Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Dimethyl Fumarate | Research

Beneficial mechanisms of dimethyl fumarate in autoimmune uveitis: insights from single-cell RNA sequencing

Authors: Lei Zhu, He Li, Xuening Peng, Zhaohuai Li, Sichen Zhao, Dongting Wu, Jialing Chen, Si Li, Renbing Jia, Zuohong Li, Wenru Su

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Background

Dimethyl fumarate (DMF) is a fumaric acid ester that exhibits immunoregulatory and anti-inflammatory properties. However, the function of DMF in autoimmune uveitis (AU) is incompletely understood, and studies comprehensively exploring the impact of DMF on immune cells are still lacking.

Methods

To explore the function of DMF in uveitis and its underlying mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) on the cervical draining lymph node (CDLN) cells of normal, experimental autoimmune uveitis (EAU), and DMF-treated EAU mice. Additionally, we integrated scRNA-seq data of the retina and CDLNs to identify the potential impact of DMF on ocular immune cell infiltration. Flow cytometry was conducted to verify the potential target molecules of DMF.

Results

Our study showed that DMF treatment effectively ameliorated EAU symptoms. The proportional and transcriptional alterations in each immune cell type during EAU were reversed by DMF treatment. Bioinformatics analysis in our study indicated that the enhanced expression of Pim1 and Cxcr4 in EAU was reversed by DMF treatment. Further experiments demonstrated that DMF restored the balance between effector T (Teff) /regulatory T (Treg) cells through inhibiting the pathway of PIM1-protein kinase B (AKT)-Forkhead box O1 (FOXO1). By incorporating the scRNA-seq data of the retina from EAU mice into analysis, our study identified that T cells highly expressing Pim1 and Cxcr4 were enriched in the retina. DMF repressed the ocular infiltration of Teff cells, and this effect might depend on its inhibition of PIM1 and CXCR4 expression. Additionally, our study indicated that DMF might reduce the proportion of plasma cells by inhibiting PIM1 expression in B cells.

Conclusions

DMF effectively attenuated EAU symptoms. During EAU, DMF reversed the Teff/Treg cell imbalance and suppressed the ocular infiltration of Teff cells by inhibiting PIM1 and CXCR4 expression. Thus, DMF may act as a new drug option for the treatment of AU.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Airody A, Heath G, Lightman S, Gale R. Non-infectious Uveitis: optimising the therapeutic response. Drugs. 2016;76(1):27–39.PubMedCrossRef Airody A, Heath G, Lightman S, Gale R. Non-infectious Uveitis: optimising the therapeutic response. Drugs. 2016;76(1):27–39.PubMedCrossRef
3.
4.
go back to reference Lin P, Suhler EB, Rosenbaum JT. The future of uveitis treatment. Ophthalmology. 2014;121(1):365–76.PubMedCrossRef Lin P, Suhler EB, Rosenbaum JT. The future of uveitis treatment. Ophthalmology. 2014;121(1):365–76.PubMedCrossRef
5.
go back to reference Uchiyama E, Papaliodis GN, Lobo AM, Sobrin L. Side-effects of anti-inflammatory therapy in uveitis. Semin Ophthalmol. 2014;29(5–6):456–67.PubMedCrossRef Uchiyama E, Papaliodis GN, Lobo AM, Sobrin L. Side-effects of anti-inflammatory therapy in uveitis. Semin Ophthalmol. 2014;29(5–6):456–67.PubMedCrossRef
6.
go back to reference Agarwal RK, Silver PB, Caspi RR. Rodent models of experimental autoimmune uveitis. Methods Mol Biol. 2012;900:443–69.PubMedCrossRef Agarwal RK, Silver PB, Caspi RR. Rodent models of experimental autoimmune uveitis. Methods Mol Biol. 2012;900:443–69.PubMedCrossRef
7.
go back to reference Luger D, Silver PB, Tang J, Cua D, Chen Z, Iwakura Y, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med. 2008;205(4):799–810.PubMedPubMedCentralCrossRef Luger D, Silver PB, Tang J, Cua D, Chen Z, Iwakura Y, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med. 2008;205(4):799–810.PubMedPubMedCentralCrossRef
8.
go back to reference Tan J, Liu H, Huang M, Li N, Tang S, Meng J, et al. Small molecules targeting RORγt inhibit autoimmune disease by suppressing Th17 cell differentiation. Cell Death Dis. 2020;11(8):697.PubMedPubMedCentralCrossRef Tan J, Liu H, Huang M, Li N, Tang S, Meng J, et al. Small molecules targeting RORγt inhibit autoimmune disease by suppressing Th17 cell differentiation. Cell Death Dis. 2020;11(8):697.PubMedPubMedCentralCrossRef
9.
go back to reference Chen Z, Zhang T, Kam HT, Qiao D, Jin W, Zhong Y, et al. Induction of antigen-specific Treg cells in treating autoimmune uveitis via bystander suppressive pathways without compromising anti-tumor immunity. EBioMedicine. 2021;70:103496.PubMedPubMedCentralCrossRef Chen Z, Zhang T, Kam HT, Qiao D, Jin W, Zhong Y, et al. Induction of antigen-specific Treg cells in treating autoimmune uveitis via bystander suppressive pathways without compromising anti-tumor immunity. EBioMedicine. 2021;70:103496.PubMedPubMedCentralCrossRef
10.
go back to reference Greco A, De Virgilio A, Ralli M, Ciofalo A, Mancini P, Attanasio G, et al. Behçet’s disease: new insights into pathophysiology, clinical features and treatment options. Autoimmun Rev. 2018;17(6):567–75.PubMedCrossRef Greco A, De Virgilio A, Ralli M, Ciofalo A, Mancini P, Attanasio G, et al. Behçet’s disease: new insights into pathophysiology, clinical features and treatment options. Autoimmun Rev. 2018;17(6):567–75.PubMedCrossRef
11.
go back to reference Gasteiger G, Ataide M, Kastenmüller W. Lymph node - an organ for T-cell activation and pathogen defense. Immunol Rev. 2016;271(1):200–20.PubMedCrossRef Gasteiger G, Ataide M, Kastenmüller W. Lymph node - an organ for T-cell activation and pathogen defense. Immunol Rev. 2016;271(1):200–20.PubMedCrossRef
12.
go back to reference Bose T, Diedrichs-Möhring M, Wildner G. Dry eye disease and uveitis: a closer look at immune mechanisms in animal models of two ocular autoimmune diseases. Autoimmun Rev. 2016;15(12):1181–92.PubMedCrossRef Bose T, Diedrichs-Möhring M, Wildner G. Dry eye disease and uveitis: a closer look at immune mechanisms in animal models of two ocular autoimmune diseases. Autoimmun Rev. 2016;15(12):1181–92.PubMedCrossRef
13.
go back to reference Yin X, Zhang S, Lee JH, Dong H, Mourgkos G, Terwilliger G et al. Compartmentalized ocular lymphatic system mediates eye-brain immunity. Nature. 2024. Yin X, Zhang S, Lee JH, Dong H, Mourgkos G, Terwilliger G et al. Compartmentalized ocular lymphatic system mediates eye-brain immunity. Nature. 2024.
14.
go back to reference Yu CR, Choi JK, Uche AN, Egwuagu CE. Production of IL-35 by Bregs is mediated through binding of BATF-IRF-4-IRF-8 complex to il12a and ebi3 promoter elements. J Leukoc Biol. 2018;104(6):1147–57.PubMedCrossRef Yu CR, Choi JK, Uche AN, Egwuagu CE. Production of IL-35 by Bregs is mediated through binding of BATF-IRF-4-IRF-8 complex to il12a and ebi3 promoter elements. J Leukoc Biol. 2018;104(6):1147–57.PubMedCrossRef
15.
go back to reference Wang RX, Yu CR, Mahdi RM, Egwuagu CE. Novel IL27p28/IL12p40 cytokine suppressed experimental autoimmune uveitis by inhibiting autoreactive Th1/Th17 cells and promoting expansion of regulatory T cells. J Biol Chem. 2012;287(43):36012–21.PubMedPubMedCentralCrossRef Wang RX, Yu CR, Mahdi RM, Egwuagu CE. Novel IL27p28/IL12p40 cytokine suppressed experimental autoimmune uveitis by inhibiting autoreactive Th1/Th17 cells and promoting expansion of regulatory T cells. J Biol Chem. 2012;287(43):36012–21.PubMedPubMedCentralCrossRef
16.
go back to reference Yücel YH, Cardinell K, Khattak S, Zhou X, Lapinski M, Cheng F, et al. Active lymphatic drainage from the Eye measured by Noninvasive Photoacoustic Imaging of Near-Infrared nanoparticles. Invest Ophthalmol Vis Sci. 2018;59(7):2699–707.PubMedCrossRef Yücel YH, Cardinell K, Khattak S, Zhou X, Lapinski M, Cheng F, et al. Active lymphatic drainage from the Eye measured by Noninvasive Photoacoustic Imaging of Near-Infrared nanoparticles. Invest Ophthalmol Vis Sci. 2018;59(7):2699–707.PubMedCrossRef
17.
go back to reference Louveau A, Herz J, Alme MN, Salvador AF, Dong MQ, Viar KE, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21(10):1380–91.PubMedPubMedCentralCrossRef Louveau A, Herz J, Alme MN, Salvador AF, Dong MQ, Viar KE, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21(10):1380–91.PubMedPubMedCentralCrossRef
18.
go back to reference Podkowa A, Miller RJ, Motl RW, Fish R, Oelze ML. Focused Ultrasound Treatment of Cervical Lymph nodes in rats with EAE: a pilot study. Ultrasound Med Biol. 2016;42(12):2957–64.PubMedCrossRef Podkowa A, Miller RJ, Motl RW, Fish R, Oelze ML. Focused Ultrasound Treatment of Cervical Lymph nodes in rats with EAE: a pilot study. Ultrasound Med Biol. 2016;42(12):2957–64.PubMedCrossRef
19.
go back to reference Dick AD, Tugal-Tutkun I, Foster S, Zierhut M, Melissa Liew SH, Bezlyak V, et al. Secukinumab in the treatment of noninfectious uveitis: results of three randomized, controlled clinical trials. Ophthalmology. 2013;120(4):777–87.PubMedCrossRef Dick AD, Tugal-Tutkun I, Foster S, Zierhut M, Melissa Liew SH, Bezlyak V, et al. Secukinumab in the treatment of noninfectious uveitis: results of three randomized, controlled clinical trials. Ophthalmology. 2013;120(4):777–87.PubMedCrossRef
20.
go back to reference Diebold M, Sievers C, Bantug G, Sanderson N, Kappos L, Kuhle J, et al. Dimethyl fumarate influences innate and adaptive immunity in multiple sclerosis. J Autoimmun. 2018;86:39–50.PubMedCrossRef Diebold M, Sievers C, Bantug G, Sanderson N, Kappos L, Kuhle J, et al. Dimethyl fumarate influences innate and adaptive immunity in multiple sclerosis. J Autoimmun. 2018;86:39–50.PubMedCrossRef
21.
go back to reference Paraiso HC, Kuo PC, Curfman ET, Moon HJ, Sweazey RD, Yen JH, et al. Dimethyl fumarate attenuates reactive microglia and long-term memory deficits following systemic immune challenge. J Neuroinflammation. 2018;15(1):100.PubMedPubMedCentralCrossRef Paraiso HC, Kuo PC, Curfman ET, Moon HJ, Sweazey RD, Yen JH, et al. Dimethyl fumarate attenuates reactive microglia and long-term memory deficits following systemic immune challenge. J Neuroinflammation. 2018;15(1):100.PubMedPubMedCentralCrossRef
22.
go back to reference Wang Q, Chuikov S, Taitano S, Wu Q, Rastogi A, Tuck SJ, et al. Dimethyl Fumarate protects neural Stem/Progenitor cells and neurons from oxidative damage through Nrf2-ERK1/2 MAPK pathway. Int J Mol Sci. 2015;16(6):13885–907.PubMedPubMedCentralCrossRef Wang Q, Chuikov S, Taitano S, Wu Q, Rastogi A, Tuck SJ, et al. Dimethyl Fumarate protects neural Stem/Progenitor cells and neurons from oxidative damage through Nrf2-ERK1/2 MAPK pathway. Int J Mol Sci. 2015;16(6):13885–907.PubMedPubMedCentralCrossRef
23.
go back to reference Liebmann M, Korn L, Janoschka C, Albrecht S, Lauks S, Herrmann AM, et al. Dimethyl fumarate treatment restrains the antioxidative capacity of T cells to control autoimmunity. Brain. 2021;144(10):3126–41.PubMedPubMedCentralCrossRef Liebmann M, Korn L, Janoschka C, Albrecht S, Lauks S, Herrmann AM, et al. Dimethyl fumarate treatment restrains the antioxidative capacity of T cells to control autoimmunity. Brain. 2021;144(10):3126–41.PubMedPubMedCentralCrossRef
24.
go back to reference Gola L, Bierhansl L, Hummel N, Korn L, Pawlowski M, Cerina M, et al. MMF induces antioxidative and anaplerotic pathways and is neuroprotective in hyperexcitability in vitro. Free Radic Biol Med. 2023;194:337–46.PubMedCrossRef Gola L, Bierhansl L, Hummel N, Korn L, Pawlowski M, Cerina M, et al. MMF induces antioxidative and anaplerotic pathways and is neuroprotective in hyperexcitability in vitro. Free Radic Biol Med. 2023;194:337–46.PubMedCrossRef
25.
go back to reference Shi FL, Ni ST, Luo SQ, Hu B, Xu R, Liu SY, et al. Dimethyl fumarate ameliorates autoimmune hepatitis in mice by blocking NLRP3 inflammasome activation. Int Immunopharmacol. 2022;108:108867.PubMedCrossRef Shi FL, Ni ST, Luo SQ, Hu B, Xu R, Liu SY, et al. Dimethyl fumarate ameliorates autoimmune hepatitis in mice by blocking NLRP3 inflammasome activation. Int Immunopharmacol. 2022;108:108867.PubMedCrossRef
26.
go back to reference Breuer J, Herich S, Schneider-Hohendorf T, Chasan AI, Wettschureck N, Gross CC et al. Dual action by fumaric acid esters synergistically reduces adhesion to human endothelium. Multiple sclerosis (Houndmills, Basingstoke, England). 2018;24(14):1871–82. Breuer J, Herich S, Schneider-Hohendorf T, Chasan AI, Wettschureck N, Gross CC et al. Dual action by fumaric acid esters synergistically reduces adhesion to human endothelium. Multiple sclerosis (Houndmills, Basingstoke, England). 2018;24(14):1871–82.
27.
go back to reference Qi D, Chen P, Bao H, Zhang L, Sun K, Song S, et al. Dimethyl fumarate protects against hepatic ischemia-reperfusion injury by alleviating ferroptosis via the NRF2/SLC7A11/HO-1 axis. Cell cycle (Georgetown. Tex). 2023;22(7):818–28. Qi D, Chen P, Bao H, Zhang L, Sun K, Song S, et al. Dimethyl fumarate protects against hepatic ischemia-reperfusion injury by alleviating ferroptosis via the NRF2/SLC7A11/HO-1 axis. Cell cycle (Georgetown. Tex). 2023;22(7):818–28.
28.
go back to reference Schmitt A, Xu W, Bucher P, Grimm M, Konantz M, Horn H, et al. Dimethyl fumarate induces ferroptosis and impairs NF-κB/STAT3 signaling in DLBCL. Blood. 2021;138(10):871–84.PubMedCrossRef Schmitt A, Xu W, Bucher P, Grimm M, Konantz M, Horn H, et al. Dimethyl fumarate induces ferroptosis and impairs NF-κB/STAT3 signaling in DLBCL. Blood. 2021;138(10):871–84.PubMedCrossRef
29.
go back to reference Nicolay JP, Melchers S, Albrecht JD, Assaf C, Dippel E, Stadler R, et al. Dimethyl fumarate treatment in relapsed and refractory cutaneous T-cell lymphoma: a multicenter phase 2 study. Blood. 2023;142(9):794–805.PubMedPubMedCentralCrossRef Nicolay JP, Melchers S, Albrecht JD, Assaf C, Dippel E, Stadler R, et al. Dimethyl fumarate treatment in relapsed and refractory cutaneous T-cell lymphoma: a multicenter phase 2 study. Blood. 2023;142(9):794–805.PubMedPubMedCentralCrossRef
30.
go back to reference Manai F, Zanoletti L, Arfini D, Micco SG, Gjyzeli A, Comincini S et al. Dimethyl Fumarate and Intestine: from Main suspect to potential ally against Gut disorders. Int J Mol Sci. 2023;24(12). Manai F, Zanoletti L, Arfini D, Micco SG, Gjyzeli A, Comincini S et al. Dimethyl Fumarate and Intestine: from Main suspect to potential ally against Gut disorders. Int J Mol Sci. 2023;24(12).
31.
go back to reference Garcia-Mesa Y, Xu HN, Vance P, Gruenewald AL, Garza R, Midkiff C et al. Dimethyl Fumarate, an approved multiple sclerosis treatment, reduces Brain oxidative stress in SIV-Infected Rhesus macaques: potential therapeutic repurposing for HIV Neuroprotection. Antioxid (Basel Switzerland). 2021;10(3). Garcia-Mesa Y, Xu HN, Vance P, Gruenewald AL, Garza R, Midkiff C et al. Dimethyl Fumarate, an approved multiple sclerosis treatment, reduces Brain oxidative stress in SIV-Infected Rhesus macaques: potential therapeutic repurposing for HIV Neuroprotection. Antioxid (Basel Switzerland). 2021;10(3).
32.
go back to reference Blair HA. Dimethyl Fumarate: a review in moderate to severe plaque psoriasis. Drugs. 2018;78(1):123–30.PubMedCrossRef Blair HA. Dimethyl Fumarate: a review in moderate to severe plaque psoriasis. Drugs. 2018;78(1):123–30.PubMedCrossRef
33.
go back to reference Gold R, Arnold DL, Bar-Or A, Fox RJ, Kappos L, Mokliatchouk O et al. Long-term safety and efficacy of dimethyl fumarate for up to 13 years in patients with relapsing-remitting multiple sclerosis: final ENDORSE study results. Multiple sclerosis (Houndmills, Basingstoke, England). 2022;28(5):801–16. Gold R, Arnold DL, Bar-Or A, Fox RJ, Kappos L, Mokliatchouk O et al. Long-term safety and efficacy of dimethyl fumarate for up to 13 years in patients with relapsing-remitting multiple sclerosis: final ENDORSE study results. Multiple sclerosis (Houndmills, Basingstoke, England). 2022;28(5):801–16.
34.
go back to reference Mrowietz U, Szepietowski JC, Loewe R, van de Kerkhof P, Lamarca R, Ocker WG, et al. Efficacy and safety of LAS41008 (dimethyl fumarate) in adults with moderate-to-severe chronic plaque psoriasis: a randomized, double-blind, Fumaderm(®) - and placebo-controlled trial (BRIDGE). Br J Dermatol. 2017;176(3):615–23.PubMedCrossRef Mrowietz U, Szepietowski JC, Loewe R, van de Kerkhof P, Lamarca R, Ocker WG, et al. Efficacy and safety of LAS41008 (dimethyl fumarate) in adults with moderate-to-severe chronic plaque psoriasis: a randomized, double-blind, Fumaderm(®) - and placebo-controlled trial (BRIDGE). Br J Dermatol. 2017;176(3):615–23.PubMedCrossRef
35.
go back to reference Reszke R, Szepietowski JC. A safety evaluation of dimethyl fumarate in moderate-to-severe psoriasis. Exp Opin Drug Saf. 2020;19(4):373–80.CrossRef Reszke R, Szepietowski JC. A safety evaluation of dimethyl fumarate in moderate-to-severe psoriasis. Exp Opin Drug Saf. 2020;19(4):373–80.CrossRef
36.
go back to reference Zhang Y, Chen H, Mo H, Hu X, Gao R, Zhao Y, et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell. 2021;39(12):1578–e938.PubMedCrossRef Zhang Y, Chen H, Mo H, Hu X, Gao R, Zhao Y, et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell. 2021;39(12):1578–e938.PubMedCrossRef
37.
go back to reference Sinha S, Rosin NL, Arora R, Labit E, Jaffer A, Cao L, et al. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nat Med. 2022;28(1):201–11.PubMedCrossRef Sinha S, Rosin NL, Arora R, Labit E, Jaffer A, Cao L, et al. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nat Med. 2022;28(1):201–11.PubMedCrossRef
38.
go back to reference Chen J, Caspi RR. Clinical and functional evaluation of ocular inflammatory disease using the Model of Experimental Autoimmune Uveitis. Methods Mol Biol. 2019;1899:211–27.PubMedPubMedCentralCrossRef Chen J, Caspi RR. Clinical and functional evaluation of ocular inflammatory disease using the Model of Experimental Autoimmune Uveitis. Methods Mol Biol. 2019;1899:211–27.PubMedPubMedCentralCrossRef
39.
go back to reference Ashari S, Naghsh N, Salari Y, Barghi NG, Bagheri A. Dimethyl Fumarate attenuates Di-(2-Ethylhexyl) Phthalate-Induced Nephrotoxicity through the Nrf2/HO-1 and NF-κB signaling pathways. Inflammation. 2023;46(1):453–67.PubMedCrossRef Ashari S, Naghsh N, Salari Y, Barghi NG, Bagheri A. Dimethyl Fumarate attenuates Di-(2-Ethylhexyl) Phthalate-Induced Nephrotoxicity through the Nrf2/HO-1 and NF-κB signaling pathways. Inflammation. 2023;46(1):453–67.PubMedCrossRef
40.
go back to reference Saljoughi S, Kalantar H, Azadnasab R, Khodayar MJ. Neuroprotective effects of dimethyl fumarate against manic-like behavior induced by ketamine in rats. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(11):3007–16.PubMedCrossRef Saljoughi S, Kalantar H, Azadnasab R, Khodayar MJ. Neuroprotective effects of dimethyl fumarate against manic-like behavior induced by ketamine in rats. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(11):3007–16.PubMedCrossRef
41.
go back to reference Singh N, Vijayanti S, Saha L, Bhatia A, Banerjee D, Chakrabarti A. Neuroprotective effect of Nrf2 activator dimethyl fumarate, on the hippocampal neurons in chemical kindling model in rat. Epilepsy Res. 2018;143:98–104.PubMedCrossRef Singh N, Vijayanti S, Saha L, Bhatia A, Banerjee D, Chakrabarti A. Neuroprotective effect of Nrf2 activator dimethyl fumarate, on the hippocampal neurons in chemical kindling model in rat. Epilepsy Res. 2018;143:98–104.PubMedCrossRef
42.
go back to reference Brayton CF. Dimethyl sulfoxide (DMSO): a review. Cornell Veterinarian. 1986;76(1):61–90.PubMed Brayton CF. Dimethyl sulfoxide (DMSO): a review. Cornell Veterinarian. 1986;76(1):61–90.PubMed
43.
go back to reference Rubin LF. Toxicity of dimethyl sulfoxide, alone and in combination. Ann N Y Acad Sci. 1975;243:98–103.PubMedCrossRef Rubin LF. Toxicity of dimethyl sulfoxide, alone and in combination. Ann N Y Acad Sci. 1975;243:98–103.PubMedCrossRef
44.
go back to reference Qiu YB, Wan BB, Liu G, Wu YX, Chen D, Lu MD, et al. Nrf2 protects against seawater drowning-induced acute lung injury via inhibiting ferroptosis. Respir Res. 2020;21(1):232.PubMedPubMedCentralCrossRef Qiu YB, Wan BB, Liu G, Wu YX, Chen D, Lu MD, et al. Nrf2 protects against seawater drowning-induced acute lung injury via inhibiting ferroptosis. Respir Res. 2020;21(1):232.PubMedPubMedCentralCrossRef
45.
go back to reference Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12(1):1088.PubMedPubMedCentralCrossRef Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12(1):1088.PubMedPubMedCentralCrossRef
46.
go back to reference Heldens L, Dirks RP, Hensen SM, Onnekink C, van Genesen ST, Rustenburg F, et al. Co-chaperones are limiting in a depleted chaperone network. Cell Mol Life Sci. 2010;67(23):4035–48.PubMedPubMedCentralCrossRef Heldens L, Dirks RP, Hensen SM, Onnekink C, van Genesen ST, Rustenburg F, et al. Co-chaperones are limiting in a depleted chaperone network. Cell Mol Life Sci. 2010;67(23):4035–48.PubMedPubMedCentralCrossRef
47.
go back to reference Tian G, Hu C, Yun Y, Yang W, Dubiel W, Cheng Y, et al. Dual roles of HSP70 chaperone HSPA1 in quality control of nascent and newly synthesized proteins. EMBO J. 2021;40(13):e106183.PubMedPubMedCentralCrossRef Tian G, Hu C, Yun Y, Yang W, Dubiel W, Cheng Y, et al. Dual roles of HSP70 chaperone HSPA1 in quality control of nascent and newly synthesized proteins. EMBO J. 2021;40(13):e106183.PubMedPubMedCentralCrossRef
48.
go back to reference DiFeo A, Martignetti JA, Narla G. The role of KLF6 and its splice variants in cancer therapy. Drug Resist Updates: Reviews Commentaries Antimicrob Anticancer Chemother. 2009;12(1–2):1–7.CrossRef DiFeo A, Martignetti JA, Narla G. The role of KLF6 and its splice variants in cancer therapy. Drug Resist Updates: Reviews Commentaries Antimicrob Anticancer Chemother. 2009;12(1–2):1–7.CrossRef
49.
go back to reference Kong Y, Xue Z, Wang H, Cui G, Chen A, Liu J, et al. Identification of BST2 contributing to the development of Glioblastoma Based on Bioinformatics Analysis. Front Genet. 2022;13:890174.PubMedPubMedCentralCrossRef Kong Y, Xue Z, Wang H, Cui G, Chen A, Liu J, et al. Identification of BST2 contributing to the development of Glioblastoma Based on Bioinformatics Analysis. Front Genet. 2022;13:890174.PubMedPubMedCentralCrossRef
50.
go back to reference Fang KH, Kao HK, Chi LM, Liang Y, Liu SC, Hseuh C, et al. Overexpression of BST2 is associated with nodal metastasis and poorer prognosis in oral cavity cancer. Laryngoscope. 2014;124(9):E354–60.PubMedCrossRef Fang KH, Kao HK, Chi LM, Liang Y, Liu SC, Hseuh C, et al. Overexpression of BST2 is associated with nodal metastasis and poorer prognosis in oral cavity cancer. Laryngoscope. 2014;124(9):E354–60.PubMedCrossRef
51.
go back to reference Syafruddin SE, Rodrigues P, Vojtasova E, Patel SA, Zaini MN, Burge J, et al. A KLF6-driven transcriptional network links lipid homeostasis and tumour growth in renal carcinoma. Nat Commun. 2019;10(1):1152.PubMedPubMedCentralCrossRef Syafruddin SE, Rodrigues P, Vojtasova E, Patel SA, Zaini MN, Burge J, et al. A KLF6-driven transcriptional network links lipid homeostasis and tumour growth in renal carcinoma. Nat Commun. 2019;10(1):1152.PubMedPubMedCentralCrossRef
52.
go back to reference Wang M, Okamoto M, Domenico J, Han J, Ashino S, Shin YS, et al. Inhibition of Pim1 kinase prevents peanut allergy by enhancing Runx3 expression and suppressing T(H)2 and T(H)17 T-cell differentiation. J Allergy Clin Immunol. 2012;130(4):932–e4412.PubMedPubMedCentralCrossRef Wang M, Okamoto M, Domenico J, Han J, Ashino S, Shin YS, et al. Inhibition of Pim1 kinase prevents peanut allergy by enhancing Runx3 expression and suppressing T(H)2 and T(H)17 T-cell differentiation. J Allergy Clin Immunol. 2012;130(4):932–e4412.PubMedPubMedCentralCrossRef
53.
go back to reference Li H, Xie L, Zhu L, Li Z, Wang R, Liu X, et al. Multicellular immune dynamics implicate PIM1 as a potential therapeutic target for uveitis. Nat Commun. 2022;13(1):5866.PubMedPubMedCentralCrossRef Li H, Xie L, Zhu L, Li Z, Wang R, Liu X, et al. Multicellular immune dynamics implicate PIM1 as a potential therapeutic target for uveitis. Nat Commun. 2022;13(1):5866.PubMedPubMedCentralCrossRef
54.
go back to reference Grundler R, Brault L, Gasser C, Bullock AN, Dechow T, Woetzel S, et al. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J Exp Med. 2009;206(9):1957–70.PubMedPubMedCentralCrossRef Grundler R, Brault L, Gasser C, Bullock AN, Dechow T, Woetzel S, et al. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J Exp Med. 2009;206(9):1957–70.PubMedPubMedCentralCrossRef
55.
go back to reference Ahmadi M, Yousefi M, Abbaspour-Aghdam S, Dolati S, Aghebati-Maleki L, Eghbal-Fard S, et al. Disturbed Th17/Treg balance, cytokines, and miRNAs in peripheral blood of patients with Behcet’s disease. J Cell Physiol. 2019;234(4):3985–94.PubMedCrossRef Ahmadi M, Yousefi M, Abbaspour-Aghdam S, Dolati S, Aghebati-Maleki L, Eghbal-Fard S, et al. Disturbed Th17/Treg balance, cytokines, and miRNAs in peripheral blood of patients with Behcet’s disease. J Cell Physiol. 2019;234(4):3985–94.PubMedCrossRef
56.
go back to reference Wang C, Zhou W, Su G, Hu J, Yang P. Progranulin suppressed Autoimmune Uveitis and Autoimmune Neuroinflammation by inhibiting Th1/Th17 cells and promoting Treg Cells and M2 macrophages. Neurol Neuroimmunol Neuroinflamm. 2022;9(2):e1133.PubMedPubMedCentralCrossRef Wang C, Zhou W, Su G, Hu J, Yang P. Progranulin suppressed Autoimmune Uveitis and Autoimmune Neuroinflammation by inhibiting Th1/Th17 cells and promoting Treg Cells and M2 macrophages. Neurol Neuroimmunol Neuroinflamm. 2022;9(2):e1133.PubMedPubMedCentralCrossRef
57.
go back to reference Hedrick SM, Hess Michelini R, Doedens AL, Goldrath AW, Stone EL. FOXO transcription factors throughout T cell biology. Nat Rev Immunol. 2012;12(9):649–61.PubMedCrossRef Hedrick SM, Hess Michelini R, Doedens AL, Goldrath AW, Stone EL. FOXO transcription factors throughout T cell biology. Nat Rev Immunol. 2012;12(9):649–61.PubMedCrossRef
58.
go back to reference Lainé A, Martin B, Luka M, Mir L, Auffray C, Lucas B, et al. Foxo1 is a T cell-intrinsic inhibitor of the RORγt-Th17 program. J Immunol. 2015;195(4):1791–803.PubMedCrossRef Lainé A, Martin B, Luka M, Mir L, Auffray C, Lucas B, et al. Foxo1 is a T cell-intrinsic inhibitor of the RORγt-Th17 program. J Immunol. 2015;195(4):1791–803.PubMedCrossRef
59.
go back to reference Wongchang T, Pluangnooch P, Hongeng S, Wongkajornsilp A, Thumkeo D, Soontrapa K. Inhibition of DYRK1B suppresses inflammation in allergic contact dermatitis model and Th1/Th17 immune response. Sci Rep. 2023;13(1):7058.PubMedPubMedCentralCrossRef Wongchang T, Pluangnooch P, Hongeng S, Wongkajornsilp A, Thumkeo D, Soontrapa K. Inhibition of DYRK1B suppresses inflammation in allergic contact dermatitis model and Th1/Th17 immune response. Sci Rep. 2023;13(1):7058.PubMedPubMedCentralCrossRef
61.
go back to reference Ouyang W, Li MO. Foxo: in command of T lymphocyte homeostasis and tolerance. Trends Immunol. 2011;32(1):26–33.PubMedCrossRef Ouyang W, Li MO. Foxo: in command of T lymphocyte homeostasis and tolerance. Trends Immunol. 2011;32(1):26–33.PubMedCrossRef
62.
go back to reference García-Cuesta EM, Santiago CA, Vallejo-Díaz J, Juarranz Y, Rodríguez-Frade JM, Mellado M. The role of the CXCL12/CXCR4/ACKR3 Axis in Autoimmune diseases. Front Endocrinol. 2019;10:585.CrossRef García-Cuesta EM, Santiago CA, Vallejo-Díaz J, Juarranz Y, Rodríguez-Frade JM, Mellado M. The role of the CXCL12/CXCR4/ACKR3 Axis in Autoimmune diseases. Front Endocrinol. 2019;10:585.CrossRef
63.
go back to reference Heinz C, Heiligenhaus A. Improvement of noninfectious uveitis with fumaric acid esters: results of a pilot study. Archives Ophthalmol (Chicago Ill: 1960). 2007;125(4):569–71.CrossRef Heinz C, Heiligenhaus A. Improvement of noninfectious uveitis with fumaric acid esters: results of a pilot study. Archives Ophthalmol (Chicago Ill: 1960). 2007;125(4):569–71.CrossRef
64.
go back to reference Labsi M, Soufli I, Belguendouz H, Djebbara S, Hannachi L, Amir ZC, et al. Beneficial effect of dimethyl fumarate on experimental autoimmune uveitis is dependent of pro-inflammatory markers immunomodulation. Inflammopharmacology. 2021;29(5):1389–98.PubMedCrossRef Labsi M, Soufli I, Belguendouz H, Djebbara S, Hannachi L, Amir ZC, et al. Beneficial effect of dimethyl fumarate on experimental autoimmune uveitis is dependent of pro-inflammatory markers immunomodulation. Inflammopharmacology. 2021;29(5):1389–98.PubMedCrossRef
65.
go back to reference Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 2019;41(3):283–97.PubMedCrossRef Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 2019;41(3):283–97.PubMedCrossRef
66.
go back to reference Streeter HB, Wraith DC. Manipulating antigen presentation for antigen-specific immunotherapy of autoimmune diseases. Curr Opin Immunol. 2021;70:75–81.PubMedPubMedCentralCrossRef Streeter HB, Wraith DC. Manipulating antigen presentation for antigen-specific immunotherapy of autoimmune diseases. Curr Opin Immunol. 2021;70:75–81.PubMedPubMedCentralCrossRef
67.
go back to reference Xu J, Fu L, Deng J, Zhang J, Zou Y, Liao L et al. miR-301a Deficiency attenuates the Macrophage Migration and Phagocytosis through YY1/CXCR4 pathway. Cells. 2022;11(24). Xu J, Fu L, Deng J, Zhang J, Zou Y, Liao L et al. miR-301a Deficiency attenuates the Macrophage Migration and Phagocytosis through YY1/CXCR4 pathway. Cells. 2022;11(24).
68.
go back to reference Gardeta SR, García-Cuesta EM, D’Agostino G, Soler Palacios B, Quijada-Freire A, Lucas P, et al. Sphingomyelin Depletion inhibits CXCR4 dynamics and CXCL12-Mediated Directed Cell Migration in Human T cells. Front Immunol. 2022;13:925559.PubMedPubMedCentralCrossRef Gardeta SR, García-Cuesta EM, D’Agostino G, Soler Palacios B, Quijada-Freire A, Lucas P, et al. Sphingomyelin Depletion inhibits CXCR4 dynamics and CXCL12-Mediated Directed Cell Migration in Human T cells. Front Immunol. 2022;13:925559.PubMedPubMedCentralCrossRef
69.
go back to reference Lee GR. The balance of Th17 versus Treg cells in autoimmunity. Int J Mol Sci. 2018;19(3). Lee GR. The balance of Th17 versus Treg cells in autoimmunity. Int J Mol Sci. 2018;19(3).
70.
go back to reference Sulaimani J, Cluxton D, Clowry J, Petrasca A, Molloy OE, Moran B, et al. Dimethyl fumarate modulates the Treg-Th17 cell axis in patients with psoriasis. Br J Dermatol. 2021;184(3):495–503.PubMedCrossRef Sulaimani J, Cluxton D, Clowry J, Petrasca A, Molloy OE, Moran B, et al. Dimethyl fumarate modulates the Treg-Th17 cell axis in patients with psoriasis. Br J Dermatol. 2021;184(3):495–503.PubMedCrossRef
71.
go back to reference Wu Q, Wang Q, Mao G, Dowling CA, Lundy SK, Mao-Draayer Y. Dimethyl Fumarate selectively reduces memory T cells and shifts the balance between Th1/Th17 and Th2 in multiple sclerosis patients. J Immunol. 2017;198(8):3069–80.PubMedCrossRef Wu Q, Wang Q, Mao G, Dowling CA, Lundy SK, Mao-Draayer Y. Dimethyl Fumarate selectively reduces memory T cells and shifts the balance between Th1/Th17 and Th2 in multiple sclerosis patients. J Immunol. 2017;198(8):3069–80.PubMedCrossRef
72.
go back to reference Kanda N, Hoashi T, Saeki H. The Defect in Regulatory T Cells in psoriasis and therapeutic approaches. J Clin Med. 2021;10(17). Kanda N, Hoashi T, Saeki H. The Defect in Regulatory T Cells in psoriasis and therapeutic approaches. J Clin Med. 2021;10(17).
73.
go back to reference Walscheid K, Hennig M, Heinz C, Wasmuth S, Busch M, Bauer D, et al. Correlation between disease severity and presence of ocular autoantibodies in juvenile idiopathic arthritis-associated uveitis. Invest Ophthalmol Vis Sci. 2014;55(6):3447–53.PubMedCrossRef Walscheid K, Hennig M, Heinz C, Wasmuth S, Busch M, Bauer D, et al. Correlation between disease severity and presence of ocular autoantibodies in juvenile idiopathic arthritis-associated uveitis. Invest Ophthalmol Vis Sci. 2014;55(6):3447–53.PubMedCrossRef
74.
go back to reference Epps SJ, Coplin N, Luthert PJ, Dick AD, Coupland SE, Nicholson LB. Features of ectopic lymphoid-like structures in human uveitis. Exp Eye Res. 2020;191:107901.PubMedPubMedCentralCrossRef Epps SJ, Coplin N, Luthert PJ, Dick AD, Coupland SE, Nicholson LB. Features of ectopic lymphoid-like structures in human uveitis. Exp Eye Res. 2020;191:107901.PubMedPubMedCentralCrossRef
75.
go back to reference McCandless EE, Piccio L, Woerner BM, Schmidt RE, Rubin JB, Cross AH, et al. Pathological expression of CXCL12 at the blood-brain barrier correlates with severity of multiple sclerosis. Am J Pathol. 2008;172(3):799–808.PubMedPubMedCentralCrossRef McCandless EE, Piccio L, Woerner BM, Schmidt RE, Rubin JB, Cross AH, et al. Pathological expression of CXCL12 at the blood-brain barrier correlates with severity of multiple sclerosis. Am J Pathol. 2008;172(3):799–808.PubMedPubMedCentralCrossRef
76.
go back to reference Huang Z, Jiang Q, Chen J, Liu X, Gu C, Tao T, et al. Therapeutic effects of Upadacitinib on Experimental Autoimmune Uveitis: insights from single-cell analysis. Invest Ophthalmol Vis Sci. 2023;64(12):28.PubMedPubMedCentralCrossRef Huang Z, Jiang Q, Chen J, Liu X, Gu C, Tao T, et al. Therapeutic effects of Upadacitinib on Experimental Autoimmune Uveitis: insights from single-cell analysis. Invest Ophthalmol Vis Sci. 2023;64(12):28.PubMedPubMedCentralCrossRef
77.
go back to reference Müller TA, Pennisi S, Zwick A, Decker S, Klein C, Rister B, et al. PIM1 inhibition effectively enhances plerixafor-induced HSC mobilization by counteracting CXCR4 upregulation and blocking CXCL12 secretion. Leukemia. 2019;33(5):1296–301.PubMedCrossRef Müller TA, Pennisi S, Zwick A, Decker S, Klein C, Rister B, et al. PIM1 inhibition effectively enhances plerixafor-induced HSC mobilization by counteracting CXCR4 upregulation and blocking CXCL12 secretion. Leukemia. 2019;33(5):1296–301.PubMedCrossRef
Metadata
Title
Beneficial mechanisms of dimethyl fumarate in autoimmune uveitis: insights from single-cell RNA sequencing
Authors
Lei Zhu
He Li
Xuening Peng
Zhaohuai Li
Sichen Zhao
Dongting Wu
Jialing Chen
Si Li
Renbing Jia
Zuohong Li
Wenru Su
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03096-6

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue