrishnan K, Sclater A. Psychiatric disorders presenting in the elderly with type 2 diabetes mellitus. Am J Geriatr Psychiatry. 2012;20(8):645–52.PubMedCrossRef
62.
go back to reference Smith KJ, Béland M, Clyde M, Gariépy G, Pagé V, Badawi G, Rabasa-Lhoret R, Schmitz N. Association of diabetes with anxiety: a systematic review and meta-analysis. J Psychosom Res. 2013;74(2):89–99.PubMedCrossRef Smith KJ, Béland M, Clyde M, Gariépy G, Pagé V, Badawi G, Rabasa-Lhoret R, Schmitz N. Association of diabetes with anxiety: a systematic review and meta-analysis. J Psychosom Res. 2013;74(2):89–99.PubMedCrossRef
63.
go back to reference Cawood EH, Bancroft J, Steel JM. Perimenstrual symptoms in women with diabetes mellitus and the relationship to diabetic control. Diabet Med. 1993;10(5):444–8.PubMedCrossRef Cawood EH, Bancroft J, Steel JM. Perimenstrual symptoms in women with diabetes mellitus and the relationship to diabetic control. Diabet Med. 1993;10(5):444–8.PubMedCrossRef
64.
go back to reference Dey S, Dasgupta D, Roy S. Blood glucose levels at two different phases of menstrual cycle: a study on a group of Bengali-speaking Hindu ethnic populations of West Bengal, India. Orient Anthropol. 2019;19(1):55–63.CrossRef Dey S, Dasgupta D, Roy S. Blood glucose levels at two different phases of menstrual cycle: a study on a group of Bengali-speaking Hindu ethnic populations of West Bengal, India. Orient Anthropol. 2019;19(1):55–63.CrossRef
65.
go back to reference Huang YM, Chien WC, Cheng CG, Chang YH, Chung CH, Cheng CA. Females with diabetes mellitus increased the incidence of premenstrual syndrome. Life. 2022;12(6):777.PubMedPubMedCentralCrossRef Huang YM, Chien WC, Cheng CG, Chang YH, Chung CH, Cheng CA. Females with diabetes mellitus increased the incidence of premenstrual syndrome. Life. 2022;12(6):777.PubMedPubMedCentralCrossRef
66.
go back to reference Spellacy WN, Ellingson AB, Keith G, Khan-Dawood FS, Tsibris JC. Plasma glucose and insulin levels during the menstrual cycles of normal women and premenstrual syndrome patients. J Reprod Med. 1990;35(5):508–11.PubMed Spellacy WN, Ellingson AB, Keith G, Khan-Dawood FS, Tsibris JC. Plasma glucose and insulin levels during the menstrual cycles of normal women and premenstrual syndrome patients. J Reprod Med. 1990;35(5):508–11.PubMed
67.
go back to reference Widom B, Diamond MP, Simonson DC. Alterations in glucose metabolism during menstrual cycle in women with IDDM. Diabetes Care. 1992;15(2):213–20.PubMedCrossRef Widom B, Diamond MP, Simonson DC. Alterations in glucose metabolism during menstrual cycle in women with IDDM. Diabetes Care. 1992;15(2):213–20.PubMedCrossRef
68.
go back to reference Lundman B, Asplund K, Norberg A. Metabolic control, food intake and mood during the menstrual cycle in patients with insulin-dependent diabetes. Int J Nurs Stud. 1994;31(4):391–401.PubMedCrossRef Lundman B, Asplund K, Norberg A. Metabolic control, food intake and mood during the menstrual cycle in patients with insulin-dependent diabetes. Int J Nurs Stud. 1994;31(4):391–401.PubMedCrossRef
69.
go back to reference Moberg E, Kollind M, Lins PE, Adamson U. Day-to-day variation of insulin sensitivity in patients with type 1 diabetes: role of gender and menstrual cycle. Diabet Med. 1995;12(3):224–8.PubMedCrossRef Moberg E, Kollind M, Lins PE, Adamson U. Day-to-day variation of insulin sensitivity in patients with type 1 diabetes: role of gender and menstrual cycle. Diabet Med. 1995;12(3):224–8.PubMedCrossRef
70.
go back to reference Lunt H, Brown LJ. Self-reported changes in capillary glucose and insulin requirements during the menstrual cycle. Diabet Med. 1996;13(6):525–30.PubMedCrossRef Lunt H, Brown LJ. Self-reported changes in capillary glucose and insulin requirements during the menstrual cycle. Diabet Med. 1996;13(6):525–30.PubMedCrossRef
71.
go back to reference Goldner WS, Kraus VL, Sivitz WI, Hunter SK, Dillon JS. Cyclic changes in glycemia assessed by continuous glucose monitoring system during multiple complete menstrual cycles in women with type 1 diabetes. Diabetes Technol Ther. 2004;6(4):473–80.PubMedCrossRef Goldner WS, Kraus VL, Sivitz WI, Hunter SK, Dillon JS. Cyclic changes in glycemia assessed by continuous glucose monitoring system during multiple complete menstrual cycles in women with type 1 diabetes. Diabetes Technol Ther. 2004;6(4):473–80.PubMedCrossRef
72.
go back to reference Trout KK, Rickels MR, Schutta MH, Petrova M, Freeman EW, Tkacs NC, Teff KL. Menstrual cycle effects on insulin sensitivity in women with type 1 diabetes: a pilot study. Diabetes Technol Ther. 2007;9(2):176–82.PubMedCrossRef Trout KK, Rickels MR, Schutta MH, Petrova M, Freeman EW, Tkacs NC, Teff KL. Menstrual cycle effects on insulin sensitivity in women with type 1 diabetes: a pilot study. Diabetes Technol Ther. 2007;9(2):176–82.PubMedCrossRef
73.
go back to reference Denicoff KD, Hoban C, Grover GN, Rubinow DR. Glucose tolerance testing in women with premenstrual syndrome. Am J Psychiatry. 1990;147(4):477–80.PubMedCrossRef Denicoff KD, Hoban C, Grover GN, Rubinow DR. Glucose tolerance testing in women with premenstrual syndrome. Am J Psychiatry. 1990;147(4):477–80.PubMedCrossRef
74.
go back to reference Zarei S, Mosalanejad L, Ghobadifar MA. Blood glucose levels, insulin concentrations, and insulin resistance in healthy women and women with premenstrual syndrome: a comparative study. Clin Exp Reprod Med. 2013;40(2):76.PubMedPubMedCentralCrossRef Zarei S, Mosalanejad L, Ghobadifar MA. Blood glucose levels, insulin concentrations, and insulin resistance in healthy women and women with premenstrual syndrome: a comparative study. Clin Exp Reprod Med. 2013;40(2):76.PubMedPubMedCentralCrossRef
76.
go back to reference Hermanns N, Scheff C, Kulzer B, Weyers P, Pauli P, Kubiak T, Haak T. Association of glucose levels and glucose variability with mood in type 1 diabetic patients. Diabetologia. 2007;50(5):930–3.PubMedCrossRef Hermanns N, Scheff C, Kulzer B, Weyers P, Pauli P, Kubiak T, Haak T. Association of glucose levels and glucose variability with mood in type 1 diabetic patients. Diabetologia. 2007;50(5):930–3.PubMedCrossRef
77.
go back to reference Takach O, Gill TB, Silverman MA. Modulation of insulin signaling rescues BDNF transport defects independent of tau in amyloid-β oligomer-treated hippocampal neurons. Neurobiol Aging. 2015;36(3):1378–82.PubMedCrossRef Takach O, Gill TB, Silverman MA. Modulation of insulin signaling rescues BDNF transport defects independent of tau in amyloid-β oligomer-treated hippocampal neurons. Neurobiol Aging. 2015;36(3):1378–82.PubMedCrossRef
78.
go back to reference Van Der Heide LP, Kamal A, Artola A, Gispen WH, Ramakers GM. Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J Neurochem. 2005;94(4):1158–66.PubMedCrossRef Van Der Heide LP, Kamal A, Artola A, Gispen WH, Ramakers GM. Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J Neurochem. 2005;94(4):1158–66.PubMedCrossRef
79.
go back to reference Jones ML, Liao GY, Malecki R, Li M, Salazar NM, Leonard JP. PI 3-kinase and PKCζ mediate insulin-induced potentiation of NMDA receptor currents in Xenopus oocytes. Brain Res. 2012;1432:7–14.PubMedCrossRef Jones ML, Liao GY, Malecki R, Li M, Salazar NM, Leonard JP. PI 3-kinase and PKCζ mediate insulin-induced potentiation of NMDA receptor currents in Xenopus oocytes. Brain Res. 2012;1432:7–14.PubMedCrossRef
80.
go back to reference Park H, Chung KM, An HK, Gim JE, Hong J, Woo H, Cho B, Moon C, Yu SW. Parkin promotes mitophagic cell death in adult hippocampal neural stem cells following insulin withdrawal. Front Mol Neurosci. 2019;12:46.PubMedPubMedCentralCrossRef Park H, Chung KM, An HK, Gim JE, Hong J, Woo H, Cho B, Moon C, Yu SW. Parkin promotes mitophagic cell death in adult hippocampal neural stem cells following insulin withdrawal. Front Mol Neurosci. 2019;12:46.PubMedPubMedCentralCrossRef
82.
go back to reference Nabeh OA. New insights on the impact of gut microbiota on premenstrual disorders. Will probiotics solve this mystery? Life Sci. 2023;321:121606.PubMedCrossRef Nabeh OA. New insights on the impact of gut microbiota on premenstrual disorders. Will probiotics solve this mystery? Life Sci. 2023;321:121606.PubMedCrossRef
83.
go back to reference Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des. 2009;15(13):1546–58.PubMedCrossRef Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des. 2009;15(13):1546–58.PubMedCrossRef
84.
85.
go back to reference Matsha TE, Prince Y, Davids S, Chikte U, Erasmus RT, Kengne AP, Davison GM. Oral microbiome signatures in diabetes mellitus and periodontal disease. J Dent Res. 2020;99(6):658–65.PubMedCrossRef Matsha TE, Prince Y, Davids S, Chikte U, Erasmus RT, Kengne AP, Davison GM. Oral microbiome signatures in diabetes mellitus and periodontal disease. J Dent Res. 2020;99(6):658–65.PubMedCrossRef
87.
go back to reference Hänninen A, Toivonen R, Pöysti S, Belzer C, Plovier H, Ouwerkerk JP, Emani R, Cani PD, De Vos WM. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut. 2018;67(8):1445–53.PubMedCrossRef Hänninen A, Toivonen R, Pöysti S, Belzer C, Plovier H, Ouwerkerk JP, Emani R, Cani PD, De Vos WM. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut. 2018;67(8):1445–53.PubMedCrossRef
89.
go back to reference Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci Lett. 2016;625:56–63.PubMedPubMedCentralCrossRef Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci Lett. 2016;625:56–63.PubMedPubMedCentralCrossRef
90.
go back to reference Takeda T, Yoshimi K, Kai S, Ozawa G, Yamada K, Hiramatsu K. Characteristics of the gut microbiota in women with premenstrual symptoms: a cross-sectional study. PLoS ONE. 2022;17(5): e0268466.PubMedPubMedCentralCrossRef Takeda T, Yoshimi K, Kai S, Ozawa G, Yamada K, Hiramatsu K. Characteristics of the gut microbiota in women with premenstrual symptoms: a cross-sectional study. PLoS ONE. 2022;17(5): e0268466.PubMedPubMedCentralCrossRef
91.
go back to reference Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, Maes M. The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Mol Neurobiol. 2017;54(6):4432–51.PubMedCrossRef Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, Maes M. The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Mol Neurobiol. 2017;54(6):4432–51.PubMedCrossRef
93.
go back to reference Sovijit WN, Sovijit WE, Pu S, Usuda K, Inoue R, Watanabe G, Yamaguchi H, Nagaoka K. Ovarian progesterone suppresses depression and anxiety-like behaviors by increasing the Lactobacillus population of gut microbiota in ovariectomized mice. Neurosci Res. 2021;168:76–82.PubMedCrossRef Sovijit WN, Sovijit WE, Pu S, Usuda K, Inoue R, Watanabe G, Yamaguchi H, Nagaoka K. Ovarian progesterone suppresses depression and anxiety-like behaviors by increasing the Lactobacillus population of gut microbiota in ovariectomized mice. Neurosci Res. 2021;168:76–82.PubMedCrossRef
94.
go back to reference Halbreich U, Kahn LS. Treatment of premenstrual dysphoric disorder with luteal phase dosing of sertraline. Expert Opin Pharmacother. 2003;4(11):2065–78.PubMedCrossRef Halbreich U, Kahn LS. Treatment of premenstrual dysphoric disorder with luteal phase dosing of sertraline. Expert Opin Pharmacother. 2003;4(11):2065–78.PubMedCrossRef
95.
go back to reference Guidotti A, Costa E. Can the antidysphoric and anxiolytic profiles of selective serotonin reuptake inhibitors be related to their ability to increase brain 3α, 5α-tetrahydroprogesterone (allopregnanolone) availability? Biol Psychiat. 1998;44(9):865–73.PubMedCrossRef Guidotti A, Costa E. Can the antidysphoric and anxiolytic profiles of selective serotonin reuptake inhibitors be related to their ability to increase brain 3α, 5α-tetrahydroprogesterone (allopregnanolone) availability? Biol Psychiat. 1998;44(9):865–73.PubMedCrossRef
96.
go back to reference Trout KK, Teff KL. Insulin sensitivity and premenstrual syndrome. Curr Diab Rep. 2004;4(4):273–80.PubMedCrossRef Trout KK, Teff KL. Insulin sensitivity and premenstrual syndrome. Curr Diab Rep. 2004;4(4):273–80.PubMedCrossRef
97.
go back to reference Perfetti R, Ahmad A. Novel sulfonylurea and non-sulfonylurea drugs to promote the secretion of insulin. Trends Endocrinol Metab. 2000;11(6):218–23.PubMedCrossRef Perfetti R, Ahmad A. Novel sulfonylurea and non-sulfonylurea drugs to promote the secretion of insulin. Trends Endocrinol Metab. 2000;11(6):218–23.PubMedCrossRef
98.
go back to reference Guardado-Mendoza R, Prioletta A, Jiménez-Ceja LM, Sosale A, Folli F. State of the art paper the role of nateglinide and repaglinide, derivatives of meglitinide, in the treatment of type 2 diabetes mellitus. Arch Med Sci. 2013;9(5):936–43.PubMedPubMedCentralCrossRef Guardado-Mendoza R, Prioletta A, Jiménez-Ceja LM, Sosale A, Folli F. State of the art paper the role of nateglinide and repaglinide, derivatives of meglitinide, in the treatment of type 2 diabetes mellitus. Arch Med Sci. 2013;9(5):936–43.PubMedPubMedCentralCrossRef
99.
go back to reference Costello RA, Nicolas S, Shivkumar A. Sulfonylureas. Treasure Island, FL: StatPearls Publishing; 2022. Costello RA, Nicolas S, Shivkumar A. Sulfonylureas. Treasure Island, FL: StatPearls Publishing; 2022.
100.
101.
go back to reference Grunstein HS, Smythe GA, Bradshaw JE, Compton PJ. Tolbutamide increases hypothalamic serotonin activity in the rat. Diabetes. 1986;35(4):475–80.PubMedCrossRef Grunstein HS, Smythe GA, Bradshaw JE, Compton PJ. Tolbutamide increases hypothalamic serotonin activity in the rat. Diabetes. 1986;35(4):475–80.PubMedCrossRef
102.
go back to reference During MJ, Leone P, Davis KE, Kerr D, Sherwin RS. Glucose modulates rat substantia nigra GABA release in vivo via ATP-sensitive potassium channels. J Clin Investig. 1995;95(5):2403–8.PubMedPubMedCentralCrossRef During MJ, Leone P, Davis KE, Kerr D, Sherwin RS. Glucose modulates rat substantia nigra GABA release in vivo via ATP-sensitive potassium channels. J Clin Investig. 1995;95(5):2403–8.PubMedPubMedCentralCrossRef
103.
go back to reference Zhang G, Lin X, Zhang S, Xiu H, Pan C, Cui W. A protective role of glibenclamide in inflammation-associated injury. Mediators Inflamm. 2017;2017:1–11. Zhang G, Lin X, Zhang S, Xiu H, Pan C, Cui W. A protective role of glibenclamide in inflammation-associated injury. Mediators Inflamm. 2017;2017:1–11.
104.
go back to reference Yaribeygi H, Atkin SL, Pirro M, Sahebkar A. A review of the anti-inflammatory properties of antidiabetic agents providing protective effects against vascular complications in diabetes. J Cell Physiol. 2019;234(6):8286–94.PubMedCrossRef Yaribeygi H, Atkin SL, Pirro M, Sahebkar A. A review of the anti-inflammatory properties of antidiabetic agents providing protective effects against vascular complications in diabetes. J Cell Physiol. 2019;234(6):8286–94.PubMedCrossRef
107.
go back to reference Gandhi N, Oturkar CC, Das GM. Estrogen receptor-alpha and p53 status as regulators of AMPK and mTOR in luminal breast cancer. Cancers. 2021;13(14):3612.PubMedPubMedCentralCrossRef Gandhi N, Oturkar CC, Das GM. Estrogen receptor-alpha and p53 status as regulators of AMPK and mTOR in luminal breast cancer. Cancers. 2021;13(14):3612.PubMedPubMedCentralCrossRef
108.
go back to reference Brown KA, Hunger NI, Docanto M, Simpson ER. Metformin inhibits aromatase expression in human breast adipose stromal cells via stimulation of AMP-activated protein kinase. Breast Cancer Res Treat. 2010;123(2):591–6.PubMedCrossRef Brown KA, Hunger NI, Docanto M, Simpson ER. Metformin inhibits aromatase expression in human breast adipose stromal cells via stimulation of AMP-activated protein kinase. Breast Cancer Res Treat. 2010;123(2):591–6.PubMedCrossRef
109.
go back to reference Eagleson CA, Bellows AB, Hu K, Gingrich MB, Marshall JC. Obese patients with polycystic ovary syndrome: evidence that metformin does not restore sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by ovarian steroids. J Clin Endocrinol Metab. 2003;88(11):5158–62.PubMedCrossRef Eagleson CA, Bellows AB, Hu K, Gingrich MB, Marshall JC. Obese patients with polycystic ovary syndrome: evidence that metformin does not restore sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by ovarian steroids. J Clin Endocrinol Metab. 2003;88(11):5158–62.PubMedCrossRef
110.
go back to reference Meenakumari KJ, Agarwal S, Krishna A, Pandey LK. Effects of metformin treatment on luteal phase progesterone concentration in polycystic ovary syndrome. Braz J Med Biol Res. 2004;37:1637–44.PubMedCrossRef Meenakumari KJ, Agarwal S, Krishna A, Pandey LK. Effects of metformin treatment on luteal phase progesterone concentration in polycystic ovary syndrome. Braz J Med Biol Res. 2004;37:1637–44.PubMedCrossRef
111.
go back to reference Col NF, Ochs L, Springmann V, Aragaki AK, Chlebowski RT. Metformin and breast cancer risk: a meta-analysis and critical literature review. Breast Cancer Res Treat. 2012;135(3):639–46.PubMedCrossRef Col NF, Ochs L, Springmann V, Aragaki AK, Chlebowski RT. Metformin and breast cancer risk: a meta-analysis and critical literature review. Breast Cancer Res Treat. 2012;135(3):639–46.PubMedCrossRef
112.
113.
go back to reference Faure M, Bertoldo MJ, Khoueiry R, Bongrani A, Brion F, Giulivi C, Dupont J, Froment P. Metformin in reproductive biology. Front Endocrinol. 2018;9:675.CrossRef Faure M, Bertoldo MJ, Khoueiry R, Bongrani A, Brion F, Giulivi C, Dupont J, Froment P. Metformin in reproductive biology. Front Endocrinol. 2018;9:675.CrossRef
114.
go back to reference Kristófi R, Eriksson JW. Metformin as an anti-inflammatory agent: a short review. J Endocrinol. 2021;251(2):R11-22.PubMedCrossRef Kristófi R, Eriksson JW. Metformin as an anti-inflammatory agent: a short review. J Endocrinol. 2021;251(2):R11-22.PubMedCrossRef
115.
go back to reference Dehkordi AH, Abbaszadeh A, Mir S, Hasanvand A. Metformin and its anti-inflammatory and anti-oxidative effects; new concepts. J Renal Inj Prev. 2018;8(1):54–61.CrossRef Dehkordi AH, Abbaszadeh A, Mir S, Hasanvand A. Metformin and its anti-inflammatory and anti-oxidative effects; new concepts. J Renal Inj Prev. 2018;8(1):54–61.CrossRef
116.
go back to reference Li N, Zhou T, Fei E. Actions of metformin in the brain: a new perspective of metformin treatments in related neurological disorders. Int J Mol Sci. 2022;23(15):8281.PubMedPubMedCentralCrossRef Li N, Zhou T, Fei E. Actions of metformin in the brain: a new perspective of metformin treatments in related neurological disorders. Int J Mol Sci. 2022;23(15):8281.PubMedPubMedCentralCrossRef
117.
go back to reference Fan J, Li D, Chen HS, Huang JG, Xu JF, Zhu WW, Chen JG, Wang F. Metformin produces anxiolytic-like effects in rats by facilitating GABAA receptor trafficking to membrane. Br J Pharmacol. 2019;176(2):297–316.PubMedCrossRef Fan J, Li D, Chen HS, Huang JG, Xu JF, Zhu WW, Chen JG, Wang F. Metformin produces anxiolytic-like effects in rats by facilitating GABAA receptor trafficking to membrane. Br J Pharmacol. 2019;176(2):297–316.PubMedCrossRef
118.
go back to reference Shivavedi N, Kumar M, Tej GN, Nayak PK. Metformin and ascorbic acid combination therapy ameliorates type 2 diabetes mellitus and comorbid depression in rats. Brain Res. 2017;1674:1–9.PubMedCrossRef Shivavedi N, Kumar M, Tej GN, Nayak PK. Metformin and ascorbic acid combination therapy ameliorates type 2 diabetes mellitus and comorbid depression in rats. Brain Res. 2017;1674:1–9.PubMedCrossRef
119.
go back to reference AlHussain F, AlRuthia Y, Al-Mandeel H, Bellahwal A, Alharbi F, Almogbel Y, Awwad O, Dala’een R, Alharbi FA. Metformin improves the depression symptoms of women with polycystic ovary syndrome in a lifestyle modification program. Patient Prefer Adher. 2020;14:737.CrossRef AlHussain F, AlRuthia Y, Al-Mandeel H, Bellahwal A, Alharbi F, Almogbel Y, Awwad O, Dala’een R, Alharbi FA. Metformin improves the depression symptoms of women with polycystic ovary syndrome in a lifestyle modification program. Patient Prefer Adher. 2020;14:737.CrossRef
120.
go back to reference Cubeddu LX, Bönisch H, Göthert M, Molderings G, Racke K, Ramadori G, Miller KJ, Schwörer H. Effects of metformin on intestinal 5-hydroxytryptamine (5-HT) release and on 5-HT3 receptors. Naunyn Schmiedebergs Arch Pharmacol. 2000;361(1):85–91.PubMedCrossRef Cubeddu LX, Bönisch H, Göthert M, Molderings G, Racke K, Ramadori G, Miller KJ, Schwörer H. Effects of metformin on intestinal 5-hydroxytryptamine (5-HT) release and on 5-HT3 receptors. Naunyn Schmiedebergs Arch Pharmacol. 2000;361(1):85–91.PubMedCrossRef
122.
go back to reference Parillo F, Catone G, Gobbetti A, Zerani M. Cell localization of ACTH, dopamine, and GnRH receptors and PPARγ in bovine corpora lutea during diestrus. Acta Sci Vet. 2013;41(1):1–5. Parillo F, Catone G, Gobbetti A, Zerani M. Cell localization of ACTH, dopamine, and GnRH receptors and PPARγ in bovine corpora lutea during diestrus. Acta Sci Vet. 2013;41(1):1–5.
127.
go back to reference Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.PubMedCrossRef Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.PubMedCrossRef
128.
go back to reference Hussain S, Singh A, Baxi H, Taylor B, Burgess J, Antony B. Thiazolidinedione use is associated with reduced risk of Parkinson’s disease in patients with diabetes: a meta-analysis of real-world evidence. Neurol Sci. 2020;41(12):3697–703.PubMedCrossRef Hussain S, Singh A, Baxi H, Taylor B, Burgess J, Antony B. Thiazolidinedione use is associated with reduced risk of Parkinson’s disease in patients with diabetes: a meta-analysis of real-world evidence. Neurol Sci. 2020;41(12):3697–703.PubMedCrossRef
131.
go back to reference Nakamura A, Osonoi T, Terauchi Y. Relationship between urinary sodium excretion and pioglitazone-induced edema. J Diab Investig. 2010;1(5):208–11.CrossRef Nakamura A, Osonoi T, Terauchi Y. Relationship between urinary sodium excretion and pioglitazone-induced edema. J Diab Investig. 2010;1(5):208–11.CrossRef
132.
go back to reference Yang X, Smith U. Adipose tissue distribution and risk of metabolic disease: does thiazolidinedione-induced adipose tissue redistribution provide a clue to the answer? Diabetologia. 2007;50(6):1127–39.PubMedCrossRef Yang X, Smith U. Adipose tissue distribution and risk of metabolic disease: does thiazolidinedione-induced adipose tissue redistribution provide a clue to the answer? Diabetologia. 2007;50(6):1127–39.PubMedCrossRef
133.
go back to reference Rosenstock J, Vico M, Wei LI, Salsali A, List JF. Effects of dapagliflozin, an SGLT2 inhibitor, on HbA1c, body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care. 2012;35(7):1473–8.PubMedPubMedCentralCrossRef Rosenstock J, Vico M, Wei LI, Salsali A, List JF. Effects of dapagliflozin, an SGLT2 inhibitor, on HbA1c, body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care. 2012;35(7):1473–8.PubMedPubMedCentralCrossRef
134.
go back to reference White JR. “Thiazolidinediones” 2021–22 guide to medications for the treatment of diabetes mellitus. White JR. “Thiazolidinediones” 2021–22 guide to medications for the treatment of diabetes mellitus.
135.
136.
go back to reference MacDonald PE, El-Kholy W, Riedel MJ, Salapatek AM, Light PE, Wheeler MB. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes. 2002;51(suppl_3):S434–42.PubMedCrossRef MacDonald PE, El-Kholy W, Riedel MJ, Salapatek AM, Light PE, Wheeler MB. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes. 2002;51(suppl_3):S434–42.PubMedCrossRef
137.
go back to reference Ramracheya R, Chapman C, Chibalina M, Dou H, Miranda C, González A, Moritoh Y, Shigeto M, Zhang Q, Braun M, Clark A. GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca2+ channels. Physiol Rep. 2018;6(17): e13852.PubMedPubMedCentralCrossRef Ramracheya R, Chapman C, Chibalina M, Dou H, Miranda C, González A, Moritoh Y, Shigeto M, Zhang Q, Braun M, Clark A. GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca2+ channels. Physiol Rep. 2018;6(17): e13852.PubMedPubMedCentralCrossRef
138.
go back to reference Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes—state-of-the-art. Mol Metab. 2021;46: 101102.PubMedCrossRef Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes—state-of-the-art. Mol Metab. 2021;46: 101102.PubMedCrossRef
139.
go back to reference Anderberg RH, Richard JE, Hansson C, Nissbrandt H, Bergquist F, Skibicka KP. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology. 2016;65:54–66.PubMedCrossRef Anderberg RH, Richard JE, Hansson C, Nissbrandt H, Bergquist F, Skibicka KP. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology. 2016;65:54–66.PubMedCrossRef
140.
go back to reference Wang C, Mao R, Van De Casteele M, Pipeleers D, Ling Z. Glucagon-like peptide-1 stimulates GABA formation by pancreatic β-cells at the level of glutamate decarboxylase. Am J Physiol Endocrinol Metab. 2007;292(4):E1201–6.PubMedCrossRef Wang C, Mao R, Van De Casteele M, Pipeleers D, Ling Z. Glucagon-like peptide-1 stimulates GABA formation by pancreatic β-cells at the level of glutamate decarboxylase. Am J Physiol Endocrinol Metab. 2007;292(4):E1201–6.PubMedCrossRef
141.
go back to reference Heinla K, Vasar E, Sedman T, Volke V. A GLP-1 receptor agonist inhibits aldosterone release in healthy volunteers. Horm Metab Res. 2021;53(06):402–7.PubMedCrossRef Heinla K, Vasar E, Sedman T, Volke V. A GLP-1 receptor agonist inhibits aldosterone release in healthy volunteers. Horm Metab Res. 2021;53(06):402–7.PubMedCrossRef
142.
go back to reference Outeiriño-Iglesias V, Romaní-Pérez M, González-Matías LC, Vigo E, Mallo F. GLP-1 increases preovulatory LH source and the number of mature follicles, as well as synchronizing the onset of puberty in female rats. Endocrinology. 2015;156(11):4226–37.PubMedCrossRef Outeiriño-Iglesias V, Romaní-Pérez M, González-Matías LC, Vigo E, Mallo F. GLP-1 increases preovulatory LH source and the number of mature follicles, as well as synchronizing the onset of puberty in female rats. Endocrinology. 2015;156(11):4226–37.PubMedCrossRef
143.
go back to reference Zhang M, Robitaille M, Showalter AD, Huang X, Liu Y, Bhattacharjee A, Willard FS, Han J, Froese S, Wei L, Gaisano HY. Progesterone receptor membrane component 1 is a functional part of the glucagon-like peptide-1 (GLP-1) receptor complex in pancreatic β cells. Mol Cell Proteomics. 2014;13(11):3049–62.PubMedPubMedCentralCrossRef Zhang M, Robitaille M, Showalter AD, Huang X, Liu Y, Bhattacharjee A, Willard FS, Han J, Froese S, Wei L, Gaisano HY. Progesterone receptor membrane component 1 is a functional part of the glucagon-like peptide-1 (GLP-1) receptor complex in pancreatic β cells. Mol Cell Proteomics. 2014;13(11):3049–62.PubMedPubMedCentralCrossRef
144.
go back to reference Hattori Y, Jojima T, Tomizawa A, Satoh H, Hattori S, Kasai K, Hayashi T. Retracted article: a glucagon-like peptide-1 (GLP-1) analogue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells. Diabetologia. 2010;53(10):2256–63.PubMedCrossRef Hattori Y, Jojima T, Tomizawa A, Satoh H, Hattori S, Kasai K, Hayashi T. Retracted article: a glucagon-like peptide-1 (GLP-1) analogue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells. Diabetologia. 2010;53(10):2256–63.PubMedCrossRef
145.
go back to reference Richard JE, Anderberg RH, Göteson A, Gribble FM, Reimann F, Skibicka KP. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. PLoS ONE. 2015;10(3): e0119034.PubMedPubMedCentralCrossRef Richard JE, Anderberg RH, Göteson A, Gribble FM, Reimann F, Skibicka KP. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. PLoS ONE. 2015;10(3): e0119034.PubMedPubMedCentralCrossRef
146.
go back to reference Filippatos TD, Panagiotopoulou TV, Elisaf MS. Adverse effects of GLP-1 receptor agonists. Rev Diabet Stud RDS. 2014;11(3):202.PubMedCrossRef Filippatos TD, Panagiotopoulou TV, Elisaf MS. Adverse effects of GLP-1 receptor agonists. Rev Diabet Stud RDS. 2014;11(3):202.PubMedCrossRef
147.
go back to reference Tomovic K, Lazarevic J, Kocic G, Deljanin-Ilic M, Anderluh M, Smelcerovic A. Mechanisms and pathways of anti-inflammatory activity of DPP-4 inhibitors in cardiovascular and renal protection. Med Res Rev. 2019;39(1):404–22.PubMedCrossRef Tomovic K, Lazarevic J, Kocic G, Deljanin-Ilic M, Anderluh M, Smelcerovic A. Mechanisms and pathways of anti-inflammatory activity of DPP-4 inhibitors in cardiovascular and renal protection. Med Res Rev. 2019;39(1):404–22.PubMedCrossRef
148.
go back to reference Wagner L, Kaestner F, Wolf R, Stiller H, Heiser U, Manhart S, Hoffmann T, Rahfeld JU, Demuth HU, Rothermundt M, von Hörsten S. Identifying neuropeptide Y (NPY) as the main stress-related substrate of dipeptidyl peptidase 4 (DPP4) in blood circulation. Neuropeptides. 2016;57:21–34.PubMedCrossRef Wagner L, Kaestner F, Wolf R, Stiller H, Heiser U, Manhart S, Hoffmann T, Rahfeld JU, Demuth HU, Rothermundt M, von Hörsten S. Identifying neuropeptide Y (NPY) as the main stress-related substrate of dipeptidyl peptidase 4 (DPP4) in blood circulation. Neuropeptides. 2016;57:21–34.PubMedCrossRef
149.
go back to reference Jeong SH, Chung SJ, Yoo HS, Hong N, Jung JH, Baik K, Lee YH, Sohn YH, Lee PH. Beneficial effects of dipeptidyl peptidase-4 inhibitors in diabetic Parkinson’s disease. Brain. 2021;144(4):1127–37.PubMedCrossRef Jeong SH, Chung SJ, Yoo HS, Hong N, Jung JH, Baik K, Lee YH, Sohn YH, Lee PH. Beneficial effects of dipeptidyl peptidase-4 inhibitors in diabetic Parkinson’s disease. Brain. 2021;144(4):1127–37.PubMedCrossRef
150.
go back to reference Ferjan S, Janez A, Jensterle M. DPP4 inhibitor sitagliptin as a potential treatment option in metformin-intolerant obese women with polycystic ovary syndrome: a pilot randomized study. Endocr Pract. 2018;24(1):69–77.PubMedCrossRef Ferjan S, Janez A, Jensterle M. DPP4 inhibitor sitagliptin as a potential treatment option in metformin-intolerant obese women with polycystic ovary syndrome: a pilot randomized study. Endocr Pract. 2018;24(1):69–77.PubMedCrossRef
151.
go back to reference Bischoff H. Pharmacology of alpha-glucosidase-inhibitors. In: Vasselli J, Maggio C, Scriabine A, editors. Drugs in development: alpha-glucosidase inhibition: potential use in diabetes. Branford: Neva Press; 1993. p. 3–13. Bischoff H. Pharmacology of alpha-glucosidase-inhibitors. In: Vasselli J, Maggio C, Scriabine A, editors. Drugs in development: alpha-glucosidase inhibition: potential use in diabetes. Branford: Neva Press; 1993. p. 3–13.
152.
go back to reference Göke B, Fuder H, Wieckhorst G, et al. Voglibose (AO-128) is an efficient alpha-glucosidase inhibitor and mobilizes the endogenous GLP-1 reserve. Digestion. 1995;56:493–501.PubMedCrossRef Göke B, Fuder H, Wieckhorst G, et al. Voglibose (AO-128) is an efficient alpha-glucosidase inhibitor and mobilizes the endogenous GLP-1 reserve. Digestion. 1995;56:493–501.PubMedCrossRef
153.
go back to reference Standl E, Schernthaner G, Rybka J, Hanefeld M, Raptis SA, Naditch L. Improved glycaemic control with miglitol in inadequately-controlled type 2 diabetics. Diabetes Res Clin Pract. 2001;51:205–13.PubMedCrossRef Standl E, Schernthaner G, Rybka J, Hanefeld M, Raptis SA, Naditch L. Improved glycaemic control with miglitol in inadequately-controlled type 2 diabetics. Diabetes Res Clin Pract. 2001;51:205–13.PubMedCrossRef
154.
go back to reference Ciotta L, Calogero AE, Farina M, De Leo V, La Marca A, Cianci A. Clinical, endocrine and metabolic effects of acarbose, an α-glucosidase inhibitor, in PCOS patients with increased insulin response and normal glucose tolerance. Hum Reprod. 2001;16(10):2066–72.PubMedCrossRef Ciotta L, Calogero AE, Farina M, De Leo V, La Marca A, Cianci A. Clinical, endocrine and metabolic effects of acarbose, an α-glucosidase inhibitor, in PCOS patients with increased insulin response and normal glucose tolerance. Hum Reprod. 2001;16(10):2066–72.PubMedCrossRef
155.
go back to reference Tuğrul S, Kutlu T, Pekin O, Bağlam E, Kıyak H, Oral Ö. Clinical, endocrine, and metabolic effects of acarbose, a α-glucosidase inhibitor, in overweight and nonoverweight patients with polycystic ovarian syndrome. Fertil Steril. 2008;90(4):1144–8.PubMedCrossRef Tuğrul S, Kutlu T, Pekin O, Bağlam E, Kıyak H, Oral Ö. Clinical, endocrine, and metabolic effects of acarbose, a α-glucosidase inhibitor, in overweight and nonoverweight patients with polycystic ovarian syndrome. Fertil Steril. 2008;90(4):1144–8.PubMedCrossRef
156.
go back to reference Derosa G, Maffioli P. α-Glucosidase inhibitors and their use in clinical practice. Archiv Med Sci AMS. 2012;8(5):899.CrossRef Derosa G, Maffioli P. α-Glucosidase inhibitors and their use in clinical practice. Archiv Med Sci AMS. 2012;8(5):899.CrossRef
157.
go back to reference Zhang X, Fang Z, Zhang C, Xia H, Jie Z, Han X, Chen Y, Ji L. Effects of acarbose on the gut microbiota of prediabetic patients: a randomized, double-blind, controlled crossover trial. Diabetes Ther. 2017;8(2):293–307.PubMedPubMedCentralCrossRef Zhang X, Fang Z, Zhang C, Xia H, Jie Z, Han X, Chen Y, Ji L. Effects of acarbose on the gut microbiota of prediabetic patients: a randomized, double-blind, controlled crossover trial. Diabetes Ther. 2017;8(2):293–307.PubMedPubMedCentralCrossRef
158.
go back to reference Wang X, Xu T, Liu R, Wu G, Gu L, Zhang Y, Zhang F, Fu H, Ling Y, Wei X, Luo Y. High-fiber diet or combined with acarbose alleviates heterogeneous phenotypes of polycystic ovary syndrome by regulating gut microbiota. Front Endocrinol. 2022;12:1986.CrossRef Wang X, Xu T, Liu R, Wu G, Gu L, Zhang Y, Zhang F, Fu H, Ling Y, Wei X, Luo Y. High-fiber diet or combined with acarbose alleviates heterogeneous phenotypes of polycystic ovary syndrome by regulating gut microbiota. Front Endocrinol. 2022;12:1986.CrossRef
159.
go back to reference Garcia-Ropero A, Badimon JJ, Santos-Gallego CG. The pharmacokinetics and pharmacodynamics of SGLT2 inhibitors for type 2 diabetes mellitus: the latest developments. Expert Opin Drug Metab Toxicol. 2018;14(12):1287–302.PubMedCrossRef Garcia-Ropero A, Badimon JJ, Santos-Gallego CG. The pharmacokinetics and pharmacodynamics of SGLT2 inhibitors for type 2 diabetes mellitus: the latest developments. Expert Opin Drug Metab Toxicol. 2018;14(12):1287–302.PubMedCrossRef
160.
go back to reference Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med. 2015;66:255–70.PubMedCrossRef Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med. 2015;66:255–70.PubMedCrossRef
161.
go back to reference Filippas-Ntekouan S, Filippatos TD, Elisaf MS. SGLT2 inhibitors: are they safe? Postgrad Med. 2018;130(1):72–82.PubMedCrossRef Filippas-Ntekouan S, Filippatos TD, Elisaf MS. SGLT2 inhibitors: are they safe? Postgrad Med. 2018;130(1):72–82.PubMedCrossRef
162.
go back to reference Elrakaybi A, Laubner K, Zhou Q, Hug MJ, Seufert J. Cardiovascular protection by SGLT2 inhibitors—do anti-inflammatory mechanisms play a role? Mol Metab. 2022;64:101549.PubMedPubMedCentralCrossRef Elrakaybi A, Laubner K, Zhou Q, Hug MJ, Seufert J. Cardiovascular protection by SGLT2 inhibitors—do anti-inflammatory mechanisms play a role? Mol Metab. 2022;64:101549.PubMedPubMedCentralCrossRef
163.
go back to reference Bilezikian JP, Watts NB, Usiskin K, Polidori D, Fung A, Sullivan D, Rosenthal N. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. J Clin Endocrinol. 2016;101(1):44–51.CrossRef Bilezikian JP, Watts NB, Usiskin K, Polidori D, Fung A, Sullivan D, Rosenthal N. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. J Clin Endocrinol. 2016;101(1):44–51.CrossRef
164.
go back to reference Sawamura T, Karashima S, Nagase S, Nambo H, Shimizu E, Higashitani T, Aono D, Ohbatake A, Kometani M, Demura M, Furukawa K. Effect of sodium–glucose cotransporter-2 inhibitors on aldosterone-to-renin ratio in diabetic patients with hypertension: a retrospective observational study. BMC Endocr Disord. 2020;20(1):1–8.CrossRef Sawamura T, Karashima S, Nagase S, Nambo H, Shimizu E, Higashitani T, Aono D, Ohbatake A, Kometani M, Demura M, Furukawa K. Effect of sodium–glucose cotransporter-2 inhibitors on aldosterone-to-renin ratio in diabetic patients with hypertension: a retrospective observational study. BMC Endocr Disord. 2020;20(1):1–8.CrossRef
165.
go back to reference Herat LY, Matthews J, Azzam O, Schlaich MP, Matthews VB. Targeting features of the metabolic syndrome through sympatholytic effects of SGLT2 inhibition. Curr Hypertens Rep. 2022;24(3):67–74.PubMedPubMedCentralCrossRef Herat LY, Matthews J, Azzam O, Schlaich MP, Matthews VB. Targeting features of the metabolic syndrome through sympatholytic effects of SGLT2 inhibition. Curr Hypertens Rep. 2022;24(3):67–74.PubMedPubMedCentralCrossRef
Metadata
Title
Emerging Perspectives on the Impact of Diabetes Mellitus and Anti-Diabetic Drugs on Premenstrual Syndrome. A Narrative Review
Authors
Omnia Azmy Nabeh
Alaa Amr
Aml Medhat Faoosa
Eshraka Esmat
Alaa Osama
Amira Samy Khedr
Basma Amin
Alaa I. Saud
Soha Aly Elmorsy
Publication date
26-04-2024
Publisher
Springer Healthcare
Published in
Diabetes Therapy
Print ISSN: 1869-6953
Electronic ISSN: 1869-6961
DOI
https://doi.org/10.1007/s13300-024-01585-8