Skip to main content
Top
Published in: NeuroMolecular Medicine 2/2014

01-06-2014 | Original Paper

Correction of the Middle Eastern M712T Mutation Causing GNE Myopathy by Trans-Splicing

Authors: Tzukit Tal-Goldberg, Stéphanie Lorain, Stella Mitrani-Rosenbaum

Published in: NeuroMolecular Medicine | Issue 2/2014

Login to get access

Abstract

GNE myopathy is a rare neuromuscular autosomal recessive disease, resulting from mutations in the gene UDP N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). The most frequent mutation is the single homozygous missense mutation, M712T—the Middle Eastern mutation—located ten amino acids before the end of the protein. We have used an adeno-associated virus (AAV)-based trans-splicing (TS) vector as a gene therapy tool to overcome this mutation by replacing the mutated last exon of GNE by the wild-type exon while preserving the natural endogenous regulatory machinery. We have designed relevant plasmids directed either to mouse or to human GNE. Following transfection of C2C12 murine muscle cells with the mouse TS vectors, we have been able to detect by nested RT-PCR trans-spliced molecules carrying the wild-type exon 12 of GNE. Similarly, transfection of HEK293 human cells with the human-directed TS vectors resulted in the generation of trans-spliced human GNE RNA molecules. Furthermore, infection of primary muscle cells from a GNE myopathy patient carrying the homozygous M712T mutation, with an AAV8-based viral vector carrying a human-directed TS construct, resulted in the generation of wild-type GNE transcripts in addition to the mutated ones. These studies provide a proof of concept that the TS approach could be used to partially correct the Middle Eastern mutation in GNE myopathy patients. These results provide the basis for in vivo research in animal models using the AAV platform with TS plasmids as a potential genetic therapy for GNE myopathy.
Literature
go back to reference Amsili, S., Shlomai, Z., Levitzki, R., Krause, S., Lochmuller, H., & Ben-Bassat, H. (2007). Characterization of hereditary inclusion body myopathy myoblasts: Possible primary impairment of apoptotic events. Cell Death and Differentiation, 14, 1916–1924.PubMedCrossRef Amsili, S., Shlomai, Z., Levitzki, R., Krause, S., Lochmuller, H., & Ben-Bassat, H. (2007). Characterization of hereditary inclusion body myopathy myoblasts: Possible primary impairment of apoptotic events. Cell Death and Differentiation, 14, 1916–1924.PubMedCrossRef
go back to reference Argov, Z., & Mitrani-Rosenbaum, S. (2010). Hereditary inclusion body myopathies. In G. Karpati, D. Hilton-Jonas, C. Bushby, & R. Griggs (Eds.), Disorders of voluntary muscle (8th ed., pp. 492–498). New York: Cambridge University Press. Argov, Z., & Mitrani-Rosenbaum, S. (2010). Hereditary inclusion body myopathies. In G. Karpati, D. Hilton-Jonas, C. Bushby, & R. Griggs (Eds.), Disorders of voluntary muscle (8th ed., pp. 492–498). New York: Cambridge University Press.
go back to reference Argov, Z., & Yarom, R. (1984). “Rimmed vacuole myopathy” sparing the quadriceps: A unique disorder in Iranian Jews. Journal of the Neurological Sciences, 64, 33–43.PubMedCrossRef Argov, Z., & Yarom, R. (1984). “Rimmed vacuole myopathy” sparing the quadriceps: A unique disorder in Iranian Jews. Journal of the Neurological Sciences, 64, 33–43.PubMedCrossRef
go back to reference Avale, M. E., Rodriguez-Martin, T., & Gallo, J. M. (2013). Trans-splicing correction of tau isoform imbalance in a mouse model of tau mis-splicing. Human Molecular Genetics, 22, 2603–2611.PubMedCentralPubMedCrossRef Avale, M. E., Rodriguez-Martin, T., & Gallo, J. M. (2013). Trans-splicing correction of tau isoform imbalance in a mouse model of tau mis-splicing. Human Molecular Genetics, 22, 2603–2611.PubMedCentralPubMedCrossRef
go back to reference Caudevilla, C., Serra, D., Miliar, A., Codony, C., Asins, G., Bach, M., et al. (1998). Natural trans-splicing in carnitine octanoyltransferase pre-mRNAs in rat liver. Proceedings of the National Academy of Sciences of the United States of America, 95, 12185–12190.PubMedCentralPubMedCrossRef Caudevilla, C., Serra, D., Miliar, A., Codony, C., Asins, G., Bach, M., et al. (1998). Natural trans-splicing in carnitine octanoyltransferase pre-mRNAs in rat liver. Proceedings of the National Academy of Sciences of the United States of America, 95, 12185–12190.PubMedCentralPubMedCrossRef
go back to reference Coady, T. H., & Lorson, C. L. (2010). Trans-splicing-Mediated improvement in a severe mouse model of Spinal muscular atrophy. Journal of Neuroscience, 30, 126–130.PubMedCentralPubMedCrossRef Coady, T. H., & Lorson, C. L. (2010). Trans-splicing-Mediated improvement in a severe mouse model of Spinal muscular atrophy. Journal of Neuroscience, 30, 126–130.PubMedCentralPubMedCrossRef
go back to reference Coady, T. H., Shababi, M., Tullis, G. E., & Lorson, C. L. (2007). Restoration of SMN function: Delivery of a trans-splicing RNA re-directs SMN2 pre-mRNA splicing. Molecular Therapy, 15, 1471–1478.PubMedCrossRef Coady, T. H., Shababi, M., Tullis, G. E., & Lorson, C. L. (2007). Restoration of SMN function: Delivery of a trans-splicing RNA re-directs SMN2 pre-mRNA splicing. Molecular Therapy, 15, 1471–1478.PubMedCrossRef
go back to reference Dorn, R., Reuter, G., & Loewendorf, A. (2001). Transgene analysis proves mRNA trans-splicing at the complex mod(mdg4) locus in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 98, 9724–9729.PubMedCentralPubMedCrossRef Dorn, R., Reuter, G., & Loewendorf, A. (2001). Transgene analysis proves mRNA trans-splicing at the complex mod(mdg4) locus in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 98, 9724–9729.PubMedCentralPubMedCrossRef
go back to reference Eisenberg, I., Avidan, N., Potikha, T., Hochner, H., Chen, M., Olender, T., et al. (2001). The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nature Genetics, 29, 83–87.PubMedCrossRef Eisenberg, I., Avidan, N., Potikha, T., Hochner, H., Chen, M., Olender, T., et al. (2001). The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nature Genetics, 29, 83–87.PubMedCrossRef
go back to reference Eisenberg, I., Grabov-Nardini, G., Hochner, H., Korner, M., Sadeh, M., Bertorini, T., et al. (2003). Mutations spectrum of GNE in hereditary inclusion body myopathy sparing the quadriceps. Human Mutation, 21, 99.PubMedCrossRef Eisenberg, I., Grabov-Nardini, G., Hochner, H., Korner, M., Sadeh, M., Bertorini, T., et al. (2003). Mutations spectrum of GNE in hereditary inclusion body myopathy sparing the quadriceps. Human Mutation, 21, 99.PubMedCrossRef
go back to reference Hinderlich, S., Salama, I., Eisenberg, I., Potikha, T., Mantey, L., Yarema, K., et al. (2004). The homozygous M712T mutation of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase results in reduced enzyme activities but not in altered overall cellular sialylation in hereditary inclusion body myopathy. FEBS Letters, 566, 105–109.PubMedCrossRef Hinderlich, S., Salama, I., Eisenberg, I., Potikha, T., Mantey, L., Yarema, K., et al. (2004). The homozygous M712T mutation of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase results in reduced enzyme activities but not in altered overall cellular sialylation in hereditary inclusion body myopathy. FEBS Letters, 566, 105–109.PubMedCrossRef
go back to reference Hinderlich, S., Stäsche, R., Zeitler, R., & Reutter, W. (1997). A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Journal of Biological Chemistry, 272, 24313–24318.PubMedCrossRef Hinderlich, S., Stäsche, R., Zeitler, R., & Reutter, W. (1997). A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Journal of Biological Chemistry, 272, 24313–24318.PubMedCrossRef
go back to reference Huizing, M., & Krasnewich, D. M. (2009). Hereditary inclusion body myopathy: A decade of progress. Biochimica and Biophysica Acta, 1792, 881–887.CrossRef Huizing, M., & Krasnewich, D. M. (2009). Hereditary inclusion body myopathy: A decade of progress. Biochimica and Biophysica Acta, 1792, 881–887.CrossRef
go back to reference Keppler, O., Hinderlich, S., Langner, J., Schwartz-Albiez, R., Reutter, W., & Pawlita, M. (1999). UDP-GlcNAc 2-epimerase: A regulator of cell surface sialylation. Science, 284, 1372–1376.PubMedCrossRef Keppler, O., Hinderlich, S., Langner, J., Schwartz-Albiez, R., Reutter, W., & Pawlita, M. (1999). UDP-GlcNAc 2-epimerase: A regulator of cell surface sialylation. Science, 284, 1372–1376.PubMedCrossRef
go back to reference Krause, S., Aleo, A., Hinderlich, S., Merlini, L., Tournev, I., Walter, M., et al. (2007). GNE protein expression and subcellular distribution are unaltered in HIBM. Neurology, 69, 655–659.PubMedCrossRef Krause, S., Aleo, A., Hinderlich, S., Merlini, L., Tournev, I., Walter, M., et al. (2007). GNE protein expression and subcellular distribution are unaltered in HIBM. Neurology, 69, 655–659.PubMedCrossRef
go back to reference Krause, S., Hinderlich, S., Amsili, S., Horstkorte, R., Wiendi, H., Argov, Z., et al. (2005). Localization of UDP-GlcNAc 2-epimerase/ManAc kinase (GNE) in the Golgi complex and the nucleus of mammalian cells. Experimental Cell Research, 304, 365–379.PubMedCrossRef Krause, S., Hinderlich, S., Amsili, S., Horstkorte, R., Wiendi, H., Argov, Z., et al. (2005). Localization of UDP-GlcNAc 2-epimerase/ManAc kinase (GNE) in the Golgi complex and the nucleus of mammalian cells. Experimental Cell Research, 304, 365–379.PubMedCrossRef
go back to reference Lorain, S., Peccate, C., Le-Hir, M., Griffith, G., Philippi, S., Précigout, G., et al. (2013). Dystrophin rescue by trans-splicing: A strategy for DMD genotypes not eligible for exon skipping approaches. Nucleic Acids Research, 41, 8391–8402.PubMedCentralPubMedCrossRef Lorain, S., Peccate, C., Le-Hir, M., Griffith, G., Philippi, S., Précigout, G., et al. (2013). Dystrophin rescue by trans-splicing: A strategy for DMD genotypes not eligible for exon skipping approaches. Nucleic Acids Research, 41, 8391–8402.PubMedCentralPubMedCrossRef
go back to reference Matsushita, T., Elliger, S., Elliger, C., Podsakoff, G., Villarreal, L., Kurtzman, G. J., et al. (1998). Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Therapy, 5, 938–945.PubMedCrossRef Matsushita, T., Elliger, S., Elliger, C., Podsakoff, G., Villarreal, L., Kurtzman, G. J., et al. (1998). Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Therapy, 5, 938–945.PubMedCrossRef
go back to reference Mitrani-Rosenbaum, S., Yakovlev, L., Becker-Cohen, M., Telem, M., Elbaz, M., Yanay, N., et al. (2012). Sustained expression and safety of human GNE in normal mice after gene transfer based on AAV8 systemic delivery. Neuromuscular Disorders, 22, 1015–1024.PubMedCrossRef Mitrani-Rosenbaum, S., Yakovlev, L., Becker-Cohen, M., Telem, M., Elbaz, M., Yanay, N., et al. (2012). Sustained expression and safety of human GNE in normal mice after gene transfer based on AAV8 systemic delivery. Neuromuscular Disorders, 22, 1015–1024.PubMedCrossRef
go back to reference Murphy, W. J., Watkins, K. F., & Agabian, N. (1986). Identification of a novel Y branch structure as an intermediate in trypanosome mRNA processing: Evidence for trans-splicing. Cell, 47, 517–525.PubMedCrossRef Murphy, W. J., Watkins, K. F., & Agabian, N. (1986). Identification of a novel Y branch structure as an intermediate in trypanosome mRNA processing: Evidence for trans-splicing. Cell, 47, 517–525.PubMedCrossRef
go back to reference Noguchi, S., Keira, Y., Murayama, K., Ogawa, M., Fujita, M., Kawahara, G., et al. (2004). Reduction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase activity and sialylation in distal myopathy with rimmed vacuoles. Journal of Biological Chemistry, 279, 11402–11407.PubMedCrossRef Noguchi, S., Keira, Y., Murayama, K., Ogawa, M., Fujita, M., Kawahara, G., et al. (2004). Reduction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase activity and sialylation in distal myopathy with rimmed vacuoles. Journal of Biological Chemistry, 279, 11402–11407.PubMedCrossRef
go back to reference Puttaraju, M., Jamison, S. F., Mansfield, S. G., Garcia-Blanco, M. A., & Mitchell, L. G. (1999). Spliceosome-mediated RNA trans-splicing as a tool for gene therapy. Nature Biotechnology, 17, 246–252.PubMedCrossRef Puttaraju, M., Jamison, S. F., Mansfield, S. G., Garcia-Blanco, M. A., & Mitchell, L. G. (1999). Spliceosome-mediated RNA trans-splicing as a tool for gene therapy. Nature Biotechnology, 17, 246–252.PubMedCrossRef
go back to reference Rindt, H., Yen, P. F., Thebeau, C. N., Peterson, T. S., Weisman, G. A., & Lorson, C. L. (2012). Replacement of huntingtin exon 1 by trans-splicing. Cellular and Molecular Life Science, 69, 4191–4204.CrossRef Rindt, H., Yen, P. F., Thebeau, C. N., Peterson, T. S., Weisman, G. A., & Lorson, C. L. (2012). Replacement of huntingtin exon 1 by trans-splicing. Cellular and Molecular Life Science, 69, 4191–4204.CrossRef
go back to reference Salama, I., Hinderlich, S., Shlomai, Z., Eisenberg, I., Krause, S., Yarema, K., et al. (2005). No overall hyposialylation in hereditary inclusion body myopathy myoblasts carrying the homozygous M712T GNE mutation. Biochemical and Biophysical Research Communications, 328, 221–226.PubMedCrossRef Salama, I., Hinderlich, S., Shlomai, Z., Eisenberg, I., Krause, S., Yarema, K., et al. (2005). No overall hyposialylation in hereditary inclusion body myopathy myoblasts carrying the homozygous M712T GNE mutation. Biochemical and Biophysical Research Communications, 328, 221–226.PubMedCrossRef
go back to reference Schwarzkopf, M., Knobeloch, K., Rohde, E., Hinderlich, S., Wiechens, N., Lucka, L., et al. (2002). Sialylation is essential for early development in mice. Proceedings of the National Academy of Sciences of the United States of America, 99, 5267–5270.PubMedCentralPubMedCrossRef Schwarzkopf, M., Knobeloch, K., Rohde, E., Hinderlich, S., Wiechens, N., Lucka, L., et al. (2002). Sialylation is essential for early development in mice. Proceedings of the National Academy of Sciences of the United States of America, 99, 5267–5270.PubMedCentralPubMedCrossRef
go back to reference Sela, I., Milman Krentsis, I., Shlomai, Z., Sadeh, M., Dabby, R., Argov, Z., et al. (2011). The proteomic profile of hereditary inclusion body myopathy. PLoS One, 6, e16334.PubMedCentralPubMedCrossRef Sela, I., Milman Krentsis, I., Shlomai, Z., Sadeh, M., Dabby, R., Argov, Z., et al. (2011). The proteomic profile of hereditary inclusion body myopathy. PLoS One, 6, e16334.PubMedCentralPubMedCrossRef
go back to reference Varki, A. (1997). Sialic acids as ligands in recognition phenomena. FASEB Journal, 11, 248–255.PubMed Varki, A. (1997). Sialic acids as ligands in recognition phenomena. FASEB Journal, 11, 248–255.PubMed
go back to reference Wang, Z., Zhu, T., Qiao, C., Zhou, L., Wang, B., Zhang, J., et al. (2005). Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nature Biotechnology, 23, 321–328.PubMedCrossRef Wang, Z., Zhu, T., Qiao, C., Zhou, L., Wang, B., Zhang, J., et al. (2005). Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nature Biotechnology, 23, 321–328.PubMedCrossRef
Metadata
Title
Correction of the Middle Eastern M712T Mutation Causing GNE Myopathy by Trans-Splicing
Authors
Tzukit Tal-Goldberg
Stéphanie Lorain
Stella Mitrani-Rosenbaum
Publication date
01-06-2014
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 2/2014
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-013-8278-2

Other articles of this Issue 2/2014

NeuroMolecular Medicine 2/2014 Go to the issue