Skip to main content
Top
Published in: NeuroMolecular Medicine 2/2014

01-06-2014 | Original Paper

Distinct Patterns of Sirtuin Expression During Progression of Alzheimer’s Disease

Authors: Mirjam I. Lutz, Ivan Milenkovic, Günther Regelsberger, Gabor G. Kovacs

Published in: NeuroMolecular Medicine | Issue 2/2014

Login to get access

Abstract

Aging is one of the major risk factors for Alzheimer’s disease (AD). Sirtuins are associated with prolonged life span. To examine whether the expression levels of sirtuins associate with the progression of AD or not, we performed a comparative immunoblotting and immunohistochemical study of SIRT1, 3, and 5 in the entorhinal cortex and hippocampal subregions and white matter in 45 cases grouped according to Braak and Braak stages of neurofibrillary degeneration. In addition, we compared the expression levels with the local load of tau and amyloid-beta deposits, evaluated using morphometry. Our study revealed that (1) the neuronal subcellular redistribution of SIRT1 parallels the decrease in its expression, suggesting stepwise loss of neuroprotection dependent on the neuronal population; (2) in contrast to SIRT1 and 3, expression of SIRT5 increases during the progression of AD; (3) which might be related to its appearance in activated microglial cells. The complex patterns of the expression of sirtuins in relation to tissue damage should be taken into account when searching for therapies interacting with sirtuins.
Appendix
Available only for authorised users
Literature
go back to reference Adori, C., Kovács, G. G., Low, P., et al. (2005). The ubiquitin-proteasome system in Creutzfeldt-Jakob and Alzheimer disease: Intracellular redistribution of components correlates with neuronal vulnerability. Neurobiol Dis., 19, 427–435.PubMedCrossRef Adori, C., Kovács, G. G., Low, P., et al. (2005). The ubiquitin-proteasome system in Creutzfeldt-Jakob and Alzheimer disease: Intracellular redistribution of components correlates with neuronal vulnerability. Neurobiol Dis., 19, 427–435.PubMedCrossRef
go back to reference Alzheimer A., Stelzmann R.A., Schnitzlein H.N., Murtagh F.R. (1995). An English translation of Alzheimer’s 1907 paper, Uber eine eigenartige Erkankung der Hirnrinde. Clin Anat (New York, NY) 8: 429–431. Alzheimer A., Stelzmann R.A., Schnitzlein H.N., Murtagh F.R. (1995). An English translation of Alzheimer’s 1907 paper, Uber eine eigenartige Erkankung der Hirnrinde. Clin Anat (New York, NY) 8: 429–431.
go back to reference Baur, J. A., Pearson, K. J., Price, N. L., et al. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 444, 337–342.PubMedCrossRef Baur, J. A., Pearson, K. J., Price, N. L., et al. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 444, 337–342.PubMedCrossRef
go back to reference Boily, G., Seifert, E. L., Bevilacqua, L., et al. (2008). SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One, 3, e1759.PubMedCentralPubMedCrossRef Boily, G., Seifert, E. L., Bevilacqua, L., et al. (2008). SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One, 3, e1759.PubMedCentralPubMedCrossRef
go back to reference Boyden, S. E., & Kunkel, L. M. (2010). High-density genomewide linkage analysis of exceptional human longevity identifies multiple novel loci. PLoS One, 5, e12432.PubMedCentralPubMedCrossRef Boyden, S. E., & Kunkel, L. M. (2010). High-density genomewide linkage analysis of exceptional human longevity identifies multiple novel loci. PLoS One, 5, e12432.PubMedCentralPubMedCrossRef
go back to reference Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropatholog, 82, 239–259.CrossRef Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropatholog, 82, 239–259.CrossRef
go back to reference Cai, D. (2013). Neuroinflammation and neurodegeneration in overnutrition-induced diseases. Trends Endocrinol Metabol TEM, 24, 40–47.CrossRef Cai, D. (2013). Neuroinflammation and neurodegeneration in overnutrition-induced diseases. Trends Endocrinol Metabol TEM, 24, 40–47.CrossRef
go back to reference Cantó, C., & Auwerx, J. (2009). Caloric restriction, SIRT1 and longevity. Trends Endocrinol Metabol TEM, 20, 325–331.CrossRef Cantó, C., & Auwerx, J. (2009). Caloric restriction, SIRT1 and longevity. Trends Endocrinol Metabol TEM, 20, 325–331.CrossRef
go back to reference Chen, J., Zhou, Y., Mueller-Steiner, S., et al. (2005). SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem, 280, 40364–40374.PubMedCrossRef Chen, J., Zhou, Y., Mueller-Steiner, S., et al. (2005). SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem, 280, 40364–40374.PubMedCrossRef
go back to reference Costantini, S., Sharma, A., Raucci, R., et al. (2013). Genealogy of an ancient protein family: The Sirtuins, a family of disordered members. BMC Evol Biol, 13, 60.PubMedCentralPubMedCrossRef Costantini, S., Sharma, A., Raucci, R., et al. (2013). Genealogy of an ancient protein family: The Sirtuins, a family of disordered members. BMC Evol Biol, 13, 60.PubMedCentralPubMedCrossRef
go back to reference Dai, H., Kustigian, L., Carney, D., et al. (2010). SIRT1 activation by small molecules: Kinetic and biophysical evidence for direct interaction of enzyme and activator. J Biol Chem, 285, 32695–32703.PubMedCentralPubMedCrossRef Dai, H., Kustigian, L., Carney, D., et al. (2010). SIRT1 activation by small molecules: Kinetic and biophysical evidence for direct interaction of enzyme and activator. J Biol Chem, 285, 32695–32703.PubMedCentralPubMedCrossRef
go back to reference De Luca, M., Rose, G., Bonafè, M., et al. (2001). Sex-specific longevity associations defined by Tyrosine Hydroxylase–Insulin–Insulin Growth Factor 2 haplotypes on the 11p15.5 chromosomal region. Exp Gerontol, 36, 1663–1671.PubMedCrossRef De Luca, M., Rose, G., Bonafè, M., et al. (2001). Sex-specific longevity associations defined by Tyrosine Hydroxylase–Insulin–Insulin Growth Factor 2 haplotypes on the 11p15.5 chromosomal region. Exp Gerontol, 36, 1663–1671.PubMedCrossRef
go back to reference Dimauro, I., Pearson, T., Caporossi, D., & Jackson, M. J. (2012). A simple protocol for the subcellular fractionation of skeletal muscle cells and tissue. BMC Res Notes, 2012(5), 513.CrossRef Dimauro, I., Pearson, T., Caporossi, D., & Jackson, M. J. (2012). A simple protocol for the subcellular fractionation of skeletal muscle cells and tissue. BMC Res Notes, 2012(5), 513.CrossRef
go back to reference Donmez, G., Wang, D., Cohen, D. E., & Guarente, L. (2010). SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell, 142, 320–332.PubMedCentralPubMedCrossRef Donmez, G., Wang, D., Cohen, D. E., & Guarente, L. (2010). SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell, 142, 320–332.PubMedCentralPubMedCrossRef
go back to reference Duyckaerts, C., Delatour, B., & Potier, M. (2009). Classification and basic pathology of Alzheimer disease. Acta Neuropathol, 118, 5–36.PubMedCrossRef Duyckaerts, C., Delatour, B., & Potier, M. (2009). Classification and basic pathology of Alzheimer disease. Acta Neuropathol, 118, 5–36.PubMedCrossRef
go back to reference Gan, L., & Mucke, L. (2008). Paths of convergence: Sirtuins in aging and neurodegeneration. Neuron, 58, 10–14.PubMedCrossRef Gan, L., & Mucke, L. (2008). Paths of convergence: Sirtuins in aging and neurodegeneration. Neuron, 58, 10–14.PubMedCrossRef
go back to reference Geng, Y.-Q., Li, T–. T., Liu, X.-Y., et al. (2011). SIRT1 and SIRT5 activity expression and behavioral responses to calorie restriction. J Cell Biochem, 112, 3755–3761.PubMedCrossRef Geng, Y.-Q., Li, T–. T., Liu, X.-Y., et al. (2011). SIRT1 and SIRT5 activity expression and behavioral responses to calorie restriction. J Cell Biochem, 112, 3755–3761.PubMedCrossRef
go back to reference Glorioso, C., Oh, S., Douillard, G. G., & Sibille, E. (2011). Brain molecular aging, promotion of neurological disease and modulation by sirtuin 5 longevity gene polymorphism. Neurobiol Dis, 41, 279–290.PubMedCentralPubMedCrossRef Glorioso, C., Oh, S., Douillard, G. G., & Sibille, E. (2011). Brain molecular aging, promotion of neurological disease and modulation by sirtuin 5 longevity gene polymorphism. Neurobiol Dis, 41, 279–290.PubMedCentralPubMedCrossRef
go back to reference Goedert, M., & Spillantini, M. G. (2006). A century of Alzheimer’s disease. Science, 314, 777–781.PubMedCrossRef Goedert, M., & Spillantini, M. G. (2006). A century of Alzheimer’s disease. Science, 314, 777–781.PubMedCrossRef
go back to reference Hall, J. A., Dominy, J. E., Lee, Y., & Puigserver, P. (2013). The sirtuin family’s role in aging and age-associated pathologies. J Clin Invest, 123, 973–979.PubMedCentralPubMedCrossRef Hall, J. A., Dominy, J. E., Lee, Y., & Puigserver, P. (2013). The sirtuin family’s role in aging and age-associated pathologies. J Clin Invest, 123, 973–979.PubMedCentralPubMedCrossRef
go back to reference Hisahara, S., Chiba, S., Matsumoto, H., et al. (2008). Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci USA, 105, 15599–15604.PubMedCentralPubMedCrossRef Hisahara, S., Chiba, S., Matsumoto, H., et al. (2008). Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci USA, 105, 15599–15604.PubMedCentralPubMedCrossRef
go back to reference Höftberger, R., Fink, S., Aboul-Enein, F., et al. (2010). Tubulin polymerization promoting protein (TPPP/p25) as a marker for oligodendroglial changes in multiple sclerosis. Glia, 58, 1847–1857.PubMedCrossRef Höftberger, R., Fink, S., Aboul-Enein, F., et al. (2010). Tubulin polymerization promoting protein (TPPP/p25) as a marker for oligodendroglial changes in multiple sclerosis. Glia, 58, 1847–1857.PubMedCrossRef
go back to reference Houtkooper, R. H., Pirinen, E., & Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol, 13, 225–238.PubMed Houtkooper, R. H., Pirinen, E., & Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol, 13, 225–238.PubMed
go back to reference Howitz, K. T., Bitterman, K. J., Cohen, H. Y., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425, 191–196.PubMedCrossRef Howitz, K. T., Bitterman, K. J., Cohen, H. Y., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425, 191–196.PubMedCrossRef
go back to reference Imai, S., & Guarente, L. (2010). Ten years of NAD-dependent SIR2 family deacetylases: Implications for metabolic diseases. Trends Pharmacol Sci, 31, 212–220.PubMedCentralPubMedCrossRef Imai, S., & Guarente, L. (2010). Ten years of NAD-dependent SIR2 family deacetylases: Implications for metabolic diseases. Trends Pharmacol Sci, 31, 212–220.PubMedCentralPubMedCrossRef
go back to reference Jin, Q., Yan, T., Ge, X., et al. (2007). Cytoplasm-localized SIRT1 enhances apoptosis. J Cell Physiol, 213, 88–97.PubMedCrossRef Jin, Q., Yan, T., Ge, X., et al. (2007). Cytoplasm-localized SIRT1 enhances apoptosis. J Cell Physiol, 213, 88–97.PubMedCrossRef
go back to reference Julien, C., Tremblay, C., Emond, V., et al. (2009). Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol, 68, 48–58.PubMedCentralPubMedCrossRef Julien, C., Tremblay, C., Emond, V., et al. (2009). Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol, 68, 48–58.PubMedCentralPubMedCrossRef
go back to reference Kim, D., Nguyen, M. D., Dobbin, M. M., et al. (2007). SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J, 26, 3169–3179.PubMedCentralPubMedCrossRef Kim, D., Nguyen, M. D., Dobbin, M. M., et al. (2007). SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J, 26, 3169–3179.PubMedCentralPubMedCrossRef
go back to reference Körner, S., Böselt, S., Thau, N., et al. (2013). Differential sirtuin expression patterns in amyotrophic lateral sclerosis (ALS) postmortem tissue: Neuroprotective or neurotoxic properties of Sirtuins in ALS? Neurodegener Dis, 11, 141–152.PubMedCrossRef Körner, S., Böselt, S., Thau, N., et al. (2013). Differential sirtuin expression patterns in amyotrophic lateral sclerosis (ALS) postmortem tissue: Neuroprotective or neurotoxic properties of Sirtuins in ALS? Neurodegener Dis, 11, 141–152.PubMedCrossRef
go back to reference Li, X., Zhang, S., Blander, G., et al. (2007). SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell, 28, 91–106.PubMedCrossRef Li, X., Zhang, S., Blander, G., et al. (2007). SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell, 28, 91–106.PubMedCrossRef
go back to reference Luo, J., Nikolaev, A. Y., Imai, S., et al. (2001). Negative control of p53 by Sir2α promotes cell survival under stress. Cell, 107, 137–148.PubMedCrossRef Luo, J., Nikolaev, A. Y., Imai, S., et al. (2001). Negative control of p53 by Sir2α promotes cell survival under stress. Cell, 107, 137–148.PubMedCrossRef
go back to reference Lynch, C. J., Shah, Z. H., Allison, S. J., et al. (2010). SIRT1 undergoes alternative splicing in a novel auto-regulatory loop with p53. PLoS One, 5, e13502.PubMedCentralPubMedCrossRef Lynch, C. J., Shah, Z. H., Allison, S. J., et al. (2010). SIRT1 undergoes alternative splicing in a novel auto-regulatory loop with p53. PLoS One, 5, e13502.PubMedCentralPubMedCrossRef
go back to reference Mahlknecht, U., Ho, A. D., Letzel, S., & Voelter-Mahlknecht, S. (2006). Assignment of the NAD-dependent deacetylase sirtuin 5 gene (SIRT5) to human chromosome band 6p23 by in situ hybridization. Cytogenet Genome Res, 112, 208–212.PubMedCrossRef Mahlknecht, U., Ho, A. D., Letzel, S., & Voelter-Mahlknecht, S. (2006). Assignment of the NAD-dependent deacetylase sirtuin 5 gene (SIRT5) to human chromosome band 6p23 by in situ hybridization. Cytogenet Genome Res, 112, 208–212.PubMedCrossRef
go back to reference Matsushita, N., Yonashiro, R., Ogata, Y., et al. (2011). Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms. Genes cells, 16, 190–202.PubMedCrossRef Matsushita, N., Yonashiro, R., Ogata, Y., et al. (2011). Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms. Genes cells, 16, 190–202.PubMedCrossRef
go back to reference Michishita, E., Park, J. Y., Burneskis, J. M., et al. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell, 16, 4623–4635.PubMedCentralPubMedCrossRef Michishita, E., Park, J. Y., Burneskis, J. M., et al. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell, 16, 4623–4635.PubMedCentralPubMedCrossRef
go back to reference Mirra, S. S., Heyman, A., McKeel, D., et al. (1991). The consortium to establish a registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology, 41, 479–486.PubMedCrossRef Mirra, S. S., Heyman, A., McKeel, D., et al. (1991). The consortium to establish a registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology, 41, 479–486.PubMedCrossRef
go back to reference Misiak, B., Leszek, J., & Kiejna, A. (2012). Metabolic syndrome, mild cognitive impairment and Alzheimer’s disease–the emerging role of systemic low-grade inflammation and adiposity. Brain Res Bull, 89, 144–149.PubMedCrossRef Misiak, B., Leszek, J., & Kiejna, A. (2012). Metabolic syndrome, mild cognitive impairment and Alzheimer’s disease–the emerging role of systemic low-grade inflammation and adiposity. Brain Res Bull, 89, 144–149.PubMedCrossRef
go back to reference Montine, T. J., Phelps, C. H., Beach, T. G., et al. (2012). National institute on Aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease: A practical approach. Acta Neuropathol, 123, 1–11.PubMedCentralPubMedCrossRef Montine, T. J., Phelps, C. H., Beach, T. G., et al. (2012). National institute on Aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease: A practical approach. Acta Neuropathol, 123, 1–11.PubMedCentralPubMedCrossRef
go back to reference Mrak, R., & Griffin, W. (2005). Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging, 26, 349–354.PubMedCrossRef Mrak, R., & Griffin, W. (2005). Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging, 26, 349–354.PubMedCrossRef
go back to reference Onyango, P., Celic, I., McCaffery, J. M., et al. (2002). SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci USA, 99, 13653–13658.PubMedCentralPubMedCrossRef Onyango, P., Celic, I., McCaffery, J. M., et al. (2002). SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci USA, 99, 13653–13658.PubMedCentralPubMedCrossRef
go back to reference Oppenheimer, H., Gabay, O., Meir, H., et al. (2012). 75-kd sirtuin 1 blocks tumor necrosis factor α-mediated apoptosis in human osteoarthritic chondrocytes. Arthritis Rheum, 64, 718–728.PubMedCentralPubMedCrossRef Oppenheimer, H., Gabay, O., Meir, H., et al. (2012). 75-kd sirtuin 1 blocks tumor necrosis factor α-mediated apoptosis in human osteoarthritic chondrocytes. Arthritis Rheum, 64, 718–728.PubMedCentralPubMedCrossRef
go back to reference Panza, F., Frisardi, V., Capurso, C., et al. (2010). Metabolic syndrome and cognitive impairment: Current epidemiology and possible underlying mechanisms. J Alzheimer’s Dis, 21, 691–724. Panza, F., Frisardi, V., Capurso, C., et al. (2010). Metabolic syndrome and cognitive impairment: Current epidemiology and possible underlying mechanisms. J Alzheimer’s Dis, 21, 691–724.
go back to reference Park, J. (2013). SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell, 50, 919–930.PubMedCrossRef Park, J. (2013). SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell, 50, 919–930.PubMedCrossRef
go back to reference Peng, C., Lu, Z., Xie, Z., et al. (2011). The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteom, 10(M111), 012658. Peng, C., Lu, Z., Xie, Z., et al. (2011). The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteom, 10(M111), 012658.
go back to reference Perry, V. H., Nicoll, J. A. R., & Holmes, C. (2010). Microglia in neurodegenerative disease. Nat Rev Neurol, 6, 193–201.PubMedCrossRef Perry, V. H., Nicoll, J. A. R., & Holmes, C. (2010). Microglia in neurodegenerative disease. Nat Rev Neurol, 6, 193–201.PubMedCrossRef
go back to reference Polito, L., Kehoe, P. G., Forloni, G., & Albani, D. (2010). The molecular genetics of sirtuins: Association with human longevity and age-related diseases. Int J Mol Epidemiol Genetics, 1, 214–225. Polito, L., Kehoe, P. G., Forloni, G., & Albani, D. (2010). The molecular genetics of sirtuins: Association with human longevity and age-related diseases. Int J Mol Epidemiol Genetics, 1, 214–225.
go back to reference Qin, W., Yang, T., Ho, L., et al. (2006). Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem, 281, 21745–21754.PubMedCrossRef Qin, W., Yang, T., Ho, L., et al. (2006). Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem, 281, 21745–21754.PubMedCrossRef
go back to reference Ramadori, G., Lee, C. E., Bookout, A. L., et al. (2008). Brain SIRT1: Anatomical distribution and regulation by energy availability. J Neurosci, 28, 9989–9996.PubMedCentralPubMedCrossRef Ramadori, G., Lee, C. E., Bookout, A. L., et al. (2008). Brain SIRT1: Anatomical distribution and regulation by energy availability. J Neurosci, 28, 9989–9996.PubMedCentralPubMedCrossRef
go back to reference Rice, C. M., Sun, M., Kemp, K., et al. (2012). Mitochondrial sirtuins–a new therapeutic target for repair and protection in multiple sclerosis. Eur J Neurosci, 35, 1887–1893.PubMedCrossRef Rice, C. M., Sun, M., Kemp, K., et al. (2012). Mitochondrial sirtuins–a new therapeutic target for repair and protection in multiple sclerosis. Eur J Neurosci, 35, 1887–1893.PubMedCrossRef
go back to reference Rose, G., Dato, S., Altomare, K., et al. (2003). Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol, 38, 1065–1070.PubMedCrossRef Rose, G., Dato, S., Altomare, K., et al. (2003). Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol, 38, 1065–1070.PubMedCrossRef
go back to reference Sakamoto, J., Miura, T., Shimamoto, K., & Horio, Y. (2004). Predominant expression of Sir2α, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett, 556, 281–286.PubMedCrossRef Sakamoto, J., Miura, T., Shimamoto, K., & Horio, Y. (2004). Predominant expression of Sir2α, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett, 556, 281–286.PubMedCrossRef
go back to reference Schwer, B., North, B. J., Frye, R. A., et al. (2002). The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol, 158, 647–657.PubMedCentralPubMedCrossRef Schwer, B., North, B. J., Frye, R. A., et al. (2002). The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol, 158, 647–657.PubMedCentralPubMedCrossRef
go back to reference Sugino, T., Maruyama, M., Tanno, M., et al. (2010). Protein deacetylase SIRT1 in the cytoplasm promotes nerve growth factor-induced neurite outgrowth in PC12 cells. FEBS Lett, 584, 2821–2826.PubMedCrossRef Sugino, T., Maruyama, M., Tanno, M., et al. (2010). Protein deacetylase SIRT1 in the cytoplasm promotes nerve growth factor-induced neurite outgrowth in PC12 cells. FEBS Lett, 584, 2821–2826.PubMedCrossRef
go back to reference Tanno, M., Sakamoto, J., Miura, T., et al. (2007). Nucleocytoplasmic shuttling of the NAD + -dependent histone deacetylase SIRT1. J Biol Chem, 282, 6823–6832.PubMedCrossRef Tanno, M., Sakamoto, J., Miura, T., et al. (2007). Nucleocytoplasmic shuttling of the NAD + -dependent histone deacetylase SIRT1. J Biol Chem, 282, 6823–6832.PubMedCrossRef
go back to reference Thal, D. R., Rub, U., Orantes, M., & Braak, H. (2002). Phases of A-deposition in the human brain and its relevance for the development of AD. Neurology, 58, 1791–1800.PubMedCrossRef Thal, D. R., Rub, U., Orantes, M., & Braak, H. (2002). Phases of A-deposition in the human brain and its relevance for the development of AD. Neurology, 58, 1791–1800.PubMedCrossRef
go back to reference Vasiljevic, M., Heisler, F. F., Hausrat, T. J., et al. (2012). Spatio-temporal expression analysis of the calcium-binding protein calumenin in the rodent brain. Neuroscience, 202, 29–41.PubMedCentralPubMedCrossRef Vasiljevic, M., Heisler, F. F., Hausrat, T. J., et al. (2012). Spatio-temporal expression analysis of the calcium-binding protein calumenin in the rodent brain. Neuroscience, 202, 29–41.PubMedCentralPubMedCrossRef
go back to reference Vaziri, H., Dessain, S. K., Eaton, E. N., et al. (2001). hSIR2SIRT1 Functions as an NAD-Dependent p53 Deacetylase. Cell, 107, 149–159.PubMedCrossRef Vaziri, H., Dessain, S. K., Eaton, E. N., et al. (2001). hSIR2SIRT1 Functions as an NAD-Dependent p53 Deacetylase. Cell, 107, 149–159.PubMedCrossRef
go back to reference Wood, J. G., Rogina, B., Lavu, S., et al. (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature, 430, 686–689.PubMedCrossRef Wood, J. G., Rogina, B., Lavu, S., et al. (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature, 430, 686–689.PubMedCrossRef
go back to reference Zhang, Z., Tan, M., Xie, Z., et al. (2011). Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol, 7, 58–63.PubMedCentralPubMedCrossRef Zhang, Z., Tan, M., Xie, Z., et al. (2011). Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol, 7, 58–63.PubMedCentralPubMedCrossRef
Metadata
Title
Distinct Patterns of Sirtuin Expression During Progression of Alzheimer’s Disease
Authors
Mirjam I. Lutz
Ivan Milenkovic
Günther Regelsberger
Gabor G. Kovacs
Publication date
01-06-2014
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 2/2014
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-014-8288-8

Other articles of this Issue 2/2014

NeuroMolecular Medicine 2/2014 Go to the issue