Skip to main content
Top
Published in: NeuroMolecular Medicine 2/2014

01-06-2014 | Original Paper

Blockade of Nav1.8 Currents in Nociceptive Trigeminal Neurons Contributes to Anti-trigeminovascular Nociceptive Effect of Amitriptyline

Authors: Jingyao Liang, Xiaoyan Liu, Meiyan Pan, Wei Dai, Zhao Dong, Xiaolin Wang, Ruozhuo Liu, Jianquan Zheng, Shengyuan Yu

Published in: NeuroMolecular Medicine | Issue 2/2014

Login to get access

Abstract

Amitriptyline (AMI), a tricyclic antidepressant, has been widely used to prevent migraine attacks and alleviate other various chronic pain, but the underlying mechanism remains unclear. Accumulated evidence suggests that the efficacy of AMI is related to the blockade of voltage-gated sodium channels. The aim of the present study was to investigate the effect of AMI on Nav1.8 currents in nociceptive trigeminal neurons and trigeminovascular nociception induced by electrical stimulation of the dura mater surrounding the superior sagittal sinus (SSS) in rats, as in the animal model of vascular headaches such as migraines. Using a whole-cell voltage recording technique, we showed that Nav1.8 currents were blocked by AMI in a concentration-dependent manner, with an IC50 value of 6.82 μM in acute isolated trigeminal ganglion neurons of the rats. AMI caused a hyperpolarizing shift in the voltage-dependent activation and steady-state inactivation and significantly blocked in a use-dependent manner and slowed the recovery from the inactivation of Nav1.8 currents. In addition, the systemic administration of AMI and A-803467 (a selective Nav1.8 channel blocker) potently alleviated the nociceptive behaviors (head flicks and grooming) induced by the electrical stimulation of the dura mater surrounding the SSS. Taken together, our data suggest that Nav1.8 currents in nociceptive trigeminal neurons are blocked by AMI through modulating the activation and inactivation kinetics, which may contribute to anti-nociceptive effect of AMI in animal models of migraines.
Literature
go back to reference Aguggia, M. (2012). Allodynia and migraine. Neurological Science, 33(Suppl 1), S9–S11.CrossRef Aguggia, M. (2012). Allodynia and migraine. Neurological Science, 33(Suppl 1), S9–S11.CrossRef
go back to reference Akopian, A. N., Souslova, V., England, S., Okuse, K., Ogata, N., Ure, J., et al. (1999). The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nature Neuroscience, 2(6), 541–548.PubMedCrossRef Akopian, A. N., Souslova, V., England, S., Okuse, K., Ogata, N., Ure, J., et al. (1999). The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nature Neuroscience, 2(6), 541–548.PubMedCrossRef
go back to reference Amaya, F., Decosterd, I., Samad, T. A., Plumpton, C., Tate, S., Mannion, R. J., et al. (2000). Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2. Molecular and Cellular Neuroscience, 15(4), 331–342.PubMedCrossRef Amaya, F., Decosterd, I., Samad, T. A., Plumpton, C., Tate, S., Mannion, R. J., et al. (2000). Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2. Molecular and Cellular Neuroscience, 15(4), 331–342.PubMedCrossRef
go back to reference Andlin-Sobocki, P., Jonsson, B., Wittchen, H. U., & Olesen, J. (2005). Cost of disorders of the brain in Europe. European Journal of Neurology, 12(Suppl 1), 1–27.PubMedCrossRef Andlin-Sobocki, P., Jonsson, B., Wittchen, H. U., & Olesen, J. (2005). Cost of disorders of the brain in Europe. European Journal of Neurology, 12(Suppl 1), 1–27.PubMedCrossRef
go back to reference Antonova, M., Wienecke, T., Olesen, J., & Ashina, M. (2012). Prostaglandin E(2) induces immediate migraine-like attack in migraine patients without aura. Cephalalgia, 32(11), 822–833.PubMedCrossRef Antonova, M., Wienecke, T., Olesen, J., & Ashina, M. (2012). Prostaglandin E(2) induces immediate migraine-like attack in migraine patients without aura. Cephalalgia, 32(11), 822–833.PubMedCrossRef
go back to reference Arsenault, A., & Sawynok, J. (2009). Perisurgical amitriptyline produces a preventive effect on afferent hypersensitivity following spared nerve injury. Pain, 146(3), 308–314.PubMedCrossRef Arsenault, A., & Sawynok, J. (2009). Perisurgical amitriptyline produces a preventive effect on afferent hypersensitivity following spared nerve injury. Pain, 146(3), 308–314.PubMedCrossRef
go back to reference Atasoy, H. T., Unal, A. E., Atasoy, N., Emre, U., & Sumer, M. (2005). Low income and education levels may cause medication overuse and chronicity in migraine patients. Headache, 45(1), 25–31.PubMedCrossRef Atasoy, H. T., Unal, A. E., Atasoy, N., Emre, U., & Sumer, M. (2005). Low income and education levels may cause medication overuse and chronicity in migraine patients. Headache, 45(1), 25–31.PubMedCrossRef
go back to reference Ates, O., Kurt, S., Altinisik, J., Karaer, H., & Sezer, S. (2011). Genetic variations in tumor necrosis factor alpha, interleukin-10 genes, and migraine susceptibility. Pain Medicine, 12(10), 1464–1469.PubMedCrossRef Ates, O., Kurt, S., Altinisik, J., Karaer, H., & Sezer, S. (2011). Genetic variations in tumor necrosis factor alpha, interleukin-10 genes, and migraine susceptibility. Pain Medicine, 12(10), 1464–1469.PubMedCrossRef
go back to reference Barber, M. J., Starmer, C. F., & Grant, A. O. (1991). Blockade of cardiac sodium channels by amitriptyline and diphenylhydantoin. Evidence for two use-dependent binding sites. Circulation Research, 69(3), 677–696.PubMedCrossRef Barber, M. J., Starmer, C. F., & Grant, A. O. (1991). Blockade of cardiac sodium channels by amitriptyline and diphenylhydantoin. Evidence for two use-dependent binding sites. Circulation Research, 69(3), 677–696.PubMedCrossRef
go back to reference Bielefeldt, K., Ozaki, N., Whiteis, C., & Gebhart, G. F. (2002). Amitriptyline inhibits voltage-sensitive sodium currents in rat gastric sensory neurons. Digestive Diseases and Sciences, 47(5), 959–966.PubMedCrossRef Bielefeldt, K., Ozaki, N., Whiteis, C., & Gebhart, G. F. (2002). Amitriptyline inhibits voltage-sensitive sodium currents in rat gastric sensory neurons. Digestive Diseases and Sciences, 47(5), 959–966.PubMedCrossRef
go back to reference Blair, N. T., & Bean, B. P. (2002). Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. The Journal of Neuroscience, 22(23), 10277–10290.PubMed Blair, N. T., & Bean, B. P. (2002). Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. The Journal of Neuroscience, 22(23), 10277–10290.PubMed
go back to reference Bongenhielm, U., Nosrat, C. A., Nosrat, I., Eriksson, J., Fjell, J., & Fried, K. (2000). Expression of sodium channel SNS/PN3 and ankyrin(G) mRNAs in the trigeminal ganglion after inferior alveolar nerve injury in the rat. Experimental Neurology, 164(2), 384–395.PubMedCrossRef Bongenhielm, U., Nosrat, C. A., Nosrat, I., Eriksson, J., Fjell, J., & Fried, K. (2000). Expression of sodium channel SNS/PN3 and ankyrin(G) mRNAs in the trigeminal ganglion after inferior alveolar nerve injury in the rat. Experimental Neurology, 164(2), 384–395.PubMedCrossRef
go back to reference Cang, C. L., Zhang, H., Zhang, Y. Q., & Zhao, Z. Q. (2009). PKCepsilon-dependent potentiation of TTX-resistant Nav1.8 current by neurokinin-1 receptor activation in rat dorsal root ganglion neurons. Molecular Pain, 5, 33.PubMedCentralPubMedCrossRef Cang, C. L., Zhang, H., Zhang, Y. Q., & Zhao, Z. Q. (2009). PKCepsilon-dependent potentiation of TTX-resistant Nav1.8 current by neurokinin-1 receptor activation in rat dorsal root ganglion neurons. Molecular Pain, 5, 33.PubMedCentralPubMedCrossRef
go back to reference Chen, X., Pang, R. P., Shen, K. F., Zimmermann, M., Xin, W. J., Li, Y. Y., et al. (2011). TNF-alpha enhances the currents of voltage gated sodium channels in uninjured dorsal root ganglion neurons following motor nerve injury. Experimental Neurology, 227(2), 279–286.PubMedCrossRef Chen, X., Pang, R. P., Shen, K. F., Zimmermann, M., Xin, W. J., Li, Y. Y., et al. (2011). TNF-alpha enhances the currents of voltage gated sodium channels in uninjured dorsal root ganglion neurons following motor nerve injury. Experimental Neurology, 227(2), 279–286.PubMedCrossRef
go back to reference Cheng, K. I., Wang, H. C., Chang, L. L., Wang, F. Y., Lai, C. S., Chou, C. W., et al. (2012). Pretreatment with intrathecal amitriptyline potentiates anti-hyperalgesic effects of post-injury intra-peritoneal amitriptyline following spinal nerve ligation. BMC Neurology, 12(1), 44.PubMedCentralPubMedCrossRef Cheng, K. I., Wang, H. C., Chang, L. L., Wang, F. Y., Lai, C. S., Chou, C. W., et al. (2012). Pretreatment with intrathecal amitriptyline potentiates anti-hyperalgesic effects of post-injury intra-peritoneal amitriptyline following spinal nerve ligation. BMC Neurology, 12(1), 44.PubMedCentralPubMedCrossRef
go back to reference D’Amico, D. (2010). Pharmacological prophylaxis of chronic migraine: A review of double-blind placebo-controlled trials. Neurological Science, 31(Suppl 1), S23–S28.CrossRef D’Amico, D. (2010). Pharmacological prophylaxis of chronic migraine: A review of double-blind placebo-controlled trials. Neurological Science, 31(Suppl 1), S23–S28.CrossRef
go back to reference De Fusco, M., Marconi, R., Silvestri, L., Atorino, L., Rampoldi, L., Morgante, L., et al. (2003). Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nature Genetics, 33(2), 192–196.PubMedCrossRef De Fusco, M., Marconi, R., Silvestri, L., Atorino, L., Rampoldi, L., Morgante, L., et al. (2003). Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nature Genetics, 33(2), 192–196.PubMedCrossRef
go back to reference Dichgans, M., Freilinger, T., Eckstein, G., Babini, E., Lorenz-Depiereux, B., Biskup, S., et al. (2005). Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet, 366(9483), 371–377.PubMedCrossRef Dichgans, M., Freilinger, T., Eckstein, G., Babini, E., Lorenz-Depiereux, B., Biskup, S., et al. (2005). Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet, 366(9483), 371–377.PubMedCrossRef
go back to reference Dick, I. E., Brochu, R. M., Purohit, Y., Kaczorowski, G. J., Martin, W. J., & Priest, B. T. (2007). Sodium channel blockade may contribute to the analgesic efficacy of antidepressants. Journal of Pain, 8(4), 315–324.PubMedCrossRef Dick, I. E., Brochu, R. M., Purohit, Y., Kaczorowski, G. J., Martin, W. J., & Priest, B. T. (2007). Sodium channel blockade may contribute to the analgesic efficacy of antidepressants. Journal of Pain, 8(4), 315–324.PubMedCrossRef
go back to reference Djouhri, L., Newton, R., Levinson, S. R., Berry, C. M., Carruthers, B., & Lawson, S. N. (2003). Sensory and electrophysiological properties of guinea-pig sensory neurones expressing Nav 1.7 (PN1) Na+ channel alpha subunit protein. Journal of Physiology, 546(Pt 2), 565–576.PubMedCentralPubMedCrossRef Djouhri, L., Newton, R., Levinson, S. R., Berry, C. M., Carruthers, B., & Lawson, S. N. (2003). Sensory and electrophysiological properties of guinea-pig sensory neurones expressing Nav 1.7 (PN1) Na+ channel alpha subunit protein. Journal of Physiology, 546(Pt 2), 565–576.PubMedCentralPubMedCrossRef
go back to reference Ducros, A. (2006). [Mechanisms and genetics of migraine]. CNS Drugs, 20 Spec no. 1, 1–11. Ducros, A. (2006). [Mechanisms and genetics of migraine]. CNS Drugs, 20 Spec no. 1, 1–11.
go back to reference Ebersberger, A., Natura, G., Eitner, A., Halbhuber, K. J., Rost, R., & Schaible, H. G. (2011). Effects of prostaglandin D2 on tetrodotoxin-resistant Na+ currents in DRG neurons of adult rat. Pain, 152(5), 1114–1126.PubMedCrossRef Ebersberger, A., Natura, G., Eitner, A., Halbhuber, K. J., Rost, R., & Schaible, H. G. (2011). Effects of prostaglandin D2 on tetrodotoxin-resistant Na+ currents in DRG neurons of adult rat. Pain, 152(5), 1114–1126.PubMedCrossRef
go back to reference Elliott, A. A., & Elliott, J. R. (1993). Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia. The Journal of Physiology, 463, 39–56.PubMedCentralPubMed Elliott, A. A., & Elliott, J. R. (1993). Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia. The Journal of Physiology, 463, 39–56.PubMedCentralPubMed
go back to reference Eriksson, J., Jablonski, A., Persson, A. K., Hao, J. X., Kouya, P. F., Wiesenfeld-Hallin, Z., et al. (2005). Behavioral changes and trigeminal ganglion sodium channel regulation in an orofacial neuropathic pain model. Pain, 119(1–3), 82–94.PubMedCrossRef Eriksson, J., Jablonski, A., Persson, A. K., Hao, J. X., Kouya, P. F., Wiesenfeld-Hallin, Z., et al. (2005). Behavioral changes and trigeminal ganglion sodium channel regulation in an orofacial neuropathic pain model. Pain, 119(1–3), 82–94.PubMedCrossRef
go back to reference Estebe, J. P., Gentili, M. E., Le Corre, P., Le Verge, R., Moulinoux, J. P., & Ecoffey, C. (2002). Sciatic nerve block with bupivacaine-loaded microspheres prevents hyperalgesia in an inflammatory animal model. Canadian Journal of Anaesthesia, 49(7), 690–693.PubMedCrossRef Estebe, J. P., Gentili, M. E., Le Corre, P., Le Verge, R., Moulinoux, J. P., & Ecoffey, C. (2002). Sciatic nerve block with bupivacaine-loaded microspheres prevents hyperalgesia in an inflammatory animal model. Canadian Journal of Anaesthesia, 49(7), 690–693.PubMedCrossRef
go back to reference Fang, Z., Park, C. K., Li, H. Y., Kim, H. Y., Park, S. H., Jung, S. J., et al. (2007). Molecular basis of Ca(v)2.3 calcium channels in rat nociceptive neurons. Journal of Biological Chemistry, 282(7), 4757–4764.PubMedCentralPubMedCrossRef Fang, Z., Park, C. K., Li, H. Y., Kim, H. Y., Park, S. H., Jung, S. J., et al. (2007). Molecular basis of Ca(v)2.3 calcium channels in rat nociceptive neurons. Journal of Biological Chemistry, 282(7), 4757–4764.PubMedCentralPubMedCrossRef
go back to reference Finnerup, N. B., Otto, M., McQuay, H. J., Jensen, T. S., & Sindrup, S. H. (2005). Algorithm for neuropathic pain treatment: An evidence based proposal. Pain, 118(3), 289–305.PubMedCrossRef Finnerup, N. B., Otto, M., McQuay, H. J., Jensen, T. S., & Sindrup, S. H. (2005). Algorithm for neuropathic pain treatment: An evidence based proposal. Pain, 118(3), 289–305.PubMedCrossRef
go back to reference Fusayasu, E., Kowa, H., Takeshima, T., Nakaso, K., & Nakashima, K. (2007). Increased plasma substance P and CGRP levels, and high ACE activity in migraineurs during headache-free periods. Pain, 128(3), 209–214.PubMedCrossRef Fusayasu, E., Kowa, H., Takeshima, T., Nakaso, K., & Nakashima, K. (2007). Increased plasma substance P and CGRP levels, and high ACE activity in migraineurs during headache-free periods. Pain, 128(3), 209–214.PubMedCrossRef
go back to reference Gerner, P., Mujtaba, M., Sinnott, C. J., & Wang, G. K. (2001). Amitriptyline versus bupivacaine in rat sciatic nerve blockade. Anesthesiology, 94(4), 661–667.PubMedCrossRef Gerner, P., Mujtaba, M., Sinnott, C. J., & Wang, G. K. (2001). Amitriptyline versus bupivacaine in rat sciatic nerve blockade. Anesthesiology, 94(4), 661–667.PubMedCrossRef
go back to reference Gold, M. S., Levine, J. D., & Correa, A. M. (1998). Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. The Journal of Neuroscience, 18(24), 10345–10355.PubMed Gold, M. S., Levine, J. D., & Correa, A. M. (1998). Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. The Journal of Neuroscience, 18(24), 10345–10355.PubMed
go back to reference Hille, B. (1977). Local anesthetics: Hydrophilic and hydrophobic pathways for the drug-receptor reaction. The Journal of General Physiology, 69(4), 497–515.PubMedCrossRef Hille, B. (1977). Local anesthetics: Hydrophilic and hydrophobic pathways for the drug-receptor reaction. The Journal of General Physiology, 69(4), 497–515.PubMedCrossRef
go back to reference Hur, Y. K., Choi, I. S., Cho, J. H., Park, E. J., Choi, J. K., Choi, B. J., et al. (2008). Effects of carbamazepine and amitriptyline on tetrodotoxinresistant Na+ channels in immature rat trigeminal ganglion neurons. Archives of Pharmacal Research, 31(2), 178–182.PubMedCrossRef Hur, Y. K., Choi, I. S., Cho, J. H., Park, E. J., Choi, J. K., Choi, B. J., et al. (2008). Effects of carbamazepine and amitriptyline on tetrodotoxinresistant Na+ channels in immature rat trigeminal ganglion neurons. Archives of Pharmacal Research, 31(2), 178–182.PubMedCrossRef
go back to reference Ishii, Y., & Sumi, T. (1992). Amitriptyline inhibits striatal efflux of neurotransmitters via blockade of voltage-dependent Na+ channels. European Journal of Pharmacology, 221(2–3), 377–380.PubMedCrossRef Ishii, Y., & Sumi, T. (1992). Amitriptyline inhibits striatal efflux of neurotransmitters via blockade of voltage-dependent Na+ channels. European Journal of Pharmacology, 221(2–3), 377–380.PubMedCrossRef
go back to reference Jang, M. U., Park, J. W., Kho, H. S., Chung, S. C., & Chung, J. W. (2011). Plasma and saliva levels of nerve growth factor and neuropeptides in chronic migraine patients. Oral Diseases, 17(2), 187–193.PubMedCrossRef Jang, M. U., Park, J. W., Kho, H. S., Chung, S. C., & Chung, J. W. (2011). Plasma and saliva levels of nerve growth factor and neuropeptides in chronic migraine patients. Oral Diseases, 17(2), 187–193.PubMedCrossRef
go back to reference Jarvis, M. F., Honore, P., Shieh, C. C., Chapman, M., Joshi, S., Zhang, X. F., et al. (2007). A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proceedings of the National Academy of Sciences of the United States of America, 104(20), 8520–8525.PubMedCentralPubMedCrossRef Jarvis, M. F., Honore, P., Shieh, C. C., Chapman, M., Joshi, S., Zhang, X. F., et al. (2007). A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proceedings of the National Academy of Sciences of the United States of America, 104(20), 8520–8525.PubMedCentralPubMedCrossRef
go back to reference Joshi, S. K., Honore, P., Hernandez, G., Schmidt, R., Gomtsyan, A., Scanio, M., et al. (2009). Additive antinociceptive effects of the selective Nav1.8 blocker A-803467 and selective TRPV1 antagonists in rat inflammatory and neuropathic pain models. Journal of Pain, 10(3), 306–315.PubMedCrossRef Joshi, S. K., Honore, P., Hernandez, G., Schmidt, R., Gomtsyan, A., Scanio, M., et al. (2009). Additive antinociceptive effects of the selective Nav1.8 blocker A-803467 and selective TRPV1 antagonists in rat inflammatory and neuropathic pain models. Journal of Pain, 10(3), 306–315.PubMedCrossRef
go back to reference Joshi, S. K., Mikusa, J. P., Hernandez, G., Baker, S., Shieh, C. C., Neelands, T., et al. (2006). Involvement of the TTX-resistant sodium channel Nav 1.8 in inflammatory and neuropathic, but not post-operative, pain states. Pain, 123(1–2), 75–82.PubMedCrossRef Joshi, S. K., Mikusa, J. P., Hernandez, G., Baker, S., Shieh, C. C., Neelands, T., et al. (2006). Involvement of the TTX-resistant sodium channel Nav 1.8 in inflammatory and neuropathic, but not post-operative, pain states. Pain, 123(1–2), 75–82.PubMedCrossRef
go back to reference Kerr, B. J., Souslova, V., McMahon, S. B., & Wood, J. N. (2001). A role for the TTX-resistant sodium channel Nav 1.8 in NGF-induced hyperalgesia, but not neuropathic pain. NeuroReport, 12(14), 3077–3080.PubMedCrossRef Kerr, B. J., Souslova, V., McMahon, S. B., & Wood, J. N. (2001). A role for the TTX-resistant sodium channel Nav 1.8 in NGF-induced hyperalgesia, but not neuropathic pain. NeuroReport, 12(14), 3077–3080.PubMedCrossRef
go back to reference Kwiecinski, H. (2005). Is migraine a neuronal channelopothy? Neurologia i Neurochirurgia Polska, 39(4 Suppl 1), S61–S64.PubMed Kwiecinski, H. (2005). Is migraine a neuronal channelopothy? Neurologia i Neurochirurgia Polska, 39(4 Suppl 1), S61–S64.PubMed
go back to reference Lai, J., Gold, M. S., Kim, C. S., Bian, D., Ossipov, M. H., Hunter, J. C., et al. (2002). Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8. Pain, 95(1–2), 143–152.PubMedCrossRef Lai, J., Gold, M. S., Kim, C. S., Bian, D., Ossipov, M. H., Hunter, J. C., et al. (2002). Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8. Pain, 95(1–2), 143–152.PubMedCrossRef
go back to reference Laird, J. M., Souslova, V., Wood, J. N., & Cervero, F. (2002). Deficits in visceral pain and referred hyperalgesia in Nav1.8 (SNS/PN3)-null mice. The Journal of Neuroscience, 22(19), 8352–8356.PubMed Laird, J. M., Souslova, V., Wood, J. N., & Cervero, F. (2002). Deficits in visceral pain and referred hyperalgesia in Nav1.8 (SNS/PN3)-null mice. The Journal of Neuroscience, 22(19), 8352–8356.PubMed
go back to reference Leffler, A., Reiprich, A., Mohapatra, D. P., & Nau, C. (2007). Use-dependent block by lidocaine but not amitriptyline is more pronounced in tetrodotoxin (TTX)-Resistant Nav1.8 than in TTX-sensitive Na+ channels. Journal of Pharmacology and Experimental Therapeutics, 320(1), 354–364.PubMedCrossRef Leffler, A., Reiprich, A., Mohapatra, D. P., & Nau, C. (2007). Use-dependent block by lidocaine but not amitriptyline is more pronounced in tetrodotoxin (TTX)-Resistant Nav1.8 than in TTX-sensitive Na+ channels. Journal of Pharmacology and Experimental Therapeutics, 320(1), 354–364.PubMedCrossRef
go back to reference Liang, J., Liu, X., Zheng, J., & Yu, S. (2013). Effect of amitriptyline on tetrodotoxin-resistant Nav1.9 currents in nociceptive trigeminal neurons. Molecular Pain, 9(1), 31.PubMedCentralPubMedCrossRef Liang, J., Liu, X., Zheng, J., & Yu, S. (2013). Effect of amitriptyline on tetrodotoxin-resistant Nav1.9 currents in nociceptive trigeminal neurons. Molecular Pain, 9(1), 31.PubMedCentralPubMedCrossRef
go back to reference Liang, J., Yu, S., Dong, Z., Wang, X., Liu, R., Chen, X., et al. (2011). The effects of OB-induced depression on nociceptive behaviors induced by electrical stimulation of the dura mater surrounding the superior sagittal sinus. Brain Research, 1424, 9–19.PubMedCrossRef Liang, J., Yu, S., Dong, Z., Wang, X., Liu, R., Chen, X., et al. (2011). The effects of OB-induced depression on nociceptive behaviors induced by electrical stimulation of the dura mater surrounding the superior sagittal sinus. Brain Research, 1424, 9–19.PubMedCrossRef
go back to reference Matthews, E. A., Wood, J. N., & Dickenson, A. H. (2006). Na(v) 1.8-null mice show stimulus-dependent deficits in spinal neuronal activity. Molecular Pain, 2, 5.PubMedCentralPubMedCrossRef Matthews, E. A., Wood, J. N., & Dickenson, A. H. (2006). Na(v) 1.8-null mice show stimulus-dependent deficits in spinal neuronal activity. Molecular Pain, 2, 5.PubMedCentralPubMedCrossRef
go back to reference McGaraughty, S., Chu, K. L., Scanio, M. J., Kort, M. E., Faltynek, C. R., & Jarvis, M. F. (2008). A selective Nav1.8 sodium channel blocker, A-803467 [5-(4-chlorophenyl-N-(3,5-dimethoxyphenyl)furan-2-carboxamide], attenuates spinal neuronal activity in neuropathic rats. Journal of Pharmacology and Experimental Therapeutics, 324(3), 1204–1211.PubMedCrossRef McGaraughty, S., Chu, K. L., Scanio, M. J., Kort, M. E., Faltynek, C. R., & Jarvis, M. F. (2008). A selective Nav1.8 sodium channel blocker, A-803467 [5-(4-chlorophenyl-N-(3,5-dimethoxyphenyl)furan-2-carboxamide], attenuates spinal neuronal activity in neuropathic rats. Journal of Pharmacology and Experimental Therapeutics, 324(3), 1204–1211.PubMedCrossRef
go back to reference McGowan, E., Hoyt, S. B., Li, X., Lyons, K. A., & Abbadie, C. (2009). A peripherally acting Na(v)1.7 sodium channel blocker reverses hyperalgesia and allodynia on rat models of inflammatory and neuropathic pain. Anesthesia and Analgesia, 109(3), 951–958.PubMedCrossRef McGowan, E., Hoyt, S. B., Li, X., Lyons, K. A., & Abbadie, C. (2009). A peripherally acting Na(v)1.7 sodium channel blocker reverses hyperalgesia and allodynia on rat models of inflammatory and neuropathic pain. Anesthesia and Analgesia, 109(3), 951–958.PubMedCrossRef
go back to reference Mert, T., & Gunes, Y. (2012). Antinociceptive activities of lidocaine and the nav1.8 blocker a803467 in diabetic rats. Journal of the American Association for Laboratory Animal Science, 51(5), 579–585.PubMedCentralPubMed Mert, T., & Gunes, Y. (2012). Antinociceptive activities of lidocaine and the nav1.8 blocker a803467 in diabetic rats. Journal of the American Association for Laboratory Animal Science, 51(5), 579–585.PubMedCentralPubMed
go back to reference Moon, J. Y., Song, S., Yoon, S. Y., Roh, D. H., Kang, S. Y., Park, J. H., et al. (2012). The differential effect of intrathecal Nav1.8 blockers on the induction and maintenance of capsaicin- and peripheral ischemia-induced mechanical allodynia and thermal hyperalgesia. Anesthesia and Analgesia, 114(1), 215–223.PubMedCrossRef Moon, J. Y., Song, S., Yoon, S. Y., Roh, D. H., Kang, S. Y., Park, J. H., et al. (2012). The differential effect of intrathecal Nav1.8 blockers on the induction and maintenance of capsaicin- and peripheral ischemia-induced mechanical allodynia and thermal hyperalgesia. Anesthesia and Analgesia, 114(1), 215–223.PubMedCrossRef
go back to reference Moskowitz, M. A. (1984). The neurobiology of vascular head pain. Annals of Neurology, 16(2), 157–168.PubMedCrossRef Moskowitz, M. A. (1984). The neurobiology of vascular head pain. Annals of Neurology, 16(2), 157–168.PubMedCrossRef
go back to reference Moskowitz, M. A. (1991). The visceral organ brain: Implications for the pathophysiology of vascular head pain. Neurology, 41(2 (Pt 1)), 182–186.PubMedCrossRef Moskowitz, M. A. (1991). The visceral organ brain: Implications for the pathophysiology of vascular head pain. Neurology, 41(2 (Pt 1)), 182–186.PubMedCrossRef
go back to reference Natura, G., von Banchet, G. S., & Schaible, H. G. (2005). Calcitonin gene-related peptide enhances TTX-resistant sodium currents in cultured dorsal root ganglion neurons from adult rats. Pain, 116(3), 194–204.PubMedCrossRef Natura, G., von Banchet, G. S., & Schaible, H. G. (2005). Calcitonin gene-related peptide enhances TTX-resistant sodium currents in cultured dorsal root ganglion neurons from adult rats. Pain, 116(3), 194–204.PubMedCrossRef
go back to reference Nau, C., Seaver, M., Wang, S. Y., & Wang, G. K. (2000). Block of human heart hH1 sodium channels by amitriptyline. Journal of Pharmacology and Experimental Therapeutics, 292(3), 1015–1023.PubMed Nau, C., Seaver, M., Wang, S. Y., & Wang, G. K. (2000). Block of human heart hH1 sodium channels by amitriptyline. Journal of Pharmacology and Experimental Therapeutics, 292(3), 1015–1023.PubMed
go back to reference Olesen, J., Burstein, R., Ashina, M., & Tfelt-Hansen, P. (2009). Origin of pain in migraine: Evidence for peripheral sensitisation. The Lancet Neurology, 8(7), 679–690.CrossRef Olesen, J., Burstein, R., Ashina, M., & Tfelt-Hansen, P. (2009). Origin of pain in migraine: Evidence for peripheral sensitisation. The Lancet Neurology, 8(7), 679–690.CrossRef
go back to reference Ophoff, R. A., Terwindt, G. M., Vergouwe, M. N., van Eijk, R., Oefner, P. J., Hoffman, S. M., et al. (1996). Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell, 87(3), 543–552.PubMedCrossRef Ophoff, R. A., Terwindt, G. M., Vergouwe, M. N., van Eijk, R., Oefner, P. J., Hoffman, S. M., et al. (1996). Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell, 87(3), 543–552.PubMedCrossRef
go back to reference Pancrazio, J. J., Kamatchi, G. L., Roscoe, A. K., & Lynch, C, 3rd. (1998). Inhibition of neuronal Na+ channels by antidepressant drugs. Journal of Pharmacology and Experimental Therapeutics, 284(1), 208–214.PubMed Pancrazio, J. J., Kamatchi, G. L., Roscoe, A. K., & Lynch, C, 3rd. (1998). Inhibition of neuronal Na+ channels by antidepressant drugs. Journal of Pharmacology and Experimental Therapeutics, 284(1), 208–214.PubMed
go back to reference Parada, C. A., Vivancos, G. G., Tambeli, C. H., Cunha, F. Q., & Ferreira, S. H. (2003). Activation of presynaptic NMDA receptors coupled to NaV1.8-resistant sodium channel C-fibers causes retrograde mechanical nociceptor sensitization. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2923–2928.PubMedCentralPubMedCrossRef Parada, C. A., Vivancos, G. G., Tambeli, C. H., Cunha, F. Q., & Ferreira, S. H. (2003). Activation of presynaptic NMDA receptors coupled to NaV1.8-resistant sodium channel C-fibers causes retrograde mechanical nociceptor sensitization. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2923–2928.PubMedCentralPubMedCrossRef
go back to reference Park, C. K., Bae, J. H., Kim, H. Y., Jo, H. J., Kim, Y. H., Jung, S. J., et al. (2010). Substance P sensitizes P2X3 in nociceptive trigeminal neurons. Journal of Dental Research, 89(10), 1154–1159.PubMedCrossRef Park, C. K., Bae, J. H., Kim, H. Y., Jo, H. J., Kim, Y. H., Jung, S. J., et al. (2010). Substance P sensitizes P2X3 in nociceptive trigeminal neurons. Journal of Dental Research, 89(10), 1154–1159.PubMedCrossRef
go back to reference Porreca, F., Lai, J., Bian, D., Wegert, S., Ossipov, M. H., Eglen, R. M., et al. (1999). A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 7640–7644.PubMedCentralPubMedCrossRef Porreca, F., Lai, J., Bian, D., Wegert, S., Ossipov, M. H., Eglen, R. M., et al. (1999). A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 7640–7644.PubMedCentralPubMedCrossRef
go back to reference Renganathan, M., Cummins, T. R., & Waxman, S. G. (2001). Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. Journal of Neurophysiology, 86(2), 629–640.PubMed Renganathan, M., Cummins, T. R., & Waxman, S. G. (2001). Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. Journal of Neurophysiology, 86(2), 629–640.PubMed
go back to reference Rogawski, M. A., & Loscher, W. (2004). The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nature Medicine, 10(7), 685–692.PubMedCrossRef Rogawski, M. A., & Loscher, W. (2004). The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nature Medicine, 10(7), 685–692.PubMedCrossRef
go back to reference Rush, A. M., Craner, M. J., Kageyama, T., Dib-Hajj, S. D., Waxman, S. G., & Ranscht, B. (2005). Contactin regulates the current density and axonal expression of tetrodotoxin-resistant but not tetrodotoxin-sensitive sodium channels in DRG neurons. European Journal of Neuroscience, 22(1), 39–49.PubMedCrossRef Rush, A. M., Craner, M. J., Kageyama, T., Dib-Hajj, S. D., Waxman, S. G., & Ranscht, B. (2005). Contactin regulates the current density and axonal expression of tetrodotoxin-resistant but not tetrodotoxin-sensitive sodium channels in DRG neurons. European Journal of Neuroscience, 22(1), 39–49.PubMedCrossRef
go back to reference Schwedt, T. J., Krauss, M. J., Frey, K., & Gereau, R. W. (2011). Episodic and chronic migraineurs are hypersensitive to thermal stimuli between migraine attacks. Cephalalgia, 31(1), 6–12.PubMedCentralPubMedCrossRef Schwedt, T. J., Krauss, M. J., Frey, K., & Gereau, R. W. (2011). Episodic and chronic migraineurs are hypersensitive to thermal stimuli between migraine attacks. Cephalalgia, 31(1), 6–12.PubMedCentralPubMedCrossRef
go back to reference Sleeper, A. A., Cummins, T. R., Dib-Hajj, S. D., Hormuzdiar, W., Tyrrell, L., Waxman, S. G., et al. (2000). Changes in expression of two tetrodotoxin-resistant sodium channels and their currents in dorsal root ganglion neurons after sciatic nerve injury but not rhizotomy. Journal of Neuroscience, 20(19), 7279–7289.PubMed Sleeper, A. A., Cummins, T. R., Dib-Hajj, S. D., Hormuzdiar, W., Tyrrell, L., Waxman, S. G., et al. (2000). Changes in expression of two tetrodotoxin-resistant sodium channels and their currents in dorsal root ganglion neurons after sciatic nerve injury but not rhizotomy. Journal of Neuroscience, 20(19), 7279–7289.PubMed
go back to reference Smitherman, T. A., Walters, A. B., Maizels, M., & Penzien, D. B. (2010). The use of antidepressants for headache prophylaxis. CNS Neuroscience & Therapeutics, 17(5), 462–469.CrossRef Smitherman, T. A., Walters, A. B., Maizels, M., & Penzien, D. B. (2010). The use of antidepressants for headache prophylaxis. CNS Neuroscience & Therapeutics, 17(5), 462–469.CrossRef
go back to reference Song, J. H., Ham, S. S., Shin, Y. K., & Lee, C. S. (2000). Amitriptyline modulation of Na(+) channels in rat dorsal root ganglion neurons. European Journal of Pharmacology, 401(3), 297–305.PubMedCrossRef Song, J. H., Ham, S. S., Shin, Y. K., & Lee, C. S. (2000). Amitriptyline modulation of Na(+) channels in rat dorsal root ganglion neurons. European Journal of Pharmacology, 401(3), 297–305.PubMedCrossRef
go back to reference Sudoh, Y., Cahoon, E. E., Gerner, P., & Wang, G. K. (2003). Tricyclic antidepressants as long-acting local anesthetics. Pain, 103(1–2), 49–55.PubMedCrossRef Sudoh, Y., Cahoon, E. E., Gerner, P., & Wang, G. K. (2003). Tricyclic antidepressants as long-acting local anesthetics. Pain, 103(1–2), 49–55.PubMedCrossRef
go back to reference Sung, B., & Wang, G. K. (2004). Peripherally administered amitriptyline derivatives have differential anti-allodynic effects in a rat model of neuropathic pain. Neuroscience Letters, 357(2), 115–118.PubMedCrossRef Sung, B., & Wang, G. K. (2004). Peripherally administered amitriptyline derivatives have differential anti-allodynic effects in a rat model of neuropathic pain. Neuroscience Letters, 357(2), 115–118.PubMedCrossRef
go back to reference Suter, M. R., Kirschmann, G., Laedermann, C. J., Abriel, H., & Decosterd, I. (2013). Rufinamide attenuates mechanical allodynia in a model of neuropathic pain in the mouse and stabilizes voltage-gated sodium channel inactivated state. Anesthesiology, 118(1), 160–172.PubMedCrossRef Suter, M. R., Kirschmann, G., Laedermann, C. J., Abriel, H., & Decosterd, I. (2013). Rufinamide attenuates mechanical allodynia in a model of neuropathic pain in the mouse and stabilizes voltage-gated sodium channel inactivated state. Anesthesiology, 118(1), 160–172.PubMedCrossRef
go back to reference Tarnawa, I., Bolcskei, H., & Kocsis, P. (2007). Blockers of voltage-gated sodium channels for the treatment of central nervous system diseases. Recent Patents on CNS Drug Discovery, 2(1), 57–78.PubMedCrossRef Tarnawa, I., Bolcskei, H., & Kocsis, P. (2007). Blockers of voltage-gated sodium channels for the treatment of central nervous system diseases. Recent Patents on CNS Drug Discovery, 2(1), 57–78.PubMedCrossRef
go back to reference Tepper, S. J., Rapoport, A., & Sheftell, F. (2001). The pathophysiology of migraine. Neurologist, 7(5), 279–286.PubMedCrossRef Tepper, S. J., Rapoport, A., & Sheftell, F. (2001). The pathophysiology of migraine. Neurologist, 7(5), 279–286.PubMedCrossRef
go back to reference Thorstrand, C., Bergstrom, J., & Castenfors, J. (1976). Cardiac effects of amitriptyline in rats. Scandinavian Journal of Clinical and Laboratory Investigation, 36(1), 7–15.PubMedCrossRef Thorstrand, C., Bergstrom, J., & Castenfors, J. (1976). Cardiac effects of amitriptyline in rats. Scandinavian Journal of Clinical and Laboratory Investigation, 36(1), 7–15.PubMedCrossRef
go back to reference Veneroni, O., Maj, R., Calabresi, M., Faravelli, L., Fariello, R. G., & Salvati, P. (2003). Anti-allodynic effect of NW-1029, a novel Na(+) channel blocker, in experimental animal models of inflammatory and neuropathic pain. Pain, 102(1–2), 17–25.PubMedCrossRef Veneroni, O., Maj, R., Calabresi, M., Faravelli, L., Fariello, R. G., & Salvati, P. (2003). Anti-allodynic effect of NW-1029, a novel Na(+) channel blocker, in experimental animal models of inflammatory and neuropathic pain. Pain, 102(1–2), 17–25.PubMedCrossRef
go back to reference Villarreal, C. F., Sachs, D., Cunha, F. Q., Parada, C. A., & Ferreira, S. H. (2005). The role of Na(V)1.8 sodium channel in the maintenance of chronic inflammatory hypernociception. Neuroscience Letters, 386(2), 72–77.PubMedCrossRef Villarreal, C. F., Sachs, D., Cunha, F. Q., Parada, C. A., & Ferreira, S. H. (2005). The role of Na(V)1.8 sodium channel in the maintenance of chronic inflammatory hypernociception. Neuroscience Letters, 386(2), 72–77.PubMedCrossRef
go back to reference Wang, G. K., Russell, C., & Wang, S. Y. (2004). State-dependent block of voltage-gated Na+ channels by amitriptyline via the local anesthetic receptor and its implication for neuropathic pain. Pain, 110(1–2), 166–174.PubMedCrossRef Wang, G. K., Russell, C., & Wang, S. Y. (2004). State-dependent block of voltage-gated Na+ channels by amitriptyline via the local anesthetic receptor and its implication for neuropathic pain. Pain, 110(1–2), 166–174.PubMedCrossRef
go back to reference Wu, W., Ye, Q., Wang, W., Yan, L., Wang, Q., Xiao, H., et al. (2012). Amitriptyline modulates calcium currents and intracellular calcium concentration in mouse trigeminal ganglion neurons. Neuroscience Letters, 506(2), 307–311.PubMedCrossRef Wu, W., Ye, Q., Wang, W., Yan, L., Wang, Q., Xiao, H., et al. (2012). Amitriptyline modulates calcium currents and intracellular calcium concentration in mouse trigeminal ganglion neurons. Neuroscience Letters, 506(2), 307–311.PubMedCrossRef
go back to reference Yan, L., Wang, Q., Fu, Q., Ye, Q., Xiao, H., & Wan, Q. (2010). Amitriptyline inhibits currents and decreases the mRNA expression of voltage-gated sodium channels in cultured rat cortical neurons. Brain Research, 1336, 1–9.PubMedCrossRef Yan, L., Wang, Q., Fu, Q., Ye, Q., Xiao, H., & Wan, Q. (2010). Amitriptyline inhibits currents and decreases the mRNA expression of voltage-gated sodium channels in cultured rat cortical neurons. Brain Research, 1336, 1–9.PubMedCrossRef
go back to reference Yu, S., He, M., Liu, R., Feng, J., Qiao, X., Yang, X., et al. (2013). Headache yesterday in China: A new approach to estimating the burden of headache, applied in a general-population survey in China. Cephalalgia, 33(15), 1211–1217. Yu, S., He, M., Liu, R., Feng, J., Qiao, X., Yang, X., et al. (2013). Headache yesterday in China: A new approach to estimating the burden of headache, applied in a general-population survey in China. Cephalalgia, 33(15), 1211–1217.
go back to reference Yu, S., Liu, R., Zhao, G., Yang, X., Qiao, X., Feng, J., et al. (2012). The prevalence and burden of primary headaches in China: A population-based door-to-door survey. Headache, 52(4), 582–591.PubMedCrossRef Yu, S., Liu, R., Zhao, G., Yang, X., Qiao, X., Feng, J., et al. (2012). The prevalence and burden of primary headaches in China: A population-based door-to-door survey. Headache, 52(4), 582–591.PubMedCrossRef
go back to reference Yu, Y., Zhao, F., Guan, S., & Chen, J. (2011). Antisense-mediated knockdown of Na(V)1.8, but not Na(V)1.9, generates inhibitory effects on complete Freund’s adjuvant-induced inflammatory pain in rat. PLoS One, 6(5), e19865.PubMedCentralPubMedCrossRef Yu, Y., Zhao, F., Guan, S., & Chen, J. (2011). Antisense-mediated knockdown of Na(V)1.8, but not Na(V)1.9, generates inhibitory effects on complete Freund’s adjuvant-induced inflammatory pain in rat. PLoS One, 6(5), e19865.PubMedCentralPubMedCrossRef
go back to reference Zahradnik, I., Minarovic, I., & Zahradnikova, A. (2008). Inhibition of the cardiac L-type calcium channel current by antidepressant drugs. Journal of Pharmacology and Experimental Therapeutics, 324(3), 977–984.PubMedCrossRef Zahradnik, I., Minarovic, I., & Zahradnikova, A. (2008). Inhibition of the cardiac L-type calcium channel current by antidepressant drugs. Journal of Pharmacology and Experimental Therapeutics, 324(3), 977–984.PubMedCrossRef
go back to reference Zimmermann, K., Leffler, A., Babes, A., Cendan, C. M., Carr, R. W., Kobayashi, J., et al. (2007). Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature, 447(7146), 855–858.PubMedCrossRef Zimmermann, K., Leffler, A., Babes, A., Cendan, C. M., Carr, R. W., Kobayashi, J., et al. (2007). Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature, 447(7146), 855–858.PubMedCrossRef
Metadata
Title
Blockade of Nav1.8 Currents in Nociceptive Trigeminal Neurons Contributes to Anti-trigeminovascular Nociceptive Effect of Amitriptyline
Authors
Jingyao Liang
Xiaoyan Liu
Meiyan Pan
Wei Dai
Zhao Dong
Xiaolin Wang
Ruozhuo Liu
Jianquan Zheng
Shengyuan Yu
Publication date
01-06-2014
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 2/2014
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-013-8282-6

Other articles of this Issue 2/2014

NeuroMolecular Medicine 2/2014 Go to the issue