Skip to main content
Top
Published in: European Radiology 8/2017

01-08-2017 | Cardiac

Effect of inversion time on the precision of myocardial late gadolinium enhancement quantification evaluated with synthetic inversion recovery MR imaging

Authors: Akos Varga-Szemes, Rob J. van der Geest, U. Joseph Schoepf, Bruce S. Spottiswoode, Carlo N. De Cecco, Giuseppe Muscogiuri, Julian L. Wichmann, Stefanie Mangold, Stephen R. Fuller, Pal Maurovich-Horvat, Bela Merkely, Sheldon E. Litwin, Rozemarijn Vliegenthart, Pal Suranyi

Published in: European Radiology | Issue 8/2017

Login to get access

Abstract

Objectives

To evaluate the influence of inversion time (TI) on the precision of myocardial late gadolinium enhancement (LGE) quantification using synthetic inversion recovery (IR) imaging in patients with myocardial infarction (MI).

Methods

Fifty-three patients with suspected prior MI underwent 1.5-T cardiac MRI with conventional magnitude (MagIR) and phase-sensitive IR (PSIR) LGE imaging and T1 mapping at 15 min post-contrast. T1-based synthetic MagIR and PSIR images were calculated with a TI ranging from −100 to +150 ms at 5-ms intervals relative to the optimal TI (TI0). LGE was quantified using a five standard deviation (5SD) and full width at half-maximum (FWHM) thresholds. Measurements were compared using one-way analysis of variance.

Results

The MagIRsy technique provided precise assessment of LGE area at TIs ≥ TI0, while precision was decreased below TI0. The LGE area showed significant differences at ≤ −25 ms compared to TI0 using 5SD (P < 0.001) and at ≤ −65 ms using the FWHM approach (P < 0.001). LGE measurements did not show significant difference over the analysed TI range in the PSIRsy images using either of the quantification methods.

Conclusions

T1 map-based PSIRsy images provide precise quantification of MI independent of TI at the investigated time point post-contrast. MagIRsy-based MI quantification is precise at TI0 and at longer TIs while showing decreased precision at TI values below TI0.

Key Points

Synthetic IR imaging retrospectively generates LGE images at any theoretical TI
Synthetic IR imaging can simulate the effect of TI on LGE quantification
Fifteen minutes post-contrast MagIR sy accurately quantifies infarcts from TI 0 to TI 0 + 150 ms
Fifteen minutes post-contrast PSIR sy provides precise infarct size independent of TI
Synthetic IR imaging has further advantages in reducing operator dependence
Literature
1.
go back to reference Hendel RC, Patel MR, Kramer CM et al (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48:1475–1497CrossRefPubMed Hendel RC, Patel MR, Kramer CM et al (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48:1475–1497CrossRefPubMed
2.
go back to reference Kim RJ, Chen EL, Lima JA, Judd RM (1996) Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94:3318–3326CrossRefPubMed Kim RJ, Chen EL, Lima JA, Judd RM (1996) Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94:3318–3326CrossRefPubMed
3.
go back to reference Kellman P, Arai AE, McVeigh ER, Aletras AH (2002) Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 47:372–383CrossRefPubMedPubMedCentral Kellman P, Arai AE, McVeigh ER, Aletras AH (2002) Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 47:372–383CrossRefPubMedPubMedCentral
4.
go back to reference Simonetti OP, Kim RJ, Fieno DS et al (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218:215–223CrossRefPubMed Simonetti OP, Kim RJ, Fieno DS et al (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218:215–223CrossRefPubMed
5.
go back to reference Kim RJ, Shah DJ, Judd RM (2003) How we perform delayed enhancement imaging. J Cardiovasc Magn Reson 5:505–514CrossRefPubMed Kim RJ, Shah DJ, Judd RM (2003) How we perform delayed enhancement imaging. J Cardiovasc Magn Reson 5:505–514CrossRefPubMed
7.
go back to reference Kellman P, Herzka DA, Hansen MS (2014) Adiabatic inversion pulses for myocardial T1 mapping. Magn Reson Med 71:1428–1434CrossRefPubMed Kellman P, Herzka DA, Hansen MS (2014) Adiabatic inversion pulses for myocardial T1 mapping. Magn Reson Med 71:1428–1434CrossRefPubMed
8.
go back to reference Xue H, Shah S, Greiser A et al (2012) Motion correction for myocardial T1 mapping using image registration with synthetic image estimation. Magn Reson Med 67:1644–1655CrossRefPubMed Xue H, Shah S, Greiser A et al (2012) Motion correction for myocardial T1 mapping using image registration with synthetic image estimation. Magn Reson Med 67:1644–1655CrossRefPubMed
10.
go back to reference Varga-Szemes A, van der Geest RJ, Spottiswoode BS et al (2016) Myocardial late gadolinium enhancement: accuracy of T1 mapping-based synthetic inversion-recovery imaging. Radiology 278:374–382CrossRefPubMed Varga-Szemes A, van der Geest RJ, Spottiswoode BS et al (2016) Myocardial late gadolinium enhancement: accuracy of T1 mapping-based synthetic inversion-recovery imaging. Radiology 278:374–382CrossRefPubMed
11.
go back to reference Xue H, Greiser A, Zuehlsdorff S et al (2013) Phase-sensitive inversion recovery for myocardial T1 mapping with motion correction and parametric fitting. Magn Reson Med 69:1408–1420CrossRefPubMed Xue H, Greiser A, Zuehlsdorff S et al (2013) Phase-sensitive inversion recovery for myocardial T1 mapping with motion correction and parametric fitting. Magn Reson Med 69:1408–1420CrossRefPubMed
12.
go back to reference Bondarenko O, Beek AM, Hofman MB et al (2005) Standardizing the definition of hyperenhancement in the quantitative assessment of infarct size and myocardial viability using delayed contrast-enhanced CMR. J Cardiovasc Magn Reson 7:481–485CrossRefPubMed Bondarenko O, Beek AM, Hofman MB et al (2005) Standardizing the definition of hyperenhancement in the quantitative assessment of infarct size and myocardial viability using delayed contrast-enhanced CMR. J Cardiovasc Magn Reson 7:481–485CrossRefPubMed
13.
go back to reference Amado LC, Gerber BL, Gupta SN et al (2004) Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol 44:2383–2389CrossRefPubMed Amado LC, Gerber BL, Gupta SN et al (2004) Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol 44:2383–2389CrossRefPubMed
14.
go back to reference Petersen SE, Mohrs OK, Horstick G et al (2004) Influence of contrast agent dose and image acquisition timing on the quantitative determination of nonviable myocardial tissue using delayed contrast-enhanced magnetic resonance imaging. J Cardiovasc Magn Reson 6:541–548CrossRefPubMed Petersen SE, Mohrs OK, Horstick G et al (2004) Influence of contrast agent dose and image acquisition timing on the quantitative determination of nonviable myocardial tissue using delayed contrast-enhanced magnetic resonance imaging. J Cardiovasc Magn Reson 6:541–548CrossRefPubMed
15.
go back to reference Wagner A, Mahrholdt H, Thomson L et al (2006) Effects of time, dose, and inversion time for acute myocardial infarct size measurements based on magnetic resonance imaging-delayed contrast enhancement. J Am Coll Cardiol 47:2027–2033CrossRefPubMed Wagner A, Mahrholdt H, Thomson L et al (2006) Effects of time, dose, and inversion time for acute myocardial infarct size measurements based on magnetic resonance imaging-delayed contrast enhancement. J Am Coll Cardiol 47:2027–2033CrossRefPubMed
16.
go back to reference Varga-Szemes A, Simor T, Lenkey Z et al (2014) Infarct density distribution by MRI in the porcine model of acute and chronic myocardial infarction as a potential method transferable to the clinic. Int J Cardiovasc Imaging 30:937–948CrossRefPubMedPubMedCentral Varga-Szemes A, Simor T, Lenkey Z et al (2014) Infarct density distribution by MRI in the porcine model of acute and chronic myocardial infarction as a potential method transferable to the clinic. Int J Cardiovasc Imaging 30:937–948CrossRefPubMedPubMedCentral
17.
go back to reference Beek AM, Bondarenko O, Afsharzada F, van Rossum AC (2009) Quantification of late gadolinium enhanced CMR in viability assessment in chronic ischemic heart disease: a comparison to functional outcome. J Cardiovasc Magn Reson 11:6CrossRefPubMedPubMedCentral Beek AM, Bondarenko O, Afsharzada F, van Rossum AC (2009) Quantification of late gadolinium enhanced CMR in viability assessment in chronic ischemic heart disease: a comparison to functional outcome. J Cardiovasc Magn Reson 11:6CrossRefPubMedPubMedCentral
18.
go back to reference Lenkey Z, Varga-Szemes A, Simor T et al (2016) Age-independent myocardial infarct quantification by signal intensity percent infarct mapping in swine. J Magn Reson Imaging 43:911–920CrossRefPubMed Lenkey Z, Varga-Szemes A, Simor T et al (2016) Age-independent myocardial infarct quantification by signal intensity percent infarct mapping in swine. J Magn Reson Imaging 43:911–920CrossRefPubMed
19.
go back to reference Suranyi P, Kiss P, Ruzsics B, Brott BC, Simor T, Elgavish GA (2007) Equilibrium signal intensity mapping, an MRI method for fast mapping of longitudinal relaxation rates and for image enhancement. Magn Reson Imaging 25:641–651CrossRefPubMed Suranyi P, Kiss P, Ruzsics B, Brott BC, Simor T, Elgavish GA (2007) Equilibrium signal intensity mapping, an MRI method for fast mapping of longitudinal relaxation rates and for image enhancement. Magn Reson Imaging 25:641–651CrossRefPubMed
20.
go back to reference Kvernby S, Warntjes MJ, Haraldsson H, Carlhall CJ, Engvall J, Ebbers T (2014) Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS. J Cardiovasc Magn Reson 16:102CrossRefPubMedPubMedCentral Kvernby S, Warntjes MJ, Haraldsson H, Carlhall CJ, Engvall J, Ebbers T (2014) Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS. J Cardiovasc Magn Reson 16:102CrossRefPubMedPubMedCentral
21.
go back to reference Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB (2014) Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping. Magn Reson Med 71:2082–2095CrossRefPubMed Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB (2014) Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping. Magn Reson Med 71:2082–2095CrossRefPubMed
22.
go back to reference Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP (2004) Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52:141–146CrossRefPubMed Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP (2004) Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52:141–146CrossRefPubMed
23.
go back to reference Piechnik SK, Ferreira VM, Dall'Armellina E et al (2010) Shortened modified Look-Locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 12:69CrossRefPubMedPubMedCentral Piechnik SK, Ferreira VM, Dall'Armellina E et al (2010) Shortened modified Look-Locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 12:69CrossRefPubMedPubMedCentral
24.
go back to reference Weingartner S, Akcakaya M, Basha T et al (2014) Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability. Magn Reson Med 71:1024–1034CrossRefPubMed Weingartner S, Akcakaya M, Basha T et al (2014) Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability. Magn Reson Med 71:1024–1034CrossRefPubMed
Metadata
Title
Effect of inversion time on the precision of myocardial late gadolinium enhancement quantification evaluated with synthetic inversion recovery MR imaging
Authors
Akos Varga-Szemes
Rob J. van der Geest
U. Joseph Schoepf
Bruce S. Spottiswoode
Carlo N. De Cecco
Giuseppe Muscogiuri
Julian L. Wichmann
Stefanie Mangold
Stephen R. Fuller
Pal Maurovich-Horvat
Bela Merkely
Sheldon E. Litwin
Rozemarijn Vliegenthart
Pal Suranyi
Publication date
01-08-2017
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 8/2017
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-016-4665-z

Other articles of this Issue 8/2017

European Radiology 8/2017 Go to the issue