Skip to main content
Top
Published in: Forensic Science, Medicine and Pathology 4/2022

19-09-2022 | Diffuse Axonal Injury | Review

Traumatic axonal injury: neuropathological features, postmortem diagnostic methods, and strategies

Authors: Qianling Chen, Xuebing Chen, Luyao Xu, Rui Zhang, Zhigang Li, Xia Yue, Dongfang Qiao

Published in: Forensic Science, Medicine and Pathology | Issue 4/2022

Login to get access

Abstract

Traumatic brain injury (TBI) has high morbidity and poor prognosis and imposes a serious socioeconomic burden. Traumatic axonal injury (TAI), which is one of the common pathological changes in the primary injury of TBI, is often caused by the external force to the head that causes the white matter bundles to generate shear stress and tension; resulting in tissue damage and leading to the cytoskeletal disorder. At present, the forensic pathological diagnosis of TAI-caused death is still a difficult problem. Most of the TAI biomarkers studied are used for the prediction, evaluation, and prognosis of TAI in the living state. The research subjects are mainly humans in the living state or model animals, which are not suitable for the postmortem diagnosis of TAI. In addition, there is still a lack of recognized indicators for the autopsy pathological diagnosis of TAI. Different diagnostic methods and markers have their limitations, and there is a lack of systematic research and summary of autopsy diagnostic markers of TAI. Therefore, this study mainly summarizes the pathological mechanism, common methods, techniques of postmortem diagnosis, and corresponding biomarkers of TAI, and puts forward the strategies for postmortem diagnosis of TAI for forensic cases with different survival times, which is of great significance to forensic pathological diagnosis.
Literature
2.
go back to reference Pavlovic D, Pekic S, Stojanovic M, Popovic V. Traumatic brain injury: neuropathological, neurocognitive and neurobehavioral sequelae. Pituitary. 2019;22:270–82.PubMedCrossRef Pavlovic D, Pekic S, Stojanovic M, Popovic V. Traumatic brain injury: neuropathological, neurocognitive and neurobehavioral sequelae. Pituitary. 2019;22:270–82.PubMedCrossRef
3.
go back to reference Rungruangsak K, Poriswanish N. Pathology of fatal diffuse brain injury in severe non-penetrating head trauma. J Forensic Leg Med. 2021;82: 102226.PubMedCrossRef Rungruangsak K, Poriswanish N. Pathology of fatal diffuse brain injury in severe non-penetrating head trauma. J Forensic Leg Med. 2021;82: 102226.PubMedCrossRef
4.
go back to reference Davceva N, Janevska V, Ilievski B, Spasevska L, Popeska Z. Dilemmas concerning the diffuse axonal injury as a clinicopathological entity in forensic medical practice. J Forensic Leg Med. 2012;19:413–8.PubMedCrossRef Davceva N, Janevska V, Ilievski B, Spasevska L, Popeska Z. Dilemmas concerning the diffuse axonal injury as a clinicopathological entity in forensic medical practice. J Forensic Leg Med. 2012;19:413–8.PubMedCrossRef
6.
go back to reference Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology. 1989;15:49–59.PubMedCrossRef Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology. 1989;15:49–59.PubMedCrossRef
7.
go back to reference Dolinak D, Smith C, Graham DI. Global hypoxia per se is an unusual cause of axonal injury. Acta Neuropathol. 2000;100:553–60.PubMedCrossRef Dolinak D, Smith C, Graham DI. Global hypoxia per se is an unusual cause of axonal injury. Acta Neuropathol. 2000;100:553–60.PubMedCrossRef
8.
go back to reference Armstrong RC, Mierzwa AJ, Sullivan GM, Sanchez MA. Myelin and oligodendrocyte lineage cells in white matter pathology and plasticity after traumatic brain injury. Neuropharmacology. 2016;110:654–9.PubMedCrossRef Armstrong RC, Mierzwa AJ, Sullivan GM, Sanchez MA. Myelin and oligodendrocyte lineage cells in white matter pathology and plasticity after traumatic brain injury. Neuropharmacology. 2016;110:654–9.PubMedCrossRef
9.
go back to reference Graham DI, Smith C, Reichard R, Leclercq PD, Gentleman SM. Trials and tribulations of using beta-amyloid precursor protein immunohistochemistry to evaluate traumatic brain injury in adults. Forensic Sci Int. 2004;146:89–96.PubMedCrossRef Graham DI, Smith C, Reichard R, Leclercq PD, Gentleman SM. Trials and tribulations of using beta-amyloid precursor protein immunohistochemistry to evaluate traumatic brain injury in adults. Forensic Sci Int. 2004;146:89–96.PubMedCrossRef
10.
go back to reference Su E, Bell M. Diffuse axonal injury. in: D. Laskowitz, and G. Grant, (Eds.), Translational Research in Traumatic Brain Injury, CRC Press/Taylor and Francis Group, Boca Raton (FL), 2016. Su E, Bell M. Diffuse axonal injury. in: D. Laskowitz, and G. Grant, (Eds.), Translational Research in Traumatic Brain Injury, CRC Press/Taylor and Francis Group, Boca Raton (FL), 2016.
11.
go back to reference Geddes JF, Whitwell HL, Graham DI. Traumatic axonal injury: practical issues for diagnosis in medicolegal cases. Neuropathol Appl Neurobiol. 2000;26:105–16.PubMedCrossRef Geddes JF, Whitwell HL, Graham DI. Traumatic axonal injury: practical issues for diagnosis in medicolegal cases. Neuropathol Appl Neurobiol. 2000;26:105–16.PubMedCrossRef
12.
go back to reference Makino Y, Arai N, Hoshioka Y, Yoshida M, Kojima M, Horikoshi T, Mukai H, Iwase H. Traumatic axonal injury revealed by postmortem magnetic resonance imaging: a case report. Leg Med (Tokyo). 2019;36:9–16.CrossRef Makino Y, Arai N, Hoshioka Y, Yoshida M, Kojima M, Horikoshi T, Mukai H, Iwase H. Traumatic axonal injury revealed by postmortem magnetic resonance imaging: a case report. Leg Med (Tokyo). 2019;36:9–16.CrossRef
13.
go back to reference Szecsi A, Danics K, Kondracs A, Szollosi Z. Traumatic axonal injury: a case report. Am J Forensic Med Pathol. 2020;41:211–2.PubMedCrossRef Szecsi A, Danics K, Kondracs A, Szollosi Z. Traumatic axonal injury: a case report. Am J Forensic Med Pathol. 2020;41:211–2.PubMedCrossRef
15.
go back to reference Al-Sarraj S, Fegan-Earl A, Ugbade A, Bodi I, Chapman R, Poole S, Swift B, Jerreat P, Cary N. Focal traumatic brain stem injury is a rare type of head injury resulting from assault: a forensic neuropathological study. J Forensic Leg Med. 2012;19:144–51.PubMedCrossRef Al-Sarraj S, Fegan-Earl A, Ugbade A, Bodi I, Chapman R, Poole S, Swift B, Jerreat P, Cary N. Focal traumatic brain stem injury is a rare type of head injury resulting from assault: a forensic neuropathological study. J Forensic Leg Med. 2012;19:144–51.PubMedCrossRef
16.
go back to reference Raghupathi R, Huh JW. Diffuse brain injury in the immature rat: evidence for an age-at-injury effect on cognitive function and histopathologic damage. J Neurotrauma. 2007;24:1596–608.PubMedCrossRef Raghupathi R, Huh JW. Diffuse brain injury in the immature rat: evidence for an age-at-injury effect on cognitive function and histopathologic damage. J Neurotrauma. 2007;24:1596–608.PubMedCrossRef
17.
go back to reference Tsitsopoulos PP, Abu Hamdeh S, Marklund N. Current opportunities for clinical monitoring of axonal pathology in traumatic brain injury. Front Neurol. 2017;8:599.PubMedPubMedCentralCrossRef Tsitsopoulos PP, Abu Hamdeh S, Marklund N. Current opportunities for clinical monitoring of axonal pathology in traumatic brain injury. Front Neurol. 2017;8:599.PubMedPubMedCentralCrossRef
18.
go back to reference Schmahmann JD, Smith EE, Eichler FS, Filley CM. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci. 2008;1142:266–309.PubMedPubMedCentralCrossRef Schmahmann JD, Smith EE, Eichler FS, Filley CM. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci. 2008;1142:266–309.PubMedPubMedCentralCrossRef
19.
go back to reference Graham DI, Adams JH, Murray LS, Jennett B. Neuropathology of the vegetative state after head injury. Neuropsychol Rehabil. 2005;15:198–213.PubMedCrossRef Graham DI, Adams JH, Murray LS, Jennett B. Neuropathology of the vegetative state after head injury. Neuropsychol Rehabil. 2005;15:198–213.PubMedCrossRef
20.
go back to reference Johnson VE, Stewart W, Smith DH. Widespread tau and amyloid-beta pathology many years after a single traumatic brain injury in humans. Brain Pathol. 2012;22:142–9.PubMedCrossRef Johnson VE, Stewart W, Smith DH. Widespread tau and amyloid-beta pathology many years after a single traumatic brain injury in humans. Brain Pathol. 2012;22:142–9.PubMedCrossRef
21.
go back to reference Sundman MH, Hall EE, Chen NK. Examining the relationship between head trauma and neurodegenerative disease: a review of epidemiology, pathology and neuroimaging techniques. J Alzheimers Dis Parkinsonism. 2014;4:137.PubMedPubMedCentral Sundman MH, Hall EE, Chen NK. Examining the relationship between head trauma and neurodegenerative disease: a review of epidemiology, pathology and neuroimaging techniques. J Alzheimers Dis Parkinsonism. 2014;4:137.PubMedPubMedCentral
22.
go back to reference Manivannan S, Makwana M, Ahmed AI, Zaben M. Profiling biomarkers of traumatic axonal injury: from mouse to man. Clin Neurol Neurosurg. 2018;171:6–20.PubMedCrossRef Manivannan S, Makwana M, Ahmed AI, Zaben M. Profiling biomarkers of traumatic axonal injury: from mouse to man. Clin Neurol Neurosurg. 2018;171:6–20.PubMedCrossRef
23.
go back to reference Bruggeman GF, Haitsma IK, Dirven CMF, Volovici V. Traumatic axonal injury (TAI): definitions, pathophysiology and imaging-a narrative review. Acta Neurochir (Wien). 2021;163:31–44.CrossRef Bruggeman GF, Haitsma IK, Dirven CMF, Volovici V. Traumatic axonal injury (TAI): definitions, pathophysiology and imaging-a narrative review. Acta Neurochir (Wien). 2021;163:31–44.CrossRef
24.
go back to reference Ng HK, Mahaliyana RD, Poon WS. The pathological spectrum of diffuse axonal injury in blunt head trauma: assessment with axon and myelin strains. Clin Neurol Neurosurg. 1994;96:24–31.PubMedCrossRef Ng HK, Mahaliyana RD, Poon WS. The pathological spectrum of diffuse axonal injury in blunt head trauma: assessment with axon and myelin strains. Clin Neurol Neurosurg. 1994;96:24–31.PubMedCrossRef
25.
go back to reference Adams JH, Graham DI, Murray LS, Scott G. Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann Neurol. 1982;12:557–63.PubMedCrossRef Adams JH, Graham DI, Murray LS, Scott G. Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann Neurol. 1982;12:557–63.PubMedCrossRef
26.
go back to reference Christman CW, Grady MS, Walker SA, Holloway KL, Povlishock JT. Ultrastructural studies of diffuse axonal injury in humans. J Neurotrauma. 1994;11:173–86.PubMedCrossRef Christman CW, Grady MS, Walker SA, Holloway KL, Povlishock JT. Ultrastructural studies of diffuse axonal injury in humans. J Neurotrauma. 1994;11:173–86.PubMedCrossRef
27.
go back to reference Gultekin SH, Smith TW. Diffuse axonal injury in craniocerebral trauma. A comparative histologic and immunohistochemical study. Arch Pathol Lab Med. 1994;118:168–71.PubMed Gultekin SH, Smith TW. Diffuse axonal injury in craniocerebral trauma. A comparative histologic and immunohistochemical study. Arch Pathol Lab Med. 1994;118:168–71.PubMed
28.
go back to reference Tang-Schomer MD, Johnson VE, Baas PW, Stewart W, Smith DH. Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp Neurol. 2012;233:364–72.PubMedCrossRef Tang-Schomer MD, Johnson VE, Baas PW, Stewart W, Smith DH. Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp Neurol. 2012;233:364–72.PubMedCrossRef
29.
go back to reference Tominaga I, Matsuo Y, Kato Y, Onaya M, Kasahara M, Yuzuriha T, Oda T, Kashima H, Wasada K. Prolonged traumatic coma caused by diffuse axonal lesions. Rev Neurol (Paris). 1991;147:658–62. Tominaga I, Matsuo Y, Kato Y, Onaya M, Kasahara M, Yuzuriha T, Oda T, Kashima H, Wasada K. Prolonged traumatic coma caused by diffuse axonal lesions. Rev Neurol (Paris). 1991;147:658–62.
30.
go back to reference Onaya M, Tominaga I, Kato Y, Endo T, Nakamura T, Kasahara M, Oda T, Yuzuriha T, Kashima H. Diffuse axonal injury (DAI) in an autopsy case of head trauma with long survival. No To Shinkei. 1991;43:283–7.PubMed Onaya M, Tominaga I, Kato Y, Endo T, Nakamura T, Kasahara M, Oda T, Yuzuriha T, Kashima H. Diffuse axonal injury (DAI) in an autopsy case of head trauma with long survival. No To Shinkei. 1991;43:283–7.PubMed
31.
go back to reference Wilkinson AE, Bridges LR, Sivaloganathan S. Correlation of survival time with size of axonal swellings in diffuse axonal injury. Acta Neuropathol. 1999;98:197–202.PubMedCrossRef Wilkinson AE, Bridges LR, Sivaloganathan S. Correlation of survival time with size of axonal swellings in diffuse axonal injury. Acta Neuropathol. 1999;98:197–202.PubMedCrossRef
32.
go back to reference Armstrong RC, Mierzwa AJ, Marion CM, Sullivan GM. White matter involvement after TBI: clues to axon and myelin repair capacity. Exp Neurol. 2016;275(Pt 3):328–33.PubMedCrossRef Armstrong RC, Mierzwa AJ, Marion CM, Sullivan GM. White matter involvement after TBI: clues to axon and myelin repair capacity. Exp Neurol. 2016;275(Pt 3):328–33.PubMedCrossRef
34.
go back to reference Gale SD, Johnson SC, Bigler ED, Blatter DD. Nonspecific white matter degeneration following traumatic brain injury. J Int Neuropsychol Soc. 1995;1:17–28.PubMedCrossRef Gale SD, Johnson SC, Bigler ED, Blatter DD. Nonspecific white matter degeneration following traumatic brain injury. J Int Neuropsychol Soc. 1995;1:17–28.PubMedCrossRef
35.
go back to reference Vik A, Kvistad KA, Skandsen T, Ingebrigtsen T. Diffuse axonal injury in traumatic brain injury. Tidsskr Nor Laegeforen. 2006;126:2940–4.PubMed Vik A, Kvistad KA, Skandsen T, Ingebrigtsen T. Diffuse axonal injury in traumatic brain injury. Tidsskr Nor Laegeforen. 2006;126:2940–4.PubMed
36.
go back to reference Staal JA, Dickson TC, Gasperini R, Liu Y, Foa L, Vickers JC. Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. J Neurochem. 2010;112:1147–55.PubMedCrossRef Staal JA, Dickson TC, Gasperini R, Liu Y, Foa L, Vickers JC. Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. J Neurochem. 2010;112:1147–55.PubMedCrossRef
37.
go back to reference Maxwell WL, McCreath BJ, Graham DI, Gennarelli TA. Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of the optic nerve after stretch injury. J Neurocytol. 1995;24:925–42.PubMedCrossRef Maxwell WL, McCreath BJ, Graham DI, Gennarelli TA. Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of the optic nerve after stretch injury. J Neurocytol. 1995;24:925–42.PubMedCrossRef
38.
go back to reference Iwata A, Stys PK, Wolf JA, Chen XH, Taylor AG, Meaney DF, Smith DH. Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J Neurosci. 2004;24:4605–13.PubMedPubMedCentralCrossRef Iwata A, Stys PK, Wolf JA, Chen XH, Taylor AG, Meaney DF, Smith DH. Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J Neurosci. 2004;24:4605–13.PubMedPubMedCentralCrossRef
39.
go back to reference Buki A, Siman R, Trojanowski JQ, Povlishock JT. The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury. J Neuropathol Exp Neurol. 1999;58:365–75.PubMedCrossRef Buki A, Siman R, Trojanowski JQ, Povlishock JT. The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury. J Neuropathol Exp Neurol. 1999;58:365–75.PubMedCrossRef
40.
go back to reference Pettus EH, Christman CW, Giebel ML, Povlishock JT. Traumatically induced altered membrane permeability: its relationship to traumatically induced reactive axonal change. J Neurotrauma. 1994;11:507–22.PubMedCrossRef Pettus EH, Christman CW, Giebel ML, Povlishock JT. Traumatically induced altered membrane permeability: its relationship to traumatically induced reactive axonal change. J Neurotrauma. 1994;11:507–22.PubMedCrossRef
41.
go back to reference Siedler DG, Chuah MI, Kirkcaldie MT, Vickers JC, King AE. Diffuse axonal injury in brain trauma: insights from alterations in neurofilaments. Front Cell Neurosci. 2014;8:429.PubMedPubMedCentralCrossRef Siedler DG, Chuah MI, Kirkcaldie MT, Vickers JC, King AE. Diffuse axonal injury in brain trauma: insights from alterations in neurofilaments. Front Cell Neurosci. 2014;8:429.PubMedPubMedCentralCrossRef
42.
go back to reference von Reyn CR, Spaethling JM, Mesfin MN, Ma M, Neumar RW, Smith DH, Siman R, Meaney DF. Calpain mediates proteolysis of the voltage-gated sodium channel alpha-subunit. J Neurosci. 2009;29:10350–6.CrossRef von Reyn CR, Spaethling JM, Mesfin MN, Ma M, Neumar RW, Smith DH, Siman R, Meaney DF. Calpain mediates proteolysis of the voltage-gated sodium channel alpha-subunit. J Neurosci. 2009;29:10350–6.CrossRef
43.
go back to reference Court FA, Coleman MP. Mitochondria as a central sensor for axonal degenerative stimuli. Trends Neurosci. 2012;35:364–72.PubMedCrossRef Court FA, Coleman MP. Mitochondria as a central sensor for axonal degenerative stimuli. Trends Neurosci. 2012;35:364–72.PubMedCrossRef
44.
go back to reference Sievers C, Platt N, Perry VH, Coleman MP, Conforti L. Neurites undergoing Wallerian degeneration show an apoptotic-like process with Annexin V positive staining and loss of mitochondrial membrane potential. Neurosci Res. 2003;46:161–9.PubMedCrossRef Sievers C, Platt N, Perry VH, Coleman MP, Conforti L. Neurites undergoing Wallerian degeneration show an apoptotic-like process with Annexin V positive staining and loss of mitochondrial membrane potential. Neurosci Res. 2003;46:161–9.PubMedCrossRef
46.
go back to reference Greer JE, McGinn MJ, Povlishock JT. Diffuse traumatic axonal injury in the mouse induces atrophy, c-Jun activation, and axonal outgrowth in the axotomized neuronal population. J Neurosci. 2011;31:5089–105.PubMedPubMedCentralCrossRef Greer JE, McGinn MJ, Povlishock JT. Diffuse traumatic axonal injury in the mouse induces atrophy, c-Jun activation, and axonal outgrowth in the axotomized neuronal population. J Neurosci. 2011;31:5089–105.PubMedPubMedCentralCrossRef
47.
go back to reference Wang J, Fox MA, Povlishock JT. Diffuse traumatic axonal injury in the optic nerve does not elicit retinal ganglion cell loss. J Neuropathol Exp Neurol. 2013;72:768–81.PubMedCrossRef Wang J, Fox MA, Povlishock JT. Diffuse traumatic axonal injury in the optic nerve does not elicit retinal ganglion cell loss. J Neuropathol Exp Neurol. 2013;72:768–81.PubMedCrossRef
48.
go back to reference Bonatz H, Rohrig S, Mestres P, Meyer M, Giehl KM. An axotomy model for the induction of death of rat and mouse corticospinal neurons in vivo. J Neurosci Methods. 2000;100:105–15.PubMedCrossRef Bonatz H, Rohrig S, Mestres P, Meyer M, Giehl KM. An axotomy model for the induction of death of rat and mouse corticospinal neurons in vivo. J Neurosci Methods. 2000;100:105–15.PubMedCrossRef
49.
go back to reference Barron KD, Dentinger MP, Popp AJ, Mankes R. Neurons of layer Vb of rat sensorimotor cortex atrophy but do not die after thoracic cord transection. J Neuropathol Exp Neurol. 1988;47:62–74.PubMedCrossRef Barron KD, Dentinger MP, Popp AJ, Mankes R. Neurons of layer Vb of rat sensorimotor cortex atrophy but do not die after thoracic cord transection. J Neuropathol Exp Neurol. 1988;47:62–74.PubMedCrossRef
50.
go back to reference Mandolesi G, Madeddu F, Bozzi Y, Maffei L, Ratto GM. Acute physiological response of mammalian central neurons to axotomy: ionic regulation and electrical activity. FASEB J. 2004;18:1934–6.PubMedCrossRef Mandolesi G, Madeddu F, Bozzi Y, Maffei L, Ratto GM. Acute physiological response of mammalian central neurons to axotomy: ionic regulation and electrical activity. FASEB J. 2004;18:1934–6.PubMedCrossRef
51.
go back to reference Weber JT. Calcium homeostasis following traumatic neuronal injury. Curr Neurovasc Res. 2004;1:151–71.PubMedCrossRef Weber JT. Calcium homeostasis following traumatic neuronal injury. Curr Neurovasc Res. 2004;1:151–71.PubMedCrossRef
52.
go back to reference Singleton RH, Zhu J, Stone JR, Povlishock JT. Traumatically induced axotomy adjacent to the soma does not result in acute neuronal death. J Neurosci. 2002;22:791–802.PubMedPubMedCentralCrossRef Singleton RH, Zhu J, Stone JR, Povlishock JT. Traumatically induced axotomy adjacent to the soma does not result in acute neuronal death. J Neurosci. 2002;22:791–802.PubMedPubMedCentralCrossRef
54.
go back to reference Bertozzi G, Maglietta F, Sessa F, Scoto E, Cipolloni L, Di Mizio G, Salerno M, Pomara C. Traumatic brain injury: a forensic approach: a literature review. Curr Neuropharmacol. 2020;18:538–50.PubMedPubMedCentralCrossRef Bertozzi G, Maglietta F, Sessa F, Scoto E, Cipolloni L, Di Mizio G, Salerno M, Pomara C. Traumatic brain injury: a forensic approach: a literature review. Curr Neuropharmacol. 2020;18:538–50.PubMedPubMedCentralCrossRef
56.
go back to reference Pittella JE, Gusmao SN. Diffuse vascular injury in fatal road traffic accident victims: its relationship to diffuse axonal injury. J Forensic Sci. 2003;48:626–30.PubMedCrossRef Pittella JE, Gusmao SN. Diffuse vascular injury in fatal road traffic accident victims: its relationship to diffuse axonal injury. J Forensic Sci. 2003;48:626–30.PubMedCrossRef
57.
go back to reference Ogata M, Tsuganezawa O. Neuron-specific enolase as an effective immunohistochemical marker for injured axons after fatal brain injury. Int J Legal Med. 1999;113:19–25.PubMedCrossRef Ogata M, Tsuganezawa O. Neuron-specific enolase as an effective immunohistochemical marker for injured axons after fatal brain injury. Int J Legal Med. 1999;113:19–25.PubMedCrossRef
58.
go back to reference Gentleman SM, Roberts GW, Gennarelli TA, Maxwell WL, Adams JH, Kerr S, Graham DI. Axonal injury: a universal consequence of fatal closed head injury? Acta Neuropathol. 1995;89:537–43.PubMedCrossRef Gentleman SM, Roberts GW, Gennarelli TA, Maxwell WL, Adams JH, Kerr S, Graham DI. Axonal injury: a universal consequence of fatal closed head injury? Acta Neuropathol. 1995;89:537–43.PubMedCrossRef
59.
go back to reference Kubo S, Kitamura O, Orihara Y, Ogata M, Tokunaga I, Nakasono I. Immunohistochemical diagnosis and significance of forensic neuropathological changes. J Med Invest. 1998;44:109–19.PubMed Kubo S, Kitamura O, Orihara Y, Ogata M, Tokunaga I, Nakasono I. Immunohistochemical diagnosis and significance of forensic neuropathological changes. J Med Invest. 1998;44:109–19.PubMed
60.
go back to reference Yamaki T, Murakami N, Iwamoto Y, Nakagawa Y, Ueda S, Irizawa Y, Komura S, Matsuura T. Pathological study of diffuse axonal injury patients who died shortly after impact. Acta Neurochir (Wien). 1992;119:153–8.CrossRef Yamaki T, Murakami N, Iwamoto Y, Nakagawa Y, Ueda S, Irizawa Y, Komura S, Matsuura T. Pathological study of diffuse axonal injury patients who died shortly after impact. Acta Neurochir (Wien). 1992;119:153–8.CrossRef
62.
go back to reference Pilz P. Axonal injury in head injury. Acta Neurochir Suppl (Wien). 1983;32:119–23.CrossRef Pilz P. Axonal injury in head injury. Acta Neurochir Suppl (Wien). 1983;32:119–23.CrossRef
63.
go back to reference Povlishock JT, Kontos HA. Continuing axonal and vascular change following experimental brain trauma. Cent Nerv Syst Trauma. 1985;2:285–98.PubMedCrossRef Povlishock JT, Kontos HA. Continuing axonal and vascular change following experimental brain trauma. Cent Nerv Syst Trauma. 1985;2:285–98.PubMedCrossRef
64.
go back to reference Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW. Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci Lett. 1993;160:139–44.PubMedCrossRef Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW. Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci Lett. 1993;160:139–44.PubMedCrossRef
66.
go back to reference Hortobágyi T, Wise S, Hunt N, Cary N, Djurovic V, Fegan-Earl A, Shorrock K, Rouse D, Al-Sarraj S. Traumatic axonal damage in the brain can be detected using beta-APP immunohistochemistry within 35 min after head injury to human adults. Neuropathol Appl Neurobiol. 2007;33:226–37.PubMedCrossRef Hortobágyi T, Wise S, Hunt N, Cary N, Djurovic V, Fegan-Earl A, Shorrock K, Rouse D, Al-Sarraj S. Traumatic axonal damage in the brain can be detected using beta-APP immunohistochemistry within 35 min after head injury to human adults. Neuropathol Appl Neurobiol. 2007;33:226–37.PubMedCrossRef
67.
go back to reference Morrison C, MacKenzie JM. Axonal injury in head injuries with very short survival times. Neuropathol Appl Neurobiol. 2008;34:124–5.PubMedCrossRef Morrison C, MacKenzie JM. Axonal injury in head injuries with very short survival times. Neuropathol Appl Neurobiol. 2008;34:124–5.PubMedCrossRef
68.
go back to reference Davceva N, Janevska V, Ilievski B, Petrushevska G, Popeska Z. The occurrence of acute subdural haematoma and diffuse axonal injury as two typical acceleration injuries. J Forensic Leg Med. 2012;19:480–4.PubMedCrossRef Davceva N, Janevska V, Ilievski B, Petrushevska G, Popeska Z. The occurrence of acute subdural haematoma and diffuse axonal injury as two typical acceleration injuries. J Forensic Leg Med. 2012;19:480–4.PubMedCrossRef
69.
go back to reference Oehmichen M, Meissner C, Schmidt V, Pedal I, Konig HG. Pontine axonal injury after brain trauma and nontraumatic hypoxic-ischemic brain damage. Int J Legal Med. 1999;112:261–7.PubMedCrossRef Oehmichen M, Meissner C, Schmidt V, Pedal I, Konig HG. Pontine axonal injury after brain trauma and nontraumatic hypoxic-ischemic brain damage. Int J Legal Med. 1999;112:261–7.PubMedCrossRef
70.
go back to reference MacKenzie JM. Axonal Injury in Stroke: A Forensic Neuropathology Perspective. Am J Forensic Med Pathol. 2015;36:172–5.PubMedCrossRef MacKenzie JM. Axonal Injury in Stroke: A Forensic Neuropathology Perspective. Am J Forensic Med Pathol. 2015;36:172–5.PubMedCrossRef
71.
go back to reference Lambri M, Djurovic V, Kibble M, Cairns N, Al-Sarraj S. Specificity and sensitivity of betaAPP in head injury. Clin Neuropathol. 2001;20:263–71.PubMed Lambri M, Djurovic V, Kibble M, Cairns N, Al-Sarraj S. Specificity and sensitivity of betaAPP in head injury. Clin Neuropathol. 2001;20:263–71.PubMed
72.
go back to reference Oehmichen M, Meissner C, von Wurmb-Schwark N, Schwark T. Methodical approach to brain hypoxia/ischemia as a fundamental problem in forensic neuropathology. Leg Med (Tokyo). 2003;5:190–201.CrossRef Oehmichen M, Meissner C, von Wurmb-Schwark N, Schwark T. Methodical approach to brain hypoxia/ischemia as a fundamental problem in forensic neuropathology. Leg Med (Tokyo). 2003;5:190–201.CrossRef
73.
go back to reference Reichard RR, Smith C, Graham DI. The significance of beta-APP immunoreactivity in forensic practice. Neuropathol Appl Neurobiol. 2005;31:304–13.PubMedCrossRef Reichard RR, Smith C, Graham DI. The significance of beta-APP immunoreactivity in forensic practice. Neuropathol Appl Neurobiol. 2005;31:304–13.PubMedCrossRef
74.
go back to reference Hayashi T, Ago K, Ago M, Ogata M. Two patterns of beta-amyloid precursor protein (APP) immunoreactivity in cases of blunt head injury. Leg Med (Tokyo). 2009;11(Suppl 1):S171–3.CrossRef Hayashi T, Ago K, Ago M, Ogata M. Two patterns of beta-amyloid precursor protein (APP) immunoreactivity in cases of blunt head injury. Leg Med (Tokyo). 2009;11(Suppl 1):S171–3.CrossRef
75.
go back to reference Hayashi T, Ago K, Nakamae T, Higo E, Ogata M. Two different immunostaining patterns of beta-amyloid precursor protein (APP) may distinguish traumatic from nontraumatic axonal injury. Int J Legal Med. 2015;129:1085–90.PubMedCrossRef Hayashi T, Ago K, Nakamae T, Higo E, Ogata M. Two different immunostaining patterns of beta-amyloid precursor protein (APP) may distinguish traumatic from nontraumatic axonal injury. Int J Legal Med. 2015;129:1085–90.PubMedCrossRef
76.
go back to reference Weber MT, Arena JD, Xiao R, Wolf JA, Johnson VE. CLARITY reveals a more protracted temporal course of axon swelling and disconnection than previously described following traumatic brain injury. Brain Pathol. 2019;29:437–50.PubMedCrossRef Weber MT, Arena JD, Xiao R, Wolf JA, Johnson VE. CLARITY reveals a more protracted temporal course of axon swelling and disconnection than previously described following traumatic brain injury. Brain Pathol. 2019;29:437–50.PubMedCrossRef
77.
go back to reference Johnson VE, Stewart W, Weber MT, Cullen DK, Siman R, Smith DH. SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury. Acta Neuropathol. 2016;131:115–35.PubMedCrossRef Johnson VE, Stewart W, Weber MT, Cullen DK, Siman R, Smith DH. SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury. Acta Neuropathol. 2016;131:115–35.PubMedCrossRef
78.
go back to reference Nolan AL, Petersen C, Iacono D, Mac Donald CL, Mukherjee P, van der Kouwe A, Jain S, Stevens A, Diamond BR, Wang R, Markowitz AJ, Fischl B, Perl DP, Manley GT, Keene CD, Diaz-Arrastia R, Edlow BL, Investigators T-T. Tractography-pathology correlations in traumatic brain injury: a TRACK-TBI study. J Neurotrauma. 2021;38:1620–31.PubMedPubMedCentralCrossRef Nolan AL, Petersen C, Iacono D, Mac Donald CL, Mukherjee P, van der Kouwe A, Jain S, Stevens A, Diamond BR, Wang R, Markowitz AJ, Fischl B, Perl DP, Manley GT, Keene CD, Diaz-Arrastia R, Edlow BL, Investigators T-T. Tractography-pathology correlations in traumatic brain injury: a TRACK-TBI study. J Neurotrauma. 2021;38:1620–31.PubMedPubMedCentralCrossRef
79.
go back to reference Wang SS, Zhang Z, Zhu TB, Chu SF, He WB, Chen NH. Myelin injury in the central nervous system and Alzheimer’s disease. Brain Res Bull. 2018;140:162–8.PubMedCrossRef Wang SS, Zhang Z, Zhu TB, Chu SF, He WB, Chen NH. Myelin injury in the central nervous system and Alzheimer’s disease. Brain Res Bull. 2018;140:162–8.PubMedCrossRef
81.
go back to reference Nixon RA, Sihag RK. Neurofilament phosphorylation: a new look at regulation and function. Trends Neurosci. 1991;14:501–6.PubMedCrossRef Nixon RA, Sihag RK. Neurofilament phosphorylation: a new look at regulation and function. Trends Neurosci. 1991;14:501–6.PubMedCrossRef
82.
go back to reference Yaghmai A, Povlishock J. Traumatically induced reactive change as visualized through the use of monoclonal antibodies targeted to neurofilament subunits. J Neuropathol Exp Neurol. 1992;51:158–76.PubMedCrossRef Yaghmai A, Povlishock J. Traumatically induced reactive change as visualized through the use of monoclonal antibodies targeted to neurofilament subunits. J Neuropathol Exp Neurol. 1992;51:158–76.PubMedCrossRef
83.
go back to reference Grady MS, McLaughlin MR, Christman CW, Valadka AB, Fligner CL, Povlishock JT. The use of antibodies targeted against the neurofilament subunits for the detection of diffuse axonal injury in humans. J Neuropathol Exp Neurol. 1993;52:143–52.PubMedCrossRef Grady MS, McLaughlin MR, Christman CW, Valadka AB, Fligner CL, Povlishock JT. The use of antibodies targeted against the neurofilament subunits for the detection of diffuse axonal injury in humans. J Neuropathol Exp Neurol. 1993;52:143–52.PubMedCrossRef
84.
go back to reference Onaya M. Neuropathological investigation of cerebral white matter lesions caused by closed head injury. Neuropathology. 2002;22:243–51.PubMedCrossRef Onaya M. Neuropathological investigation of cerebral white matter lesions caused by closed head injury. Neuropathology. 2002;22:243–51.PubMedCrossRef
85.
go back to reference Hausmann R, Riess R, Fieguth A, Betz P. Immunohistochemical investigations on the course of astroglial GFAP expression following human brain injury. Int J Legal Med. 2000;113:70–5.PubMedCrossRef Hausmann R, Riess R, Fieguth A, Betz P. Immunohistochemical investigations on the course of astroglial GFAP expression following human brain injury. Int J Legal Med. 2000;113:70–5.PubMedCrossRef
86.
go back to reference Schmechel D, Marangos PJ, Brightman M. Neurone-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature. 1978;276:834–6.PubMedCrossRef Schmechel D, Marangos PJ, Brightman M. Neurone-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature. 1978;276:834–6.PubMedCrossRef
87.
go back to reference Schmechel D, Marangos PJ, Zis AP, Brightman M, Goodwin FK. Brain enolases as specific markers of neuronal and glial cells. Science. 1978;199:313–5.PubMedCrossRef Schmechel D, Marangos PJ, Zis AP, Brightman M, Goodwin FK. Brain enolases as specific markers of neuronal and glial cells. Science. 1978;199:313–5.PubMedCrossRef
88.
go back to reference Brady ST, Lasek RJ. Nerve-specific enolase and creatine phosphokinase in axonal transport: soluble proteins and the axoplasmic matrix. Cell. 1981;23:515–23.PubMedCrossRef Brady ST, Lasek RJ. Nerve-specific enolase and creatine phosphokinase in axonal transport: soluble proteins and the axoplasmic matrix. Cell. 1981;23:515–23.PubMedCrossRef
89.
go back to reference Olczak M, Kwiatkowska M, Niderla-Bielinska J, Chutoranski D, Tarka S, Wierzba-Bobrowicz T. Brain-originated peptides as possible biochemical markers of traumatic brain injury in cerebrospinal fluid post-mortem examination. Folia Neuropathol. 2018;56:97–103.PubMedCrossRef Olczak M, Kwiatkowska M, Niderla-Bielinska J, Chutoranski D, Tarka S, Wierzba-Bobrowicz T. Brain-originated peptides as possible biochemical markers of traumatic brain injury in cerebrospinal fluid post-mortem examination. Folia Neuropathol. 2018;56:97–103.PubMedCrossRef
90.
go back to reference Olczak M, Niderla-Bielinska J, Kwiatkowska M, Samojlowicz D, Tarka S, Wierzba-Bobrowicz T. Tau protein (MAPT) as a possible biochemical marker of traumatic brain injury in postmortem examination. Forensic Sci Int. 2017;280:1–7.PubMedCrossRef Olczak M, Niderla-Bielinska J, Kwiatkowska M, Samojlowicz D, Tarka S, Wierzba-Bobrowicz T. Tau protein (MAPT) as a possible biochemical marker of traumatic brain injury in postmortem examination. Forensic Sci Int. 2017;280:1–7.PubMedCrossRef
91.
go back to reference Bohnert S, Reinert C, Trella S, Schmitz W, Ondruschka B, Bohnert M. Metabolomics in postmortem cerebrospinal fluid diagnostics: a state-of-the-art method to interpret central nervous system-related pathological processes. Int J Legal Med. 2021;135:183–91.PubMedCrossRef Bohnert S, Reinert C, Trella S, Schmitz W, Ondruschka B, Bohnert M. Metabolomics in postmortem cerebrospinal fluid diagnostics: a state-of-the-art method to interpret central nervous system-related pathological processes. Int J Legal Med. 2021;135:183–91.PubMedCrossRef
92.
go back to reference Bohnert S, Ondruschka B, Bohnert M, Schuhmann MK, Monoranu CM. Post-mortem cerebrospinal fluid diagnostics: cytology and immunocytochemistry method suitable for routine use to interpret pathological processes in the central nervous system. Int J Legal Med. 2019;133:1141–6.PubMedCrossRef Bohnert S, Ondruschka B, Bohnert M, Schuhmann MK, Monoranu CM. Post-mortem cerebrospinal fluid diagnostics: cytology and immunocytochemistry method suitable for routine use to interpret pathological processes in the central nervous system. Int J Legal Med. 2019;133:1141–6.PubMedCrossRef
93.
go back to reference Ondruschka B, Sieber M, Kirsten H, Franke H, Dressler J. Measurement of cerebral biomarkers proving traumatic brain injuries in post-mortem body fluids. J Neurotrauma. 2018;35:2044–55.PubMedCrossRef Ondruschka B, Sieber M, Kirsten H, Franke H, Dressler J. Measurement of cerebral biomarkers proving traumatic brain injuries in post-mortem body fluids. J Neurotrauma. 2018;35:2044–55.PubMedCrossRef
94.
go back to reference Herrmann M, Vos P, Wunderlich MT, de Bruijn CH, Lamers KJ. Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke. 2000;31:2670–7.PubMedCrossRef Herrmann M, Vos P, Wunderlich MT, de Bruijn CH, Lamers KJ. Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke. 2000;31:2670–7.PubMedCrossRef
95.
96.
go back to reference Pardridge WM. Blood-brain barrier drug targeting enables neuroprotection in brain ischemia following delayed intravenous administration of neurotrophins. Adv Exp Med Biol. 2002;513:397–430.PubMedCrossRef Pardridge WM. Blood-brain barrier drug targeting enables neuroprotection in brain ischemia following delayed intravenous administration of neurotrophins. Adv Exp Med Biol. 2002;513:397–430.PubMedCrossRef
97.
go back to reference Bolignano D, Lacquaniti A, Coppolino G, Donato V, Campo S, Fazio MR, Nicocia G, Buemi M. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol. 2009;4:337–44.PubMedPubMedCentralCrossRef Bolignano D, Lacquaniti A, Coppolino G, Donato V, Campo S, Fazio MR, Nicocia G, Buemi M. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol. 2009;4:337–44.PubMedPubMedCentralCrossRef
98.
go back to reference Zhao JB, Chen HD, Zhang MJ, Zhang YH, Qian CF, Liu Y, He SX, Zou YJ, Liu HY. Early expression of serum neutrophil gelatinase-associated lipocalin (NGAL) is associated with neurological severity immediately after traumatic brain injury. J Neurol Sci. 2016;368:392–8.PubMedCrossRef Zhao JB, Chen HD, Zhang MJ, Zhang YH, Qian CF, Liu Y, He SX, Zou YJ, Liu HY. Early expression of serum neutrophil gelatinase-associated lipocalin (NGAL) is associated with neurological severity immediately after traumatic brain injury. J Neurol Sci. 2016;368:392–8.PubMedCrossRef
99.
go back to reference Sieber M, Dressler J, Franke H, Pohlers D, Ondruschka B. Post-mortem biochemistry of NSE and S100B: a supplemental tool for detecting a lethal traumatic brain injury? J Forensic Leg Med. 2018;55:65–73.PubMedCrossRef Sieber M, Dressler J, Franke H, Pohlers D, Ondruschka B. Post-mortem biochemistry of NSE and S100B: a supplemental tool for detecting a lethal traumatic brain injury? J Forensic Leg Med. 2018;55:65–73.PubMedCrossRef
100.
go back to reference Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33:637–68.PubMedCrossRef Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33:637–68.PubMedCrossRef
101.
go back to reference Sen J, Belli A. S100B in neuropathologic states: the CRP of the brain? J Neurosci Res. 2007;85:1373–80.PubMedCrossRef Sen J, Belli A. S100B in neuropathologic states: the CRP of the brain? J Neurosci Res. 2007;85:1373–80.PubMedCrossRef
102.
go back to reference Gao F, Harris DN, Sapsed-Byrne S, Sharp S. Neurone-specific enolase and Sangtec 100 assays during cardiac surgery: part iii–dose haemolysis affect their accuracy? Perfusion. 1997;12:171–7.PubMedCrossRef Gao F, Harris DN, Sapsed-Byrne S, Sharp S. Neurone-specific enolase and Sangtec 100 assays during cardiac surgery: part iii–dose haemolysis affect their accuracy? Perfusion. 1997;12:171–7.PubMedCrossRef
103.
go back to reference Zwirner J, Bohnert S, Franke H, Garland J, Hammer N, Mobius D, Tse R, Ondruschka B. Assessing protein biomarkers to detect lethal acute traumatic brain injuries in cerebrospinal fluid. Biomolecules. 2021;11. Zwirner J, Bohnert S, Franke H, Garland J, Hammer N, Mobius D, Tse R, Ondruschka B. Assessing protein biomarkers to detect lethal acute traumatic brain injuries in cerebrospinal fluid. Biomolecules. 2021;11.
104.
go back to reference Bohnert S, Wirth C, Schmitz W, Trella S, Monoranu CM, Ondruschka B, Bohnert M. Myelin basic protein and neurofilament H in postmortem cerebrospinal fluid as surrogate markers of fatal traumatic brain injury. Int J Legal Med. 2021;135:1525–35.PubMedPubMedCentralCrossRef Bohnert S, Wirth C, Schmitz W, Trella S, Monoranu CM, Ondruschka B, Bohnert M. Myelin basic protein and neurofilament H in postmortem cerebrospinal fluid as surrogate markers of fatal traumatic brain injury. Int J Legal Med. 2021;135:1525–35.PubMedPubMedCentralCrossRef
105.
go back to reference Zetterberg H, Hietala MA, Jonsson M, Andreasen N, Styrud E, Karlsson I, Edman A, Popa C, Rasulzada A, Wahlund LO, Mehta PD, Rosengren L, Blennow K, Wallin A. Neurochemical aftermath of amateur boxing. Arch Neurol. 2006;63:1277–80.PubMedCrossRef Zetterberg H, Hietala MA, Jonsson M, Andreasen N, Styrud E, Karlsson I, Edman A, Popa C, Rasulzada A, Wahlund LO, Mehta PD, Rosengren L, Blennow K, Wallin A. Neurochemical aftermath of amateur boxing. Arch Neurol. 2006;63:1277–80.PubMedCrossRef
106.
go back to reference Shahim P, Gren M, Liman V, Andreasson U, Norgren N, Tegner Y, Mattsson N, Andreasen N, Ost M, Zetterberg H, Nellgard B, Blennow K. Serum neurofilament light protein predicts clinical outcome in traumatic brain injury. Sci Rep. 2016;6:36791.PubMedPubMedCentralCrossRef Shahim P, Gren M, Liman V, Andreasson U, Norgren N, Tegner Y, Mattsson N, Andreasen N, Ost M, Zetterberg H, Nellgard B, Blennow K. Serum neurofilament light protein predicts clinical outcome in traumatic brain injury. Sci Rep. 2016;6:36791.PubMedPubMedCentralCrossRef
107.
go back to reference Zemlan FP, Rosenberg WS, Luebbe PA, Campbell TA, Dean GE, Weiner NE, Cohen JA, Rudick RA, Woo D. Quantification of axonal damage in traumatic brain injury: affinity purification and characterization of cerebrospinal fluid tau proteins. J Neurochem. 1999;72:741–50.PubMedCrossRef Zemlan FP, Rosenberg WS, Luebbe PA, Campbell TA, Dean GE, Weiner NE, Cohen JA, Rudick RA, Woo D. Quantification of axonal damage in traumatic brain injury: affinity purification and characterization of cerebrospinal fluid tau proteins. J Neurochem. 1999;72:741–50.PubMedCrossRef
108.
go back to reference Shahim P, Tegner Y, Wilson DH, Randall J, Skillback T, Pazooki D, Kallberg B, Blennow K, Zetterberg H. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol. 2014;71:684–92.PubMedCrossRef Shahim P, Tegner Y, Wilson DH, Randall J, Skillback T, Pazooki D, Kallberg B, Blennow K, Zetterberg H. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol. 2014;71:684–92.PubMedCrossRef
109.
go back to reference Olczak M, Poniatowski LA, Niderla-Bielinska J, Kwiatkowska M, Chutoranski D, Tarka S, Wierzba-Bobrowicz T. Concentration of microtubule associated protein tau (MAPT) in urine and saliva as a potential biomarker of traumatic brain injury in relationship with blood-brain barrier disruption in postmortem examination. Forensic Sci Int. 2019;301:28–36.PubMedCrossRef Olczak M, Poniatowski LA, Niderla-Bielinska J, Kwiatkowska M, Chutoranski D, Tarka S, Wierzba-Bobrowicz T. Concentration of microtubule associated protein tau (MAPT) in urine and saliva as a potential biomarker of traumatic brain injury in relationship with blood-brain barrier disruption in postmortem examination. Forensic Sci Int. 2019;301:28–36.PubMedCrossRef
110.
go back to reference Tschui J, Jackowski C, Schwendener N, Schyma C, Zech WD. Post-mortem CT and MR brain imaging of putrefied corpses. Int J Legal Med. 2016;130:1061–8.PubMedCrossRef Tschui J, Jackowski C, Schwendener N, Schyma C, Zech WD. Post-mortem CT and MR brain imaging of putrefied corpses. Int J Legal Med. 2016;130:1061–8.PubMedCrossRef
111.
go back to reference Chatzaraki V, Bolliger SA, Thali MJ, Eggert S, Ruder TD. Unexpected brain finding in pre-autopsy postmortem CT. Forensic Sci Med Pathol. 2017;13:367–71.PubMedCrossRef Chatzaraki V, Bolliger SA, Thali MJ, Eggert S, Ruder TD. Unexpected brain finding in pre-autopsy postmortem CT. Forensic Sci Med Pathol. 2017;13:367–71.PubMedCrossRef
112.
go back to reference Bogoslovsky T, Wilson D, Chen Y, Hanlon D, Gill J, Jeromin A, Song L, Moore C, Gong Y, Kenney K, Diaz-Arrastia R. Increases of plasma levels of glial fibrillary acidic protein, tau, and amyloid beta up to 90 days after traumatic brain injury. J Neurotrauma. 2017;34:66–73.PubMedPubMedCentralCrossRef Bogoslovsky T, Wilson D, Chen Y, Hanlon D, Gill J, Jeromin A, Song L, Moore C, Gong Y, Kenney K, Diaz-Arrastia R. Increases of plasma levels of glial fibrillary acidic protein, tau, and amyloid beta up to 90 days after traumatic brain injury. J Neurotrauma. 2017;34:66–73.PubMedPubMedCentralCrossRef
113.
go back to reference Mochizuki K, Ochi H, Ogura Y, Iino M, Kuroki H, Matoba R. A case of diffuse axonal injury in violent death. Leg Med (Tokyo). 2009;11(Suppl 1):S518–9.CrossRef Mochizuki K, Ochi H, Ogura Y, Iino M, Kuroki H, Matoba R. A case of diffuse axonal injury in violent death. Leg Med (Tokyo). 2009;11(Suppl 1):S518–9.CrossRef
114.
go back to reference Chen XH, Johnson VE, Uryu K, Trojanowski JQ, Smith DH. A lack of amyloid beta plaques despite persistent accumulation of amyloid beta in axons of long-term survivors of traumatic brain injury. Brain Pathol. 2009;19:214–23.PubMedCrossRef Chen XH, Johnson VE, Uryu K, Trojanowski JQ, Smith DH. A lack of amyloid beta plaques despite persistent accumulation of amyloid beta in axons of long-term survivors of traumatic brain injury. Brain Pathol. 2009;19:214–23.PubMedCrossRef
115.
go back to reference Oehmichen M, Walter T, Meissner C, Friedrich HJ. Time course of cortical hemorrhages after closed traumatic brain injury: statistical analysis of posttraumatic histomorphological alterations. J Neurotrauma. 2003;20:87–103.PubMedCrossRef Oehmichen M, Walter T, Meissner C, Friedrich HJ. Time course of cortical hemorrhages after closed traumatic brain injury: statistical analysis of posttraumatic histomorphological alterations. J Neurotrauma. 2003;20:87–103.PubMedCrossRef
Metadata
Title
Traumatic axonal injury: neuropathological features, postmortem diagnostic methods, and strategies
Authors
Qianling Chen
Xuebing Chen
Luyao Xu
Rui Zhang
Zhigang Li
Xia Yue
Dongfang Qiao
Publication date
19-09-2022
Publisher
Springer US
Published in
Forensic Science, Medicine and Pathology / Issue 4/2022
Print ISSN: 1547-769X
Electronic ISSN: 1556-2891
DOI
https://doi.org/10.1007/s12024-022-00522-0

Other articles of this Issue 4/2022

Forensic Science, Medicine and Pathology 4/2022 Go to the issue