Skip to main content
Top
Published in: Respiratory Research 1/2013

Open Access 01-12-2013 | Research

Differential regulation of cell functions by CSD peptide subdomains

Authors: Charles Reese, Shanice Dyer, Beth Perry, Michael Bonner, James Oates, Ann Hofbauer, William Sessa, Pascal Bernatchez, Richard P Visconti, Jing Zhang, Corey M Hatfield, Richard M Silver, Stanley Hoffman, Elena Tourkina

Published in: Respiratory Research | Issue 1/2013

Login to get access

Abstract

Background

In fibrotic lung diseases, expression of caveolin-1 is decreased in fibroblasts and monocytes. The effects of this deficiency are reversed by treating cells or animals with the caveolin-1 scaffolding domain peptide (CSD, amino acids 82–101 of caveolin-1) which compensates for the lack of caveolin-1. Here we compare the function of CSD subdomains (Cav-A, Cav-B, Cav-C, Cav-AB, and Cav-BC) and mutated versions of CSD (F92A and T90A/T91A/F92A).

Methods

Migration toward the chemokine CXCL12 and the associated expression of F-actin, CXCR4, and pSmad 2/3 were studied in monocytes from healthy donors and SSc patients. Fibrocyte differentiation was studied using PBMC from healthy donors and SSc patients. Collagen I secretion and signaling were studied in fibroblasts derived from the lung tissue of healthy subjects and SSc patients.

Results

Cav-BC and CSD at concentrations as low as 0.01 μM inhibited the hypermigration of SSc monocytes and TGFβ-activated Normal monocytes and the differentiation into fibrocytes of SSc and Normal monocytes. While CSD also inhibited the migration of poorly migrating Normal monocytes, Cav-A (and other subdomains to a lesser extent) promoted the migration of Normal monocytes while inhibiting the hypermigration of TGFβ-activated Normal monocytes. The effects of versions of CSD on migration may be mediated in part via their effects on CXCR4, F-actin, and pSmad 2/3 expression. Cav-BC was as effective as CSD in inhibiting fibroblast collagen I and ASMA expression and MEK/ERK signaling. Cav-C and Cav-AB also inhibited collagen I expression, but in many cases did not affect ASMA or MEK/ERK. Cav-A increased collagen I expression in scleroderma lung fibroblasts. Full effects on fibroblasts of versions of CSD required 5 μM peptide.

Conclusions

Cav-BC retains most of the anti-fibrotic functions of CSD; Cav-A exhibits certain pro-fibrotic functions. Results obtained with subdomains and mutated versions of CSD further suggest that the critical functional residues in CSD depend on the cell type and readout being studied. Monocytes may be more sensitive to versions of CSD than fibroblasts and endothelial cells because the baseline level of caveolin-1 in monocytes is much lower than in these other cell types.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wang XM, Zhang Y, Kim HP, Zhou Z, Feghali-Bostwick CA, Liu F, Ifedigbo E, Xu X, Oury TD, Kaminski N, Choi AM: Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J Exp Med. 2006, 203: 2895-2906. 10.1084/jem.20061536.PubMedPubMedCentralCrossRef Wang XM, Zhang Y, Kim HP, Zhou Z, Feghali-Bostwick CA, Liu F, Ifedigbo E, Xu X, Oury TD, Kaminski N, Choi AM: Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J Exp Med. 2006, 203: 2895-2906. 10.1084/jem.20061536.PubMedPubMedCentralCrossRef
2.
go back to reference Tourkina E, Richard M, Gooz P, Bonner M, Pannu J, Harley R, Bernatchez PN, Sessa WC, Silver RM, Hoffman S: Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol. 2008, 294: L843-L861. 10.1152/ajplung.00295.2007.PubMedCrossRef Tourkina E, Richard M, Gooz P, Bonner M, Pannu J, Harley R, Bernatchez PN, Sessa WC, Silver RM, Hoffman S: Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol. 2008, 294: L843-L861. 10.1152/ajplung.00295.2007.PubMedCrossRef
3.
go back to reference Kasper M, Reimann T, Hempel U, Wenzel KW, Bierhaus A, Schuh D, Dimmer V, Haroske G, Muller M: Loss of caveolin expression in type I pneumocytes as an indicator of subcellular alterations during lung fibrogenesis. Histochem Cell Biol. 1998, 109: 41-48.PubMedCrossRef Kasper M, Reimann T, Hempel U, Wenzel KW, Bierhaus A, Schuh D, Dimmer V, Haroske G, Muller M: Loss of caveolin expression in type I pneumocytes as an indicator of subcellular alterations during lung fibrogenesis. Histochem Cell Biol. 1998, 109: 41-48.PubMedCrossRef
4.
go back to reference Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP: Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem. 1997, 272: 6525-6533. 10.1074/jbc.272.10.6525.PubMedCrossRef Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP: Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem. 1997, 272: 6525-6533. 10.1074/jbc.272.10.6525.PubMedCrossRef
5.
go back to reference Oka N, Yamamoto M, Schwencke C, Kawabe J, Ebina T, Ohno S, Couet J, Lisanti MP, Ishikawa Y: Caveolin interaction with protein kinase C. Isoenzyme-dependent regulation of kinase activity by the caveolin scaffolding domain peptide. J Biol Chem. 1997, 272: 33416-33421. 10.1074/jbc.272.52.33416.PubMedCrossRef Oka N, Yamamoto M, Schwencke C, Kawabe J, Ebina T, Ohno S, Couet J, Lisanti MP, Ishikawa Y: Caveolin interaction with protein kinase C. Isoenzyme-dependent regulation of kinase activity by the caveolin scaffolding domain peptide. J Biol Chem. 1997, 272: 33416-33421. 10.1074/jbc.272.52.33416.PubMedCrossRef
6.
go back to reference Rybin VO, Xu X, Steinberg SF: Activated protein kinase C isoforms target to cardiomyocyte caveolae : stimulation of local protein phosphorylation. Circ Res. 1999, 84: 980-988. 10.1161/01.RES.84.9.980.PubMedCrossRef Rybin VO, Xu X, Steinberg SF: Activated protein kinase C isoforms target to cardiomyocyte caveolae : stimulation of local protein phosphorylation. Circ Res. 1999, 84: 980-988. 10.1161/01.RES.84.9.980.PubMedCrossRef
7.
go back to reference Tourkina E, Gooz P, Pannu J, Bonner M, Scholz D, Hacker S, Silver RM, Trojanowska M, Hoffman S: Opposing effects of protein kinase C alpha and protein kinase C epsilon on collagen expression by human lung fibroblasts are mediated via MEK/ERK and caveolin-1 signaling. J Biol Chem. 2005, 280: 13879-13887. 10.1074/jbc.M412551200.PubMedCrossRef Tourkina E, Gooz P, Pannu J, Bonner M, Scholz D, Hacker S, Silver RM, Trojanowska M, Hoffman S: Opposing effects of protein kinase C alpha and protein kinase C epsilon on collagen expression by human lung fibroblasts are mediated via MEK/ERK and caveolin-1 signaling. J Biol Chem. 2005, 280: 13879-13887. 10.1074/jbc.M412551200.PubMedCrossRef
8.
go back to reference Razani B, Zhang XL, Bitzer M, von Gersdorff G, Bottinger EP, Lisanti MP: Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem. 2001, 276: 6727-6738. 10.1074/jbc.M008340200.PubMedCrossRef Razani B, Zhang XL, Bitzer M, von Gersdorff G, Bottinger EP, Lisanti MP: Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem. 2001, 276: 6727-6738. 10.1074/jbc.M008340200.PubMedCrossRef
9.
go back to reference Le Saux CJ, Teeters K, Miyasato SK, Hoffmann PR, Bollt O, Douet V, Shohet RV, Broide DH, Tam EK: Down-regulation of caveolin-1, an inhibitor of transforming growth factor-beta signaling, in acute allergen-induced airway remodeling. J Biol Chem. 2008, 283: 5760-5768.PubMedCrossRef Le Saux CJ, Teeters K, Miyasato SK, Hoffmann PR, Bollt O, Douet V, Shohet RV, Broide DH, Tam EK: Down-regulation of caveolin-1, an inhibitor of transforming growth factor-beta signaling, in acute allergen-induced airway remodeling. J Biol Chem. 2008, 283: 5760-5768.PubMedCrossRef
10.
go back to reference Bucci M, Gratton JP, Rudic RD, Acevedo L, Roviezzo F, Cirino G, Sessa WC: In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med. 2000, 6: 1362-1367. 10.1038/82176.PubMedCrossRef Bucci M, Gratton JP, Rudic RD, Acevedo L, Roviezzo F, Cirino G, Sessa WC: In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med. 2000, 6: 1362-1367. 10.1038/82176.PubMedCrossRef
11.
go back to reference Bernatchez PN, Bauer PM, Yu J, Prendergast JS, He P, Sessa WC: Dissecting the molecular control of endothelial NO synthase by caveolin-1 using cell-permeable peptides. Proc Natl Acad Sci USA. 2005, 102: 761-766. 10.1073/pnas.0407224102.PubMedPubMedCentralCrossRef Bernatchez PN, Bauer PM, Yu J, Prendergast JS, He P, Sessa WC: Dissecting the molecular control of endothelial NO synthase by caveolin-1 using cell-permeable peptides. Proc Natl Acad Sci USA. 2005, 102: 761-766. 10.1073/pnas.0407224102.PubMedPubMedCentralCrossRef
12.
go back to reference Carman CV, Lisanti MP, Benovic JL: Regulation of G protein-coupled receptor kinases by caveolin. J Biol Chem. 1999, 274: 8858-8864. 10.1074/jbc.274.13.8858.PubMedCrossRef Carman CV, Lisanti MP, Benovic JL: Regulation of G protein-coupled receptor kinases by caveolin. J Biol Chem. 1999, 274: 8858-8864. 10.1074/jbc.274.13.8858.PubMedCrossRef
13.
go back to reference Bernatchez P, Sharma A, Bauer PM, Marin E, Sessa WC: A noninhibitory mutant of the caveolin-1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice. J Clin Invest. 2011, 121: 3747-3755. 10.1172/JCI44778.PubMedPubMedCentralCrossRef Bernatchez P, Sharma A, Bauer PM, Marin E, Sessa WC: A noninhibitory mutant of the caveolin-1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice. J Clin Invest. 2011, 121: 3747-3755. 10.1172/JCI44778.PubMedPubMedCentralCrossRef
14.
go back to reference Engelman JA, Chu C, Lin A, Jo H, Ikezu T, Okamoto T, Kohtz DS, Lisanti MP: Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett. 1998, 428: 205-211. 10.1016/S0014-5793(98)00470-0.PubMedCrossRef Engelman JA, Chu C, Lin A, Jo H, Ikezu T, Okamoto T, Kohtz DS, Lisanti MP: Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett. 1998, 428: 205-211. 10.1016/S0014-5793(98)00470-0.PubMedCrossRef
15.
go back to reference Subcommittee: Preliminary criteria for the classification of systemic sclerosis (scleroderma): subcommittee for scleroderma criteria of the American rheumatism association diagnostic and therapeutic criteria committee. Arthritis Rheum. 1980, 23: 581-590. 10.1002/art.1780230510.CrossRef Subcommittee: Preliminary criteria for the classification of systemic sclerosis (scleroderma): subcommittee for scleroderma criteria of the American rheumatism association diagnostic and therapeutic criteria committee. Arthritis Rheum. 1980, 23: 581-590. 10.1002/art.1780230510.CrossRef
16.
go back to reference Tourkina E, Richard M, Oates J, Hofbauer A, Bonner M, Gooz P, Visconti R, Zhang J, Znoyko S, Hatfield CM, et al: Caveolin-1 regulates leucocyte behaviour in fibrotic lung disease. Ann Rheum Dis. 2010, 69: 1220-1226. 10.1136/ard.2009.117580.PubMedPubMedCentralCrossRef Tourkina E, Richard M, Oates J, Hofbauer A, Bonner M, Gooz P, Visconti R, Zhang J, Znoyko S, Hatfield CM, et al: Caveolin-1 regulates leucocyte behaviour in fibrotic lung disease. Ann Rheum Dis. 2010, 69: 1220-1226. 10.1136/ard.2009.117580.PubMedPubMedCentralCrossRef
17.
go back to reference Tourkina E, Bonner M, Oates J, Hofbauer A, Richard M, Znoyko S, Visconti RP, Zhang J, Hatfield CM, Silver RM, Hoffman S: Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide. Fibrogenesis Tissue Repair. 2011, 4: 15-10.1186/1755-1536-4-15.PubMedPubMedCentralCrossRef Tourkina E, Bonner M, Oates J, Hofbauer A, Richard M, Znoyko S, Visconti RP, Zhang J, Hatfield CM, Silver RM, Hoffman S: Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide. Fibrogenesis Tissue Repair. 2011, 4: 15-10.1186/1755-1536-4-15.PubMedPubMedCentralCrossRef
18.
go back to reference Hong KM, Belperio JA, Keane MP, Burdick MD, Strieter RM: Differentiation of human circulating fibrocytes as mediated by transforming growth factor-beta and peroxisome proliferator-activated receptor gamma. J Biol Chem. 2007, 282: 22910-22920. 10.1074/jbc.M703597200.PubMedCrossRef Hong KM, Belperio JA, Keane MP, Burdick MD, Strieter RM: Differentiation of human circulating fibrocytes as mediated by transforming growth factor-beta and peroxisome proliferator-activated receptor gamma. J Biol Chem. 2007, 282: 22910-22920. 10.1074/jbc.M703597200.PubMedCrossRef
19.
go back to reference Keeley EC, Mehrad B, Strieter RM: Fibrocytes: bringing new insights into mechanisms of inflammation and fibrosis. Int J Biochem Cell Biol. 2010, 42: 535-542. 10.1016/j.biocel.2009.10.014.PubMedPubMedCentralCrossRef Keeley EC, Mehrad B, Strieter RM: Fibrocytes: bringing new insights into mechanisms of inflammation and fibrosis. Int J Biochem Cell Biol. 2010, 42: 535-542. 10.1016/j.biocel.2009.10.014.PubMedPubMedCentralCrossRef
20.
go back to reference Mehrad B, Burdick MD, Strieter RM: Fibrocyte CXCR4 regulation as a therapeutic target in pulmonary fibrosis. Int J Biochem Cell Biol. 2009, 41: 1708-1718. 10.1016/j.biocel.2009.02.020.PubMedPubMedCentralCrossRef Mehrad B, Burdick MD, Strieter RM: Fibrocyte CXCR4 regulation as a therapeutic target in pulmonary fibrosis. Int J Biochem Cell Biol. 2009, 41: 1708-1718. 10.1016/j.biocel.2009.02.020.PubMedPubMedCentralCrossRef
22.
go back to reference Strieter RM, Keeley EC, Hughes MA, Burdick MD, Mehrad B: The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J Leukoc Biol. 2009, 86: 1111-1118. 10.1189/jlb.0309132.PubMedPubMedCentralCrossRef Strieter RM, Keeley EC, Hughes MA, Burdick MD, Mehrad B: The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J Leukoc Biol. 2009, 86: 1111-1118. 10.1189/jlb.0309132.PubMedPubMedCentralCrossRef
23.
go back to reference Hartlapp I, Abe R, Saeed RW, Peng T, Voelter W, Bucala R, Metz CN: Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J. 2001, 15: 2215-2224. 10.1096/fj.01-0049com.PubMedCrossRef Hartlapp I, Abe R, Saeed RW, Peng T, Voelter W, Bucala R, Metz CN: Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J. 2001, 15: 2215-2224. 10.1096/fj.01-0049com.PubMedCrossRef
24.
go back to reference Abe R, Donnelly SC, Peng T, Bucala R, Metz CN: Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol. 2001, 166: 7556-7562.PubMedCrossRef Abe R, Donnelly SC, Peng T, Bucala R, Metz CN: Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol. 2001, 166: 7556-7562.PubMedCrossRef
25.
go back to reference Bucala R: Fibrocytes: discovery of circulating connective tissue cell progenitors. Fibrocytes–new insights into tissue repair and systemic fibrosis. 2007, World Scientific Bucala R: Fibrocytes: discovery of circulating connective tissue cell progenitors. Fibrocytes–new insights into tissue repair and systemic fibrosis. 2007, World Scientific
26.
27.
go back to reference Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, Belperio JA, Keane MP, Strieter RM: Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest. 2004, 114: 438-446.PubMedPubMedCentralCrossRef Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, Belperio JA, Keane MP, Strieter RM: Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest. 2004, 114: 438-446.PubMedPubMedCentralCrossRef
Metadata
Title
Differential regulation of cell functions by CSD peptide subdomains
Authors
Charles Reese
Shanice Dyer
Beth Perry
Michael Bonner
James Oates
Ann Hofbauer
William Sessa
Pascal Bernatchez
Richard P Visconti
Jing Zhang
Corey M Hatfield
Richard M Silver
Stanley Hoffman
Elena Tourkina
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2013
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-14-90

Other articles of this Issue 1/2013

Respiratory Research 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.