Skip to main content
Top
Published in: Systematic Reviews 1/2021

01-12-2021 | Diabetic Retinopathy | Research

Prognostic models of diabetic microvascular complications: a systematic review and meta-analysis

Authors: Sigit Ari Saputro, Oraluck Pattanaprateep, Anuchate Pattanateepapon, Swekshya Karmacharya, Ammarin Thakkinstian

Published in: Systematic Reviews | Issue 1/2021

Login to get access

Abstract

Background

Many prognostic models of diabetic microvascular complications have been developed, but their performances still varies. Therefore, we conducted a systematic review and meta-analysis to summarise the performances of the existing models.

Methods

Prognostic models of diabetic microvascular complications were retrieved from PubMed and Scopus up to 31 December 2020. Studies were selected, if they developed or internally/externally validated models of any microvascular complication in type 2 diabetes (T2D).

Results

In total, 71 studies were eligible, of which 32, 30 and 18 studies initially developed prognostic model for diabetic retinopathy (DR), chronic kidney disease (CKD) and end stage renal disease (ESRD) with the number of derived equations of 84, 96 and 51, respectively. Most models were derived-phases, some were internal and external validations. Common predictors were age, sex, HbA1c, diabetic duration, SBP and BMI. Traditional statistical models (i.e. Cox and logit regression) were mostly applied, otherwise machine learning. In cohorts, the discriminative performance in derived-logit was pooled with C statistics of 0.82 (0.73‑0.92) for DR and 0.78 (0.74‑0.83) for CKD. Pooled Cox regression yielded 0.75 (0.74‑0.77), 0.78 (0.74‑0.82) and 0.87 (0.84‑0.89) for DR, CKD and ESRD, respectively. External validation performances were sufficiently pooled with 0.81 (0.78‑0.83), 0.75 (0.67‑0.84) and 0.87 (0.85‑0.88) for DR, CKD and ESRD, respectively.

Conclusions

Several prognostic models were developed, but less were externally validated. A few studies derived the models by using appropriate methods and were satisfactory reported. More external validations and impact analyses are required before applying these models in clinical practice.

Systematic review registration

PROSPERO CRD42018105287
Appendix
Available only for authorised users
Literature
1.
go back to reference International Diabetes Federation. IDF Diabetes Atlas Ninth Edition 2019. Brussels: International Diabetes Federation; 2019. International Diabetes Federation. IDF Diabetes Atlas Ninth Edition 2019. Brussels: International Diabetes Federation; 2019.
2.
go back to reference World Health Organization. Classification of diabetes mellitus. Geneva: World Health Organization; 2019. World Health Organization. Classification of diabetes mellitus. Geneva: World Health Organization; 2019.
3.
go back to reference Dougherty T, Heile M. Type 2 diabetes in the US managed care setting: the burden of disease and rationale for an oral glucagon-like peptide-1 receptor agonist. Am J Manag Care. 2020;26(16 Suppl):S325–s34.PubMed Dougherty T, Heile M. Type 2 diabetes in the US managed care setting: the burden of disease and rationale for an oral glucagon-like peptide-1 receptor agonist. Am J Manag Care. 2020;26(16 Suppl):S325–s34.PubMed
4.
go back to reference Ahmad J. Management of diabetic nephropathy: recent progress and future perspective. Diabetes Metab Syndr. 2015;9(4):343–58.PubMedCrossRef Ahmad J. Management of diabetic nephropathy: recent progress and future perspective. Diabetes Metab Syndr. 2015;9(4):343–58.PubMedCrossRef
5.
go back to reference American Diabetes Association. Microvascular complications and foot care: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S135–s51.CrossRef American Diabetes Association. Microvascular complications and foot care: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S135–s51.CrossRef
6.
go back to reference Savelieff MG, Callaghan BC, Feldman EL. The emerging role of dyslipidemia in diabetic microvascular complications. Curr Opin Endocrinol Diabetes Obes. 2020;27(2):115–23.PubMedCrossRef Savelieff MG, Callaghan BC, Feldman EL. The emerging role of dyslipidemia in diabetic microvascular complications. Curr Opin Endocrinol Diabetes Obes. 2020;27(2):115–23.PubMedCrossRef
7.
go back to reference Faselis C, Katsimardou A, Imprialos K, Deligkaris P, Kallistratos M, Dimitriadis K. Microvascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol. 2020;18(2):117–24.PubMedCrossRef Faselis C, Katsimardou A, Imprialos K, Deligkaris P, Kallistratos M, Dimitriadis K. Microvascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol. 2020;18(2):117–24.PubMedCrossRef
8.
go back to reference Farran B, Channanath AM, Behbehani K, Thanaraj TA. Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: machine-learning algorithms and validation using national health data from Kuwait—a cohort study. BMJ Open. 2013;3(5):e002457.PubMedPubMedCentralCrossRef Farran B, Channanath AM, Behbehani K, Thanaraj TA. Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: machine-learning algorithms and validation using national health data from Kuwait—a cohort study. BMJ Open. 2013;3(5):e002457.PubMedPubMedCentralCrossRef
9.
go back to reference American Diabetes Association. Economic costs of diabetes in the U.S. in 2017. Diabetes Care. 2018;41(5):917–28. American Diabetes Association. Economic costs of diabetes in the U.S. in 2017. Diabetes Care. 2018;41(5):917–28.
10.
11.
go back to reference Aspelund T, Thornorisdottir O, Olafsdottir E, Gudmundsdottir A, Einarsdottir AB, Mehlsen J, et al. Individual risk assessment and information technology to optimise screening frequency for diabetic retinopathy. Diabetologia. 2011;54(10):2525–32.PubMedCrossRef Aspelund T, Thornorisdottir O, Olafsdottir E, Gudmundsdottir A, Einarsdottir AB, Mehlsen J, et al. Individual risk assessment and information technology to optimise screening frequency for diabetic retinopathy. Diabetologia. 2011;54(10):2525–32.PubMedCrossRef
12.
go back to reference Basu S, Sussman JB, Berkowitz SA, Hayward RA, Yudkin JS. Development and validation of risk equations for complications of type 2 diabetes (RECODe) using individual participant data from randomised trials. Lancet Diabetes Endocrinol. 2017;5(10):788–98.PubMedPubMedCentralCrossRef Basu S, Sussman JB, Berkowitz SA, Hayward RA, Yudkin JS. Development and validation of risk equations for complications of type 2 diabetes (RECODe) using individual participant data from randomised trials. Lancet Diabetes Endocrinol. 2017;5(10):788–98.PubMedPubMedCentralCrossRef
13.
go back to reference Dagliati A, Marini S, Sacchi L, Cogni G, Teliti M, Tibollo V, et al. Machine learning methods to predict diabetes complications. J Diabetes Sci Technol. 2018;12(2):295–302.PubMedCrossRef Dagliati A, Marini S, Sacchi L, Cogni G, Teliti M, Tibollo V, et al. Machine learning methods to predict diabetes complications. J Diabetes Sci Technol. 2018;12(2):295–302.PubMedCrossRef
14.
go back to reference Kengne AP, Gouking P, Wawo E, Koki G, Balti E, Hakapoka H, et al. Cardiovascular risk profile, diabetes specific factors, and prevalent microvascular eye complications in sub-Saharan Africans with type 2 diabetes. Int J Diabetes Developing Countries. 2015;35:349–55.CrossRef Kengne AP, Gouking P, Wawo E, Koki G, Balti E, Hakapoka H, et al. Cardiovascular risk profile, diabetes specific factors, and prevalent microvascular eye complications in sub-Saharan Africans with type 2 diabetes. Int J Diabetes Developing Countries. 2015;35:349–55.CrossRef
15.
go back to reference Ogunyemi O, Kermah D. Machine learning approaches for detecting diabetic retinopathy from clinical and public health records. AMIA Annual Symposium Proc AMIA Symposium. 2015;2015:983–90. Ogunyemi O, Kermah D. Machine learning approaches for detecting diabetic retinopathy from clinical and public health records. AMIA Annual Symposium Proc AMIA Symposium. 2015;2015:983–90.
16.
go back to reference Ogunyemi O, Teklehaimanot S, Patty L, Moran E, George S. Evaluating predictive modeling’s potential to improve teleretinal screening participation in urban safety net clinics. Stud Health Technol Informatics. 2013;192:162–5. Ogunyemi O, Teklehaimanot S, Patty L, Moran E, George S. Evaluating predictive modeling’s potential to improve teleretinal screening participation in urban safety net clinics. Stud Health Technol Informatics. 2013;192:162–5.
17.
go back to reference Oh E, Yoo TK, Park EC. Diabetic retinopathy risk prediction for fundus examination using sparse learning: a cross-sectional study. BMC Medical Informatics Decision Making. 2013;13:106.PubMedPubMedCentralCrossRef Oh E, Yoo TK, Park EC. Diabetic retinopathy risk prediction for fundus examination using sparse learning: a cross-sectional study. BMC Medical Informatics Decision Making. 2013;13:106.PubMedPubMedCentralCrossRef
18.
go back to reference Semeraro F, Parrinello G, Cancarini A, Pasquini L, Zarra E, Cimino A, et al. Predicting the risk of diabetic retinopathy in type 2 diabetic patients. J Diabetes Complications. 2011;25(5):292–7.PubMedCrossRef Semeraro F, Parrinello G, Cancarini A, Pasquini L, Zarra E, Cimino A, et al. Predicting the risk of diabetic retinopathy in type 2 diabetic patients. J Diabetes Complications. 2011;25(5):292–7.PubMedCrossRef
19.
go back to reference Blech I, Katzenellenbogen M, Katzenellenbogen A, Wainstein J, Rubinstein A, Harman-Boehm I, et al. Predicting diabetic nephropathy using a multifactorial genetic model. PLoS One. 2011;6(4):e18743.PubMedPubMedCentralCrossRef Blech I, Katzenellenbogen M, Katzenellenbogen A, Wainstein J, Rubinstein A, Harman-Boehm I, et al. Predicting diabetic nephropathy using a multifactorial genetic model. PLoS One. 2011;6(4):e18743.PubMedPubMedCentralCrossRef
20.
go back to reference Dunkler D, Gao P, Lee SF, Heinze G, Clase CM, Tobe S, et al. Risk prediction for early CKD in type 2 diabetes. Clin J Am Soc Nephrol. 2015;10(8):1371–9.PubMedPubMedCentralCrossRef Dunkler D, Gao P, Lee SF, Heinze G, Clase CM, Tobe S, et al. Risk prediction for early CKD in type 2 diabetes. Clin J Am Soc Nephrol. 2015;10(8):1371–9.PubMedPubMedCentralCrossRef
21.
go back to reference Klisic A, Kavaric N, Ninic A. Retinol-binding protein 4 versus albuminuria as predictors of estimated glomerular filtration rate decline in patients with type 2 diabetes. J Res Med Sci. 2018;23:44.PubMedPubMedCentralCrossRef Klisic A, Kavaric N, Ninic A. Retinol-binding protein 4 versus albuminuria as predictors of estimated glomerular filtration rate decline in patients with type 2 diabetes. J Res Med Sci. 2018;23:44.PubMedPubMedCentralCrossRef
22.
go back to reference Miao DD, Pan EC, Zhang Q, Sun ZM, Qin Y, Wu M. Development and validation of a model for predicting diabetic nephropathy in Chinese people. Biomed Environ Sci. 2017;30(2):106–12.PubMed Miao DD, Pan EC, Zhang Q, Sun ZM, Qin Y, Wu M. Development and validation of a model for predicting diabetic nephropathy in Chinese people. Biomed Environ Sci. 2017;30(2):106–12.PubMed
23.
go back to reference Nowak N, Skupien J, Smiles AM, Yamanouchi M, Niewczas MA, Galecki AT, et al. Markers of early progressive renal decline in type 2 diabetes suggest different implications for etiological studies and prognostic tests development. Kidney International. 2018;93(5):1198–206.PubMedPubMedCentralCrossRef Nowak N, Skupien J, Smiles AM, Yamanouchi M, Niewczas MA, Galecki AT, et al. Markers of early progressive renal decline in type 2 diabetes suggest different implications for etiological studies and prognostic tests development. Kidney International. 2018;93(5):1198–206.PubMedPubMedCentralCrossRef
24.
go back to reference Welsh P, Woodward M, Hillis GS, Li Q, Marre M, Williams B, et al. Do cardiac biomarkers NT-proBNP and hsTnT predict microvascular events in patients with type 2 diabetes? Results from the ADVANCE trial. Diabetes Care. 2014;37(8):2202–10.PubMedCrossRef Welsh P, Woodward M, Hillis GS, Li Q, Marre M, Williams B, et al. Do cardiac biomarkers NT-proBNP and hsTnT predict microvascular events in patients with type 2 diabetes? Results from the ADVANCE trial. Diabetes Care. 2014;37(8):2202–10.PubMedCrossRef
25.
go back to reference Wu M, Lu J, Zhang L, Liu F, Chen S, Han Y, et al. A non-laboratory-based risk score for predicting diabetic kidney disease in Chinese patients with type 2 diabetes. Oncotarget. 2017;8(60):102550–8.PubMedPubMedCentralCrossRef Wu M, Lu J, Zhang L, Liu F, Chen S, Han Y, et al. A non-laboratory-based risk score for predicting diabetic kidney disease in Chinese patients with type 2 diabetes. Oncotarget. 2017;8(60):102550–8.PubMedPubMedCentralCrossRef
26.
go back to reference Elley CR, Robinson T, Moyes SA, Kenealy T, Collins J, Robinson E, et al. Derivation and validation of a renal risk score for people with type 2 diabetes. Diabetes Care. 2013;36(10):3113–20.PubMedPubMedCentralCrossRef Elley CR, Robinson T, Moyes SA, Kenealy T, Collins J, Robinson E, et al. Derivation and validation of a renal risk score for people with type 2 diabetes. Diabetes Care. 2013;36(10):3113–20.PubMedPubMedCentralCrossRef
27.
go back to reference Garlo KG, White WB, Bakris GL, Zannad F, Wilson CA, Kupfer S, et al. Kidney biomarkers and decline in eGFR in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2018;13(3):398–405.PubMedPubMedCentralCrossRef Garlo KG, White WB, Bakris GL, Zannad F, Wilson CA, Kupfer S, et al. Kidney biomarkers and decline in eGFR in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2018;13(3):398–405.PubMedPubMedCentralCrossRef
28.
go back to reference Li HY, Lin HA, Nien FJ, Wu VC, Jiang YD, Chang TJ, et al. Serum vascular adhesion protein-1 predicts end-stage renal disease in patients with type 2 diabetes. PLoS One. 2016;11(2):e0147981.PubMedPubMedCentralCrossRef Li HY, Lin HA, Nien FJ, Wu VC, Jiang YD, Chang TJ, et al. Serum vascular adhesion protein-1 predicts end-stage renal disease in patients with type 2 diabetes. PLoS One. 2016;11(2):e0147981.PubMedPubMedCentralCrossRef
29.
go back to reference Wan EYF, Fong DYT, Fung CSC, Yu EYT, Chin WY, Chan AKC, et al. Prediction of new onset of end stage renal disease in Chinese patients with type 2 diabetes mellitus - a population-based retrospective cohort study. BMC Nephrol. 2017;18(1):257.PubMedPubMedCentralCrossRef Wan EYF, Fong DYT, Fung CSC, Yu EYT, Chin WY, Chan AKC, et al. Prediction of new onset of end stage renal disease in Chinese patients with type 2 diabetes mellitus - a population-based retrospective cohort study. BMC Nephrol. 2017;18(1):257.PubMedPubMedCentralCrossRef
30.
go back to reference van der Heijden AA, Walraven I. van ‘t Riet E, Aspelund T, Lund SH, Elders P, et al. Validation of a model to estimate personalised screening frequency to monitor diabetic retinopathy. Diabetologia. 2014;57(7):1332–8.PubMedCrossRef van der Heijden AA, Walraven I. van ‘t Riet E, Aspelund T, Lund SH, Elders P, et al. Validation of a model to estimate personalised screening frequency to monitor diabetic retinopathy. Diabetologia. 2014;57(7):1332–8.PubMedCrossRef
31.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.PubMedPubMedCentralCrossRef Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.PubMedPubMedCentralCrossRef
32.
go back to reference Debray TP, Damen JA, Snell KI, Ensor J, Hooft L, Reitsma JB, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ. 2017;356:i6460.PubMedCrossRef Debray TP, Damen JA, Snell KI, Ensor J, Hooft L, Reitsma JB, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ. 2017;356:i6460.PubMedCrossRef
33.
go back to reference Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.PubMedCrossRef Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.PubMedCrossRef
34.
35.
go back to reference Debray TP, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW, Moons KG. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol. 2015;68(3):279–89.PubMedCrossRef Debray TP, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW, Moons KG. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol. 2015;68(3):279–89.PubMedCrossRef
37.
go back to reference Thorlund K, Wetterslev J, Awad T, Thabane L, Gluud C. Comparison of statistical inferences from the DerSimonian-Laird and alternative random-effects model meta-analyses - an empirical assessment of 920 Cochrane primary outcome meta-analyses. Res Synth Methods. 2011;2(4):238–53.PubMedCrossRef Thorlund K, Wetterslev J, Awad T, Thabane L, Gluud C. Comparison of statistical inferences from the DerSimonian-Laird and alternative random-effects model meta-analyses - an empirical assessment of 920 Cochrane primary outcome meta-analyses. Res Synth Methods. 2011;2(4):238–53.PubMedCrossRef
38.
go back to reference Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005;58(9):882–93.PubMedCrossRef Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005;58(9):882–93.PubMedCrossRef
39.
go back to reference Song F, Khan KS, Dinnes J, Sutton AJ. Asymmetric funnel plots and publication bias in meta-analyses of diagnostic accuracy. Int J Epidemiol. 2002;31(1):88–95.PubMedCrossRef Song F, Khan KS, Dinnes J, Sutton AJ. Asymmetric funnel plots and publication bias in meta-analyses of diagnostic accuracy. Int J Epidemiol. 2002;31(1):88–95.PubMedCrossRef
40.
go back to reference StataCorp. Stata Statistical Software: Release 16. College Station: StataCorp LLC; 2019. StataCorp. Stata Statistical Software: Release 16. College Station: StataCorp LLC; 2019.
41.
go back to reference Hippisley-Cox J, Coupland C. Development and validation of risk prediction equations to estimate future risk of blindness and lower limb amputation in patients with diabetes: cohort study. Bmj. 2015;351:h5441.PubMedPubMedCentralCrossRef Hippisley-Cox J, Coupland C. Development and validation of risk prediction equations to estimate future risk of blindness and lower limb amputation in patients with diabetes: cohort study. Bmj. 2015;351:h5441.PubMedPubMedCentralCrossRef
42.
go back to reference Liao WL, Lin JM, Chen WL, Hsieh MC, Wu CM, Chang YW, et al. Multilocus genetic risk score for diabetic retinopathy in the Han Chinese population of Taiwan. Scientific Reports. 2018;8(1):14535.PubMedPubMedCentralCrossRef Liao WL, Lin JM, Chen WL, Hsieh MC, Wu CM, Chang YW, et al. Multilocus genetic risk score for diabetic retinopathy in the Han Chinese population of Taiwan. Scientific Reports. 2018;8(1):14535.PubMedPubMedCentralCrossRef
43.
go back to reference Yusufi FNK, Ahmed A, Ahmad J. Modelling and developing diabetic retinopathy risk scores on Indian type 2 diabetes patients. Int J Diabetes Developing Countries. 2019;39(1):29–38.CrossRef Yusufi FNK, Ahmed A, Ahmad J. Modelling and developing diabetic retinopathy risk scores on Indian type 2 diabetes patients. Int J Diabetes Developing Countries. 2019;39(1):29–38.CrossRef
44.
go back to reference Basu S, Sussman JB, Berkowitz SA, Hayward RA, Bertoni AG, Correa A, et al. Validation of risk equations for complications of type 2 diabetes (RECODe) using individual participant data from diverse longitudinal cohorts in the U.S. Diabetes Care. 2018;41(3):586–95. Basu S, Sussman JB, Berkowitz SA, Hayward RA, Bertoni AG, Correa A, et al. Validation of risk equations for complications of type 2 diabetes (RECODe) using individual participant data from diverse longitudinal cohorts in the U.S. Diabetes Care. 2018;41(3):586–95.
45.
go back to reference Hosseini SM, Maracy MR, Amini M, Baradaran HR. A risk score development for diabetic retinopathy screening in Isfahan-Iran. J Res Med Sci. 2009;14(2):105–10.PubMedPubMedCentral Hosseini SM, Maracy MR, Amini M, Baradaran HR. A risk score development for diabetic retinopathy screening in Isfahan-Iran. J Res Med Sci. 2009;14(2):105–10.PubMedPubMedCentral
46.
go back to reference Soto-Pedre E, Pinies JA, Hernaez-Ortega MC. External validation of a risk assessment model to adjust the frequency of eye-screening visits in patients with diabetes mellitus. J Diabetes Complications. 2015;29(4):508–11.PubMedCrossRef Soto-Pedre E, Pinies JA, Hernaez-Ortega MC. External validation of a risk assessment model to adjust the frequency of eye-screening visits in patients with diabetes mellitus. J Diabetes Complications. 2015;29(4):508–11.PubMedCrossRef
47.
go back to reference Wang J, Chen H, Zhang H, Yang F, Chen RP, Li YB, et al. The performance of a diabetic retinopathy risk score for screening for diabetic retinopathy in Chinese overweight/obese patients with type 2 diabetes mellitus. Ann Med. 2014;46(6):417–23.PubMedCrossRef Wang J, Chen H, Zhang H, Yang F, Chen RP, Li YB, et al. The performance of a diabetic retinopathy risk score for screening for diabetic retinopathy in Chinese overweight/obese patients with type 2 diabetes mellitus. Ann Med. 2014;46(6):417–23.PubMedCrossRef
48.
go back to reference García-Fiñana M, Hughes DM, Cheyne CP, Broadbent DM, Wang A, Komárek A, et al. Personalized risk-based screening for diabetic retinopathy: a multivariate approach versus the use of stratification rules. Diabetes Obes Metab. 2019;21(3):560–8.PubMedCrossRef García-Fiñana M, Hughes DM, Cheyne CP, Broadbent DM, Wang A, Komárek A, et al. Personalized risk-based screening for diabetic retinopathy: a multivariate approach versus the use of stratification rules. Diabetes Obes Metab. 2019;21(3):560–8.PubMedCrossRef
50.
go back to reference Ochs A, McGurnaghan S, Black MW, Leese GP, Philip S, Sattar N, et al. Use of personalised risk-based screening schedules to optimise workload and sojourn time in screening programmes for diabetic retinopathy: a retrospective cohort study. PLoS Med. 2019;16(10):e1002945.PubMedPubMedCentralCrossRef Ochs A, McGurnaghan S, Black MW, Leese GP, Philip S, Sattar N, et al. Use of personalised risk-based screening schedules to optimise workload and sojourn time in screening programmes for diabetic retinopathy: a retrospective cohort study. PLoS Med. 2019;16(10):e1002945.PubMedPubMedCentralCrossRef
51.
go back to reference Ogunyemi OI, Gandhi M, Tayek C. Predictive models for diabetic retinopathy from non-image teleretinal screening data. AMIA Jt Summits Transl Sci Proc. 2019;2019:472–7.PubMedPubMedCentral Ogunyemi OI, Gandhi M, Tayek C. Predictive models for diabetic retinopathy from non-image teleretinal screening data. AMIA Jt Summits Transl Sci Proc. 2019;2019:472–7.PubMedPubMedCentral
52.
go back to reference Tsao HY, Chan PY, Su EC. Predicting diabetic retinopathy and identifying interpretable biomedical features using machine learning algorithms. BMC Bioinformatics. 2018;19(Suppl 9):283.PubMedPubMedCentralCrossRef Tsao HY, Chan PY, Su EC. Predicting diabetic retinopathy and identifying interpretable biomedical features using machine learning algorithms. BMC Bioinformatics. 2018;19(Suppl 9):283.PubMedPubMedCentralCrossRef
53.
go back to reference Zhu X, Wu H, Ge C, Chen Y, Zhao X, Kong M, et al. Establishment and verification of a risk prediction model of diabetic retinopathy in patients with type 2 diabetes in the community. Chin Gen Pract. 2020;23(6):712–5. Zhu X, Wu H, Ge C, Chen Y, Zhao X, Kong M, et al. Establishment and verification of a risk prediction model of diabetic retinopathy in patients with type 2 diabetes in the community. Chin Gen Pract. 2020;23(6):712–5.
54.
go back to reference Azizi-Soleiman F, Heidari-Beni M, Ambler G, Omar R, Amini M, Hosseini SM. Iranian risk model as a predictive tool for retinopathy in patients with type 2 diabetes. Can J Diabetes. 2015;39(5):358–63.PubMedCrossRef Azizi-Soleiman F, Heidari-Beni M, Ambler G, Omar R, Amini M, Hosseini SM. Iranian risk model as a predictive tool for retinopathy in patients with type 2 diabetes. Can J Diabetes. 2015;39(5):358–63.PubMedCrossRef
55.
go back to reference Chong YH, Fan Q, Tham YC, Gan A, Tan SP, Tan G, et al. Type 2 diabetes genetic variants and risk of diabetic retinopathy. Ophthalmology. 2017;124(3):336–42.PubMedCrossRef Chong YH, Fan Q, Tham YC, Gan A, Tan SP, Tan G, et al. Type 2 diabetes genetic variants and risk of diabetic retinopathy. Ophthalmology. 2017;124(3):336–42.PubMedCrossRef
56.
go back to reference Han Y, Schneck ME, Bearse MA Jr, Barez S, Jacobsen CH, Jewell NP, et al. Formulation and evaluation of a predictive model to identify the sites of future diabetic retinopathy. Investigative Ophthalmol Visual Sci. 2004;45(11):4106–12.CrossRef Han Y, Schneck ME, Bearse MA Jr, Barez S, Jacobsen CH, Jewell NP, et al. Formulation and evaluation of a predictive model to identify the sites of future diabetic retinopathy. Investigative Ophthalmol Visual Sci. 2004;45(11):4106–12.CrossRef
57.
go back to reference Mendoza-Herrera K, Quezada AD, Pedroza-Tobias A, Hernandez-Alcaraz C, Fromow-Guerra J, Barquera S. A diabetic retinopathy screening tool for low-income adults in Mexico. Preventing Chronic Dis. 2017;14:E95. Mendoza-Herrera K, Quezada AD, Pedroza-Tobias A, Hernandez-Alcaraz C, Fromow-Guerra J, Barquera S. A diabetic retinopathy screening tool for low-income adults in Mexico. Preventing Chronic Dis. 2017;14:E95.
58.
go back to reference Ng JS, Bearse MA Jr, Schneck ME, Barez S, Adams AJ. Local diabetic retinopathy prediction by multifocal ERG delays over 3 years. Investigative Ophthalmol Visual Sci. 2008;49(4):1622–8.CrossRef Ng JS, Bearse MA Jr, Schneck ME, Barez S, Adams AJ. Local diabetic retinopathy prediction by multifocal ERG delays over 3 years. Investigative Ophthalmol Visual Sci. 2008;49(4):1622–8.CrossRef
59.
go back to reference Tanaka S, Tanaka S, Iimuro S, Yamashita H, Katayama S, Akanuma Y, et al. Predicting macro- and microvascular complications in type 2 diabetes: the Japan Diabetes Complications Study/the Japanese Elderly Diabetes Intervention Trial risk engine. Diabetes Care. 2013;36(5):1193–9.PubMedPubMedCentralCrossRef Tanaka S, Tanaka S, Iimuro S, Yamashita H, Katayama S, Akanuma Y, et al. Predicting macro- and microvascular complications in type 2 diabetes: the Japan Diabetes Complications Study/the Japanese Elderly Diabetes Intervention Trial risk engine. Diabetes Care. 2013;36(5):1193–9.PubMedPubMedCentralCrossRef
60.
go back to reference Bresnick GH, Palta M. Predicting progression to severe proliferative diabetic retinopathy. Arch Ophthalmol. 1987;105(6):810–4.PubMedCrossRef Bresnick GH, Palta M. Predicting progression to severe proliferative diabetic retinopathy. Arch Ophthalmol. 1987;105(6):810–4.PubMedCrossRef
61.
go back to reference Cichosz SL, Johansen MD, Knudsen ST, Hansen TK, Hejlesen O. A classification model for predicting eye disease in newly diagnosed people with type 2 diabetes. Diabetes Res Clin Practice. 2015;108(2):210–5.CrossRef Cichosz SL, Johansen MD, Knudsen ST, Hansen TK, Hejlesen O. A classification model for predicting eye disease in newly diagnosed people with type 2 diabetes. Diabetes Res Clin Practice. 2015;108(2):210–5.CrossRef
62.
go back to reference Mogilevskyy. Predicting the development of diabetic retinopathy based on identifcation of rs759853 and rs9640883 in the AKR1B1 gene. J Ophthalmol 2017;IV:477. Mogilevskyy. Predicting the development of diabetic retinopathy based on identifcation of rs759853 and rs9640883 in the AKR1B1 gene. J Ophthalmol 2017;IV:477.
63.
go back to reference Cichosz SL, Johansen MD, Hejlesen O. Toward big data analytics: review of predictive models in management of diabetes and its complications. J Diabetes Sci Technol. 2015;10(1):27–34.PubMedPubMedCentralCrossRef Cichosz SL, Johansen MD, Hejlesen O. Toward big data analytics: review of predictive models in management of diabetes and its complications. J Diabetes Sci Technol. 2015;10(1):27–34.PubMedPubMedCentralCrossRef
64.
go back to reference Ganjifrockwala FA, Joseph JT, George G. Evaluation of kidney function and risk factors of retinopathy in type 2 diabetes mellitus people in South Africa. Diabetes Res Clin Pract. 2017;127:218–23.PubMedCrossRef Ganjifrockwala FA, Joseph JT, George G. Evaluation of kidney function and risk factors of retinopathy in type 2 diabetes mellitus people in South Africa. Diabetes Res Clin Pract. 2017;127:218–23.PubMedCrossRef
65.
go back to reference Hu Y, Shi R, Mo R, Hu F. Nomogram for the prediction of diabetic nephropathy risk among patients with type 2 diabetes mellitus based on a questionnaire and biochemical indicators: a retrospective study. Aging (Albany NY). 2020;12(11):10317–36.PubMedPubMedCentralCrossRef Hu Y, Shi R, Mo R, Hu F. Nomogram for the prediction of diabetic nephropathy risk among patients with type 2 diabetes mellitus based on a questionnaire and biochemical indicators: a retrospective study. Aging (Albany NY). 2020;12(11):10317–36.PubMedPubMedCentralCrossRef
66.
go back to reference Jiang S, Fang J, Yu T, Liu L, Zou G, Gao H, et al. Novel model predicts diabetic nephropathy in type 2 diabetes. Am J Nephrol. 2020;51(2):130–8.PubMedCrossRef Jiang S, Fang J, Yu T, Liu L, Zou G, Gao H, et al. Novel model predicts diabetic nephropathy in type 2 diabetes. Am J Nephrol. 2020;51(2):130–8.PubMedCrossRef
67.
go back to reference Liao LN, Li TC, Li CI, Liu CS, Lin WY, Lin CH, et al. Genetic risk score for risk prediction of diabetic nephropathy in Han Chinese type 2 diabetes patients. Scientific Reports. 2019;9(1):19897.PubMedPubMedCentralCrossRef Liao LN, Li TC, Li CI, Liu CS, Lin WY, Lin CH, et al. Genetic risk score for risk prediction of diabetic nephropathy in Han Chinese type 2 diabetes patients. Scientific Reports. 2019;9(1):19897.PubMedPubMedCentralCrossRef
68.
go back to reference Peters KE, Davis WA, Ito J, Bringans SD, Lipscombe RJ, Davis TME. Validation of a protein biomarker test for predicting renal decline in type 2 diabetes: the Fremantle diabetes study phase II. J Diabetes Complications. 2019;33(12):107406.PubMedCrossRef Peters KE, Davis WA, Ito J, Bringans SD, Lipscombe RJ, Davis TME. Validation of a protein biomarker test for predicting renal decline in type 2 diabetes: the Fremantle diabetes study phase II. J Diabetes Complications. 2019;33(12):107406.PubMedCrossRef
69.
go back to reference Qian YS, Ming MF. Predicting the risk of chronic kidney disease among type 2 diabetes mellitus patients in a primary care setting: an evaluation of the qkidney model. Malays J Med Health Sci. 2019;15(3):67–73. Qian YS, Ming MF. Predicting the risk of chronic kidney disease among type 2 diabetes mellitus patients in a primary care setting: an evaluation of the qkidney model. Malays J Med Health Sci. 2019;15(3):67–73.
70.
go back to reference Rodriguez-Romero V, Bergstrom RF, Decker BS, Lahu G, Vakilynejad M, Bies RR. Prediction of nephropathy in type 2 diabetes: an analysis of the ACCORD trial applying machine learning techniques. Clin Transl Sci. 2019;12(5):519–28.PubMedPubMedCentralCrossRef Rodriguez-Romero V, Bergstrom RF, Decker BS, Lahu G, Vakilynejad M, Bies RR. Prediction of nephropathy in type 2 diabetes: an analysis of the ACCORD trial applying machine learning techniques. Clin Transl Sci. 2019;12(5):519–28.PubMedPubMedCentralCrossRef
71.
go back to reference Song X, Waitman LR, Hu Y, Yu ASL, Robbins DC, Liu M. Robust clinical marker identification for diabetic kidney disease with ensemble feature selection. J Am Med Informatics Assoc. 2019;26(3):242–53.CrossRef Song X, Waitman LR, Hu Y, Yu ASL, Robbins DC, Liu M. Robust clinical marker identification for diabetic kidney disease with ensemble feature selection. J Am Med Informatics Assoc. 2019;26(3):242–53.CrossRef
72.
go back to reference Wysham CH, Gauthier-Loiselle M, Bailey RA, Manceur AM, Lefebvre P, Greenberg M, et al. Development of risk models for major adverse chronic renal outcomes among patients with type 2 diabetes mellitus using insurance claims: a retrospective observational study. Curr Med Res Opin. 2020;36(2):219–27.PubMedCrossRef Wysham CH, Gauthier-Loiselle M, Bailey RA, Manceur AM, Lefebvre P, Greenberg M, et al. Development of risk models for major adverse chronic renal outcomes among patients with type 2 diabetes mellitus using insurance claims: a retrospective observational study. Curr Med Res Opin. 2020;36(2):219–27.PubMedCrossRef
73.
go back to reference Goldfarb-Rumyantzev AS, Pappas L. Prediction of renal insufficiency in Pima Indians with nephropathy of type 2 diabetes mellitus. Am J Kidney Dis. 2002;40(2):252–64.PubMedCrossRef Goldfarb-Rumyantzev AS, Pappas L. Prediction of renal insufficiency in Pima Indians with nephropathy of type 2 diabetes mellitus. Am J Kidney Dis. 2002;40(2):252–64.PubMedCrossRef
74.
go back to reference Jardine MJ, Hata J, Woodward M, Perkovic V, Ninomiya T, Arima H, et al. Prediction of kidney-related outcomes in patients with type 2 diabetes. Am J Kidney Dis. 2012;60(5):770–8.PubMedCrossRef Jardine MJ, Hata J, Woodward M, Perkovic V, Ninomiya T, Arima H, et al. Prediction of kidney-related outcomes in patients with type 2 diabetes. Am J Kidney Dis. 2012;60(5):770–8.PubMedCrossRef
75.
go back to reference Jenks SJ, Conway BR, McLachlan S, Teoh WL, Williamson RM, Webb DJ, et al. Cardiovascular disease biomarkers are associated with declining renal function in type 2 diabetes. Diabetologia. 2017;60(8):1400–8.PubMedPubMedCentralCrossRef Jenks SJ, Conway BR, McLachlan S, Teoh WL, Williamson RM, Webb DJ, et al. Cardiovascular disease biomarkers are associated with declining renal function in type 2 diabetes. Diabetologia. 2017;60(8):1400–8.PubMedPubMedCentralCrossRef
76.
go back to reference Kim JH, Oh SY, Kim EH, Lee MJ, Jeon YK, Kim BH, et al. Addition of nonalbumin proteinuria to albuminuria improves prediction of type 2 diabetic nephropathy progression. Diabetol Metabolic Syndrome. 2017;9:68.CrossRef Kim JH, Oh SY, Kim EH, Lee MJ, Jeon YK, Kim BH, et al. Addition of nonalbumin proteinuria to albuminuria improves prediction of type 2 diabetic nephropathy progression. Diabetol Metabolic Syndrome. 2017;9:68.CrossRef
77.
go back to reference Lindhardt M, Persson F, Zurbig P, Stalmach A, Mischak H, de Zeeuw D, et al. Urinary proteomics predict onset of microalbuminuria in normoalbuminuric type 2 diabetic patients, a sub-study of the DIRECT-Protect 2 study. Nephrol Dialysis Transplantation. 2017;32(11):1866–73. Lindhardt M, Persson F, Zurbig P, Stalmach A, Mischak H, de Zeeuw D, et al. Urinary proteomics predict onset of microalbuminuria in normoalbuminuric type 2 diabetic patients, a sub-study of the DIRECT-Protect 2 study. Nephrol Dialysis Transplantation. 2017;32(11):1866–73.
78.
go back to reference Low S, Lim SC, Zhang X, Zhou S, Yeoh LY, Liu YL, et al. Development and validation of a predictive model for chronic kidney disease progression in type 2 diabetes mellitus based on a 13-year study in Singapore. Diabetes Res Clin Pract. 2017;123:49–54.PubMedCrossRef Low S, Lim SC, Zhang X, Zhou S, Yeoh LY, Liu YL, et al. Development and validation of a predictive model for chronic kidney disease progression in type 2 diabetes mellitus based on a 13-year study in Singapore. Diabetes Res Clin Pract. 2017;123:49–54.PubMedCrossRef
79.
go back to reference Peters KE, Davis WA, Ito J, Winfield K, Stoll T, Bringans SD, et al. Identification of novel circulating biomarkers predicting rapid decline in renal function in type 2 diabetes: the Fremantle diabetes study phase II. Diabetes Care. 2017;40(11):1548–55.PubMedCrossRef Peters KE, Davis WA, Ito J, Winfield K, Stoll T, Bringans SD, et al. Identification of novel circulating biomarkers predicting rapid decline in renal function in type 2 diabetes: the Fremantle diabetes study phase II. Diabetes Care. 2017;40(11):1548–55.PubMedCrossRef
80.
go back to reference Riphagen IJ, Kleefstra N, Drion I, Alkhalaf A, van Diepen M, Cao Q, et al. Comparison of methods for renal risk prediction in patients with type 2 diabetes (ZODIAC-36). PLoS One. 2015;10(3):e0120477.PubMedPubMedCentralCrossRef Riphagen IJ, Kleefstra N, Drion I, Alkhalaf A, van Diepen M, Cao Q, et al. Comparison of methods for renal risk prediction in patients with type 2 diabetes (ZODIAC-36). PLoS One. 2015;10(3):e0120477.PubMedPubMedCentralCrossRef
81.
go back to reference Saulnier PJ, Gand E, Velho G, Mohammedi K, Zaoui P, Fraty M, et al. Association of circulating biomarkers (adrenomedullin, TNFR1, and NT-proBNP) with renal function decline in patients with type 2 diabetes: a French prospective cohort. Diabetes Care. 2017;40(3):367–74.PubMedCrossRef Saulnier PJ, Gand E, Velho G, Mohammedi K, Zaoui P, Fraty M, et al. Association of circulating biomarkers (adrenomedullin, TNFR1, and NT-proBNP) with renal function decline in patients with type 2 diabetes: a French prospective cohort. Diabetes Care. 2017;40(3):367–74.PubMedCrossRef
82.
go back to reference Yang JK, Wang YY, Liu C, Shi TT, Lu J, Cao X, et al. Urine proteome specific for eye damage can predict kidney damage in patients with type 2 diabetes: a case-control and a 5.3-year prospective cohort study. Diabetes care. 2017;40(2):253–60.PubMedCrossRef Yang JK, Wang YY, Liu C, Shi TT, Lu J, Cao X, et al. Urine proteome specific for eye damage can predict kidney damage in patients with type 2 diabetes: a case-control and a 5.3-year prospective cohort study. Diabetes care. 2017;40(2):253–60.PubMedCrossRef
83.
go back to reference Zobel EH, von Scholten BJ, Reinhard H, Persson F, Teerlink T, Hansen TW, et al. Symmetric and asymmetric dimethylarginine as risk markers of cardiovascular disease, all-cause mortality and deterioration in kidney function in persons with type 2 diabetes and microalbuminuria. Cardiovasc Diabetol. 2017;16(1):88.PubMedPubMedCentralCrossRef Zobel EH, von Scholten BJ, Reinhard H, Persson F, Teerlink T, Hansen TW, et al. Symmetric and asymmetric dimethylarginine as risk markers of cardiovascular disease, all-cause mortality and deterioration in kidney function in persons with type 2 diabetes and microalbuminuria. Cardiovasc Diabetol. 2017;16(1):88.PubMedPubMedCentralCrossRef
84.
go back to reference Lin CC, Li CI, Liu CS, Lin WY, Lin CH, Yang SY, et al. Development and validation of a risk prediction model for end-stage renal disease in patients with type 2 diabetes. Sci Rep. 2017;7(1):10177.PubMedPubMedCentralCrossRef Lin CC, Li CI, Liu CS, Lin WY, Lin CH, Yang SY, et al. Development and validation of a risk prediction model for end-stage renal disease in patients with type 2 diabetes. Sci Rep. 2017;7(1):10177.PubMedPubMedCentralCrossRef
85.
go back to reference Yang XL, So WY, Kong AP, Clarke P, Ho CS, Lam CW, et al. End-stage renal disease risk equations for Hong Kong Chinese patients with type 2 diabetes: Hong Kong Diabetes Registry. Diabetologia. 2006;49(10):2299–308.PubMedCrossRef Yang XL, So WY, Kong AP, Clarke P, Ho CS, Lam CW, et al. End-stage renal disease risk equations for Hong Kong Chinese patients with type 2 diabetes: Hong Kong Diabetes Registry. Diabetologia. 2006;49(10):2299–308.PubMedCrossRef
86.
go back to reference Foster MC, Inker LA, Hsu CY, Eckfeldt JH, Levey AS, Pavkov ME, et al. Filtration markers as predictors of ESRD and mortality in Southwestern American Indians with type 2 diabetes. Am J Kidney Dis. 2015;66(1):75–83.PubMedPubMedCentralCrossRef Foster MC, Inker LA, Hsu CY, Eckfeldt JH, Levey AS, Pavkov ME, et al. Filtration markers as predictors of ESRD and mortality in Southwestern American Indians with type 2 diabetes. Am J Kidney Dis. 2015;66(1):75–83.PubMedPubMedCentralCrossRef
87.
go back to reference Fufaa GD, Weil EJ, Nelson RG, Hanson RL, Bonventre JV, Sabbisetti V, et al. Association of urinary KIM-1, L-FABP, NAG and NGAL with incident end-stage renal disease and mortality in American Indians with type 2 diabetes mellitus. Diabetologia. 2015;58(1):188–98.PubMedCrossRef Fufaa GD, Weil EJ, Nelson RG, Hanson RL, Bonventre JV, Sabbisetti V, et al. Association of urinary KIM-1, L-FABP, NAG and NGAL with incident end-stage renal disease and mortality in American Indians with type 2 diabetes mellitus. Diabetologia. 2015;58(1):188–98.PubMedCrossRef
88.
go back to reference Lambers Heerspink HJ, Gansevoort RT, Brenner BM, Cooper ME, Parving HH, Shahinfar S, et al. Comparison of different measures of urinary protein excretion for prediction of renal events. J Am Soc Nephrol. 2010;21(8):1355–60.PubMedPubMedCentralCrossRef Lambers Heerspink HJ, Gansevoort RT, Brenner BM, Cooper ME, Parving HH, Shahinfar S, et al. Comparison of different measures of urinary protein excretion for prediction of renal events. J Am Soc Nephrol. 2010;21(8):1355–60.PubMedPubMedCentralCrossRef
89.
go back to reference Mise K, Hoshino J, Ueno T, Hazue R, Hasegawa J, Sekine A, et al. Prognostic value of tubulointerstitial lesions, urinary N-acetyl-beta-d-glucosaminidase, and urinary beta2-microglobulin in patients with type 2 diabetes and biopsy-proven diabetic nephropathy. Clin J Am Soc Nephrol. 2016;11(4):593–601.PubMedPubMedCentralCrossRef Mise K, Hoshino J, Ueno T, Hazue R, Hasegawa J, Sekine A, et al. Prognostic value of tubulointerstitial lesions, urinary N-acetyl-beta-d-glucosaminidase, and urinary beta2-microglobulin in patients with type 2 diabetes and biopsy-proven diabetic nephropathy. Clin J Am Soc Nephrol. 2016;11(4):593–601.PubMedPubMedCentralCrossRef
90.
go back to reference Mise K, Yamaguchi Y, Hoshino J, Ueno T, Sekine A, Sumida K, et al. Paratubular basement membrane insudative lesions predict renal prognosis in patients with type 2 diabetes and biopsy-proven diabetic nephropathy. PLoS One. 2017;12(8):e0183190.PubMedPubMedCentralCrossRef Mise K, Yamaguchi Y, Hoshino J, Ueno T, Sekine A, Sumida K, et al. Paratubular basement membrane insudative lesions predict renal prognosis in patients with type 2 diabetes and biopsy-proven diabetic nephropathy. PLoS One. 2017;12(8):e0183190.PubMedPubMedCentralCrossRef
91.
go back to reference Niewczas MA, Gohda T, Skupien J, Smiles AM, Walker WH, Rosetti F, et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J Am Soc Nephrol. 2012;23(3):507–15.PubMedPubMedCentralCrossRef Niewczas MA, Gohda T, Skupien J, Smiles AM, Walker WH, Rosetti F, et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J Am Soc Nephrol. 2012;23(3):507–15.PubMedPubMedCentralCrossRef
92.
go back to reference Pavkov ME, Knowler WC, Hanson RL, Williams DE, Lemley KV, Myers BD, et al. Comparison of serum cystatin C, serum creatinine, measured GFR, and estimated GFR to assess the risk of kidney failure in American Indians with diabetic nephropathy. Am J Kidney Dis. 2013;62(1):33–41.PubMedPubMedCentralCrossRef Pavkov ME, Knowler WC, Hanson RL, Williams DE, Lemley KV, Myers BD, et al. Comparison of serum cystatin C, serum creatinine, measured GFR, and estimated GFR to assess the risk of kidney failure in American Indians with diabetic nephropathy. Am J Kidney Dis. 2013;62(1):33–41.PubMedPubMedCentralCrossRef
93.
go back to reference Keane WF, Zhang Z, Lyle PA, Cooper ME, de Zeeuw D, Grunfeld JP, et al. Risk scores for predicting outcomes in patients with type 2 diabetes and nephropathy: the RENAAL study. Clin J Am Soc Nephrol. 2006;1(4):761–7.PubMedCrossRef Keane WF, Zhang Z, Lyle PA, Cooper ME, de Zeeuw D, Grunfeld JP, et al. Risk scores for predicting outcomes in patients with type 2 diabetes and nephropathy: the RENAAL study. Clin J Am Soc Nephrol. 2006;1(4):761–7.PubMedCrossRef
94.
go back to reference Sullivan LM, Massaro JM, D’Agostino RB Sr. Presentation of multivariate data for clinical use: the Framingham Study risk score functions. Stat Med. 2004;23(10):1631–60.PubMedCrossRef Sullivan LM, Massaro JM, D’Agostino RB Sr. Presentation of multivariate data for clinical use: the Framingham Study risk score functions. Stat Med. 2004;23(10):1631–60.PubMedCrossRef
95.
go back to reference Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux PJ, et al. Discrimination and calibration of clinical prediction models: users’ guides to the medical literature. JAMA. 2017;318(14):1377–84.PubMedCrossRef Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux PJ, et al. Discrimination and calibration of clinical prediction models: users’ guides to the medical literature. JAMA. 2017;318(14):1377–84.PubMedCrossRef
96.
go back to reference Moons KG, Kengne AP, Woodward M, Royston P, Vergouwe Y, Altman DG, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart. 2012;98(9):683–90.PubMedCrossRef Moons KG, Kengne AP, Woodward M, Royston P, Vergouwe Y, Altman DG, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart. 2012;98(9):683–90.PubMedCrossRef
97.
go back to reference Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Bmj. 2015;350:g7594.PubMedCrossRef Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Bmj. 2015;350:g7594.PubMedCrossRef
98.
go back to reference Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts. BMC Med Res Methodol. 2017;17(1):162.PubMedPubMedCentralCrossRef Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts. BMC Med Res Methodol. 2017;17(1):162.PubMedPubMedCentralCrossRef
99.
go back to reference Lagakos SW. Effects of mismodelling and mismeasuring explanatory variables on tests of their association with a response variable. Stat Med. 1988;7(1-2):257–74.PubMedCrossRef Lagakos SW. Effects of mismodelling and mismeasuring explanatory variables on tests of their association with a response variable. Stat Med. 1988;7(1-2):257–74.PubMedCrossRef
100.
go back to reference Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006;25(1):127–41.PubMedCrossRef Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006;25(1):127–41.PubMedCrossRef
102.
go back to reference Núñez E, Steyerberg EW, Núñez J. Regression modeling strategies. Revista Española de Cardiología (English Edition). 2011;64(6):501–7.CrossRef Núñez E, Steyerberg EW, Núñez J. Regression modeling strategies. Revista Española de Cardiología (English Edition). 2011;64(6):501–7.CrossRef
103.
go back to reference Concato J, Peduzzi P, Holford TR, Feinstein AR. Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy. J Clin Epidemiol. 1995;48(12):1495–501.PubMedCrossRef Concato J, Peduzzi P, Holford TR, Feinstein AR. Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy. J Clin Epidemiol. 1995;48(12):1495–501.PubMedCrossRef
104.
go back to reference Luo W, Phung D, Tran T, Gupta S, Rana S, Karmakar C, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res. 2016;18(12):e323.PubMedPubMedCentralCrossRef Luo W, Phung D, Tran T, Gupta S, Rana S, Karmakar C, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res. 2016;18(12):e323.PubMedPubMedCentralCrossRef
105.
go back to reference Stevens LM, Mortazavi BJ, Deo RC, Curtis L, Kao DP. Recommendations for reporting machine learning analyses in clinical research. Circ Cardiovasc Qual Outcomes. 2020;13(10):e006556.PubMedPubMedCentralCrossRef Stevens LM, Mortazavi BJ, Deo RC, Curtis L, Kao DP. Recommendations for reporting machine learning analyses in clinical research. Circ Cardiovasc Qual Outcomes. 2020;13(10):e006556.PubMedPubMedCentralCrossRef
Metadata
Title
Prognostic models of diabetic microvascular complications: a systematic review and meta-analysis
Authors
Sigit Ari Saputro
Oraluck Pattanaprateep
Anuchate Pattanateepapon
Swekshya Karmacharya
Ammarin Thakkinstian
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2021
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-021-01841-z

Other articles of this Issue 1/2021

Systematic Reviews 1/2021 Go to the issue