Skip to main content
Top
Published in: Respiratory Research 1/2013

Open Access 01-12-2013 | Research

The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells

Authors: Mitsuhiro Yamada, Hiroshi Kubo, Chiharu Ota, Toru Takahashi, Yukiko Tando, Takaya Suzuki, Naoya Fujino, Tomonori Makiguchi, Kiyoshi Takagi, Takashi Suzuki, Masakazu Ichinose

Published in: Respiratory Research | Issue 1/2013

Login to get access

Abstract

Background

The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined.

Methods

Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR.

Results

The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial cells during bleomycin-induced lung fibrosis and human idiopathic pulmonary fibrosis. MicroRNA-21 was also upregulated in the cultured alveolar epithelial cells under the conditions that enhance epithelial-mesenchymal transition. Exogenous administration of a microRNA-21 inhibitor prevented the increased expression of vimentin and alpha-smooth muscle actin in cultured primary mouse alveolar type II cells under culture conditions that induce epithelial-mesenchymal transition.

Conclusions

Our experiments demonstrate that microRNA-21 is increased in lung epithelial cells during lung fibrosis and that it promotes epithelial-mesenchymal transition.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chen K, Rajewsky N: The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007, 8 (2): 93-103.PubMedCrossRef Chen K, Rajewsky N: The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007, 8 (2): 93-103.PubMedCrossRef
2.
go back to reference Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, Konishi K, Yousem SA, Singh M, Handley D, et al: Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2010, 182 (2): 220-229. 10.1164/rccm.200911-1698OC.PubMedPubMedCentralCrossRef Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, Konishi K, Yousem SA, Singh M, Handley D, et al: Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2010, 182 (2): 220-229. 10.1164/rccm.200911-1698OC.PubMedPubMedCentralCrossRef
3.
go back to reference Park SM, Gaur AB, Lengyel E, Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008, 22 (7): 894-907. 10.1101/gad.1640608.PubMedPubMedCentralCrossRef Park SM, Gaur AB, Lengyel E, Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008, 22 (7): 894-907. 10.1101/gad.1640608.PubMedPubMedCentralCrossRef
4.
go back to reference Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008, 10 (5): 593-601. 10.1038/ncb1722.PubMedCrossRef Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008, 10 (5): 593-601. 10.1038/ncb1722.PubMedCrossRef
5.
go back to reference Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T: A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008, 9 (6): 582-589. 10.1038/embor.2008.74.PubMedPubMedCentralCrossRef Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T: A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008, 9 (6): 582-589. 10.1038/embor.2008.74.PubMedPubMedCentralCrossRef
6.
go back to reference Christoffersen NR, Silahtaroglu A, Orom UA, Kauppinen S, Lund AH: miR-200b mediates post-transcriptional repression of ZFHX1B. RNA. 2007, 13 (8): 1172-1178. 10.1261/rna.586807.PubMedPubMedCentralCrossRef Christoffersen NR, Silahtaroglu A, Orom UA, Kauppinen S, Lund AH: miR-200b mediates post-transcriptional repression of ZFHX1B. RNA. 2007, 13 (8): 1172-1178. 10.1261/rna.586807.PubMedPubMedCentralCrossRef
7.
go back to reference Hurteau GJ, Carlson JA, Spivack SD, Brock GJ: Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res. 2007, 67 (17): 7972-7976. 10.1158/0008-5472.CAN-07-1058.PubMedCrossRef Hurteau GJ, Carlson JA, Spivack SD, Brock GJ: Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res. 2007, 67 (17): 7972-7976. 10.1158/0008-5472.CAN-07-1058.PubMedCrossRef
8.
go back to reference Korpal M, Lee ES, Hu G, Kang Y: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008, 283 (22): 14910-14914. 10.1074/jbc.C800074200.PubMedPubMedCentralCrossRef Korpal M, Lee ES, Hu G, Kang Y: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008, 283 (22): 14910-14914. 10.1074/jbc.C800074200.PubMedPubMedCentralCrossRef
9.
go back to reference Vandewalle C, Roy F, Berx G: The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci. 2008, 66 (5): 773-787.CrossRef Vandewalle C, Roy F, Berx G: The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci. 2008, 66 (5): 773-787.CrossRef
10.
go back to reference Peinado H, Olmeda D, Cano A: Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?. Nat Rev Cancer. 2007, 7 (6): 415-428.PubMedCrossRef Peinado H, Olmeda D, Cano A: Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?. Nat Rev Cancer. 2007, 7 (6): 415-428.PubMedCrossRef
11.
go back to reference Yang S, Banerjee S, de Freitas A, Sanders YY, Ding Q, Matalon S, Thannickal VJ, Abraham E, Liu G: Participation of miR-200 in Pulmonary Fibrosis. Am J Pathol. 2012, 180 (2): 484-493. 10.1016/j.ajpath.2011.10.005.PubMedPubMedCentralCrossRef Yang S, Banerjee S, de Freitas A, Sanders YY, Ding Q, Matalon S, Thannickal VJ, Abraham E, Liu G: Participation of miR-200 in Pulmonary Fibrosis. Am J Pathol. 2012, 180 (2): 484-493. 10.1016/j.ajpath.2011.10.005.PubMedPubMedCentralCrossRef
12.
go back to reference Chan JA, Krichevsky AM, Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005, 65 (14): 6029-6033. 10.1158/0008-5472.CAN-05-0137.PubMedCrossRef Chan JA, Krichevsky AM, Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005, 65 (14): 6029-6033. 10.1158/0008-5472.CAN-05-0137.PubMedCrossRef
13.
go back to reference Pan X, Wang Z-X, Wang R: MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther. 2010, 10 (12): 1224-1232. 10.4161/cbt.10.12.14252.PubMedCrossRef Pan X, Wang Z-X, Wang R: MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther. 2010, 10 (12): 1224-1232. 10.4161/cbt.10.12.14252.PubMedCrossRef
14.
go back to reference Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N, Abraham E: miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010, 207 (8): 1589-1597. 10.1084/jem.20100035.PubMedPubMedCentralCrossRef Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N, Abraham E: miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010, 207 (8): 1589-1597. 10.1084/jem.20100035.PubMedPubMedCentralCrossRef
15.
go back to reference Cho J-H, Gelinas R, Wang K, Etheridge A, Piper MG, Batte K, Dakhallah D, Price J, Bornman D, Zhang S, et al: Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes. BMC Med Genomics. 2011, 4 (1): 8-10.1186/1755-8794-4-8.PubMedPubMedCentralCrossRef Cho J-H, Gelinas R, Wang K, Etheridge A, Piper MG, Batte K, Dakhallah D, Price J, Bornman D, Zhang S, et al: Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes. BMC Med Genomics. 2011, 4 (1): 8-10.1186/1755-8794-4-8.PubMedPubMedCentralCrossRef
16.
go back to reference Feghali-Bostwick C, Oak SR, Murray L, Herath A, Sleeman M, Anderson I, Joshi AD, Coelho AL, Flaherty KR, Toews GB, et al: A micro RNA processing defect in rapidly progressing idiopathic pulmonary fibrosis. PLoS One. 2011, 6 (6): e21253-10.1371/journal.pone.0021253.CrossRef Feghali-Bostwick C, Oak SR, Murray L, Herath A, Sleeman M, Anderson I, Joshi AD, Coelho AL, Flaherty KR, Toews GB, et al: A micro RNA processing defect in rapidly progressing idiopathic pulmonary fibrosis. PLoS One. 2011, 6 (6): e21253-10.1371/journal.pone.0021253.CrossRef
17.
go back to reference He M, Kubo H, Ishizawa K, Hegab AE, Yamamoto Y, Yamamoto H, Yamaya M: The role of the receptor for advanced glycation end-products in lung fibrosis. Am J Physiol Lung Cell Mol Physiol. 2007, 293 (6): L1427-L1436. 10.1152/ajplung.00075.2007.PubMedCrossRef He M, Kubo H, Ishizawa K, Hegab AE, Yamamoto Y, Yamamoto H, Yamaya M: The role of the receptor for advanced glycation end-products in lung fibrosis. Am J Physiol Lung Cell Mol Physiol. 2007, 293 (6): L1427-L1436. 10.1152/ajplung.00075.2007.PubMedCrossRef
18.
go back to reference Yamada M, Gomez JC, Chugh PE, Lowell CA, Dinauer MC, Dittmer DP, Doerschuk CM: Interferon-{gamma} Production by Neutrophils during Bacterial Pneumonia in Mice. Am J Respir Crit Care Med. 2011, 183 (10): 1391-1401. 10.1164/rccm.201004-0592OC.PubMedPubMedCentralCrossRef Yamada M, Gomez JC, Chugh PE, Lowell CA, Dinauer MC, Dittmer DP, Doerschuk CM: Interferon-{gamma} Production by Neutrophils during Bacterial Pneumonia in Mice. Am J Respir Crit Care Med. 2011, 183 (10): 1391-1401. 10.1164/rccm.201004-0592OC.PubMedPubMedCentralCrossRef
19.
go back to reference Fujino N, Kubo H, Suzuki T, Ota C, Hegab AE, He M, Suzuki S, Yamada M, Kondo T, Kato H, et al: Isolation of alveolar epithelial type II progenitor cells from adult human lungs. Lab Invest. 2011, 91 (3): 363-378. 10.1038/labinvest.2010.187.PubMedPubMedCentralCrossRef Fujino N, Kubo H, Suzuki T, Ota C, Hegab AE, He M, Suzuki S, Yamada M, Kondo T, Kato H, et al: Isolation of alveolar epithelial type II progenitor cells from adult human lungs. Lab Invest. 2011, 91 (3): 363-378. 10.1038/labinvest.2010.187.PubMedPubMedCentralCrossRef
20.
go back to reference Fujino N, Kubo H, Ota C, Suzuki T, Suzuki S, Yamada M, Takahashi T, He M, Kondo T, Yamaya M: A novel method for isolating individual cellular components from the adult human distal lung. Am J Respir Cell Mol Biol. 2012, 46 (4): 422-430. 10.1165/rcmb.2011-0172OC.PubMedCrossRef Fujino N, Kubo H, Ota C, Suzuki T, Suzuki S, Yamada M, Takahashi T, He M, Kondo T, Yamaya M: A novel method for isolating individual cellular components from the adult human distal lung. Am J Respir Cell Mol Biol. 2012, 46 (4): 422-430. 10.1165/rcmb.2011-0172OC.PubMedCrossRef
21.
go back to reference Corti M, Brody AR, Harrison JH: Isolation and primary culture of murine alveolar type II cells. Am J Respir Cell Mol Biol. 1996, 14 (4): 309-315. 10.1165/ajrcmb.14.4.8600933.PubMedCrossRef Corti M, Brody AR, Harrison JH: Isolation and primary culture of murine alveolar type II cells. Am J Respir Cell Mol Biol. 1996, 14 (4): 309-315. 10.1165/ajrcmb.14.4.8600933.PubMedCrossRef
22.
go back to reference Rice WR, Conkright JJ, Na CL, Ikegami M, Shannon JM, Weaver TE: Maintenance of the mouse type II cell phenotype in vitro. Am J Physiol Lung Cell Mol Physiol. 2002, 283 (2): L256-L264.PubMedCrossRef Rice WR, Conkright JJ, Na CL, Ikegami M, Shannon JM, Weaver TE: Maintenance of the mouse type II cell phenotype in vitro. Am J Physiol Lung Cell Mol Physiol. 2002, 283 (2): L256-L264.PubMedCrossRef
23.
go back to reference Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, Sheppard D, Chapman HA: Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci USA. 2006, 103 (35): 13180-13185. 10.1073/pnas.0605669103.PubMedPubMedCentralCrossRef Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, Sheppard D, Chapman HA: Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci USA. 2006, 103 (35): 13180-13185. 10.1073/pnas.0605669103.PubMedPubMedCentralCrossRef
24.
go back to reference Kim Y, Kugler MC, Wei Y, Kim KK, Li X, Brumwell AN, Chapman HA: Integrin alpha3beta1-dependent beta-catenin phosphorylation links epithelial Smad signaling to cell contacts. J Cell Biol. 2009, 184 (2): 309-322. 10.1083/jcb.200806067.PubMedPubMedCentralCrossRef Kim Y, Kugler MC, Wei Y, Kim KK, Li X, Brumwell AN, Chapman HA: Integrin alpha3beta1-dependent beta-catenin phosphorylation links epithelial Smad signaling to cell contacts. J Cell Biol. 2009, 184 (2): 309-322. 10.1083/jcb.200806067.PubMedPubMedCentralCrossRef
25.
go back to reference Scott HS, Lino Cardenas CL, Henaoui IS, Courcot E, Roderburg C, Cauffiez C, Aubert S, Copin M-C, Wallaert B, Glowacki F, et al: miR-199a-5p is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet. 2013, 9 (2): e1003291-10.1371/journal.pgen.1003291.CrossRef Scott HS, Lino Cardenas CL, Henaoui IS, Courcot E, Roderburg C, Cauffiez C, Aubert S, Copin M-C, Wallaert B, Glowacki F, et al: miR-199a-5p is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet. 2013, 9 (2): e1003291-10.1371/journal.pgen.1003291.CrossRef
26.
go back to reference Fujino N, Kubo H, Ota C, Suzuki T, Suzuki S, Yamada M, Takahashi T, He M, Kondo T, Yamaya M: A novel method for isolating individual cellular components from the adult human distal lung. Am J Respir Cell Mol Biol. 2011, 46 (4): 422-430.PubMedCrossRef Fujino N, Kubo H, Ota C, Suzuki T, Suzuki S, Yamada M, Takahashi T, He M, Kondo T, Yamaya M: A novel method for isolating individual cellular components from the adult human distal lung. Am J Respir Cell Mol Biol. 2011, 46 (4): 422-430.PubMedCrossRef
27.
go back to reference Zavadil J, Böttinger EP: TGF-β and epithelial-to-mesenchymal transitions. Oncogene. 2005, 24 (37): 5764-5774. 10.1038/sj.onc.1208927.PubMedCrossRef Zavadil J, Böttinger EP: TGF-β and epithelial-to-mesenchymal transitions. Oncogene. 2005, 24 (37): 5764-5774. 10.1038/sj.onc.1208927.PubMedCrossRef
28.
go back to reference Li Y, Yang J, Dai C, Wu C, Liu Y: Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest. 2003, 112 (4): 503-516.PubMedPubMedCentralCrossRef Li Y, Yang J, Dai C, Wu C, Liu Y: Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest. 2003, 112 (4): 503-516.PubMedPubMedCentralCrossRef
29.
go back to reference Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R: BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 2003, 9 (7): 964-968. 10.1038/nm888.PubMedCrossRef Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R: BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 2003, 9 (7): 964-968. 10.1038/nm888.PubMedCrossRef
30.
go back to reference Rygiel KA, Robertson H, Marshall HL, Pekalski M, Zhao L, Booth TA, Jones DE, Burt AD, Kirby JA: Epithelial-mesenchymal transition contributes to portal tract fibrogenesis during human chronic liver disease. Lab Invest. 2008, 88 (2): 112-123. 10.1038/labinvest.3700704.PubMedCrossRef Rygiel KA, Robertson H, Marshall HL, Pekalski M, Zhao L, Booth TA, Jones DE, Burt AD, Kirby JA: Epithelial-mesenchymal transition contributes to portal tract fibrogenesis during human chronic liver disease. Lab Invest. 2008, 88 (2): 112-123. 10.1038/labinvest.3700704.PubMedCrossRef
31.
go back to reference Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H, Kalluri R: Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem. 2007, 282 (32): 23337-23347. 10.1074/jbc.M700194200.PubMedCrossRef Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H, Kalluri R: Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem. 2007, 282 (32): 23337-23347. 10.1074/jbc.M700194200.PubMedCrossRef
32.
go back to reference Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, Noble PW, Hogan BLM: PNAS plus: multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci. 2011, 108 (52): E1475-E1483. 10.1073/pnas.1117988108.PubMedPubMedCentralCrossRef Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, Noble PW, Hogan BLM: PNAS plus: multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci. 2011, 108 (52): E1475-E1483. 10.1073/pnas.1117988108.PubMedPubMedCentralCrossRef
Metadata
Title
The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells
Authors
Mitsuhiro Yamada
Hiroshi Kubo
Chiharu Ota
Toru Takahashi
Yukiko Tando
Takaya Suzuki
Naoya Fujino
Tomonori Makiguchi
Kiyoshi Takagi
Takashi Suzuki
Masakazu Ichinose
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2013
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-14-95

Other articles of this Issue 1/2013

Respiratory Research 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.