Skip to main content
Top
Published in: Diabetologia 10/2011

01-10-2011 | Article

Individual risk assessment and information technology to optimise screening frequency for diabetic retinopathy

Authors: T. Aspelund, Ó. Þórisdóttir, E. Ólafsdottir, A. Gudmundsdottir, A. B. Einarsdóttir, J. Mehlsen, S. Einarsson, Ó. Pálsson, G. Einarsson, T. Bek, E. Stefánsson

Published in: Diabetologia | Issue 10/2011

Login to get access

Abstract

Aims/hypothesis

The aim of this study was to reduce the frequency of diabetic eye-screening visits, while maintaining safety, by using information technology and individualised risk assessment to determine screening intervals.

Methods

A mathematical algorithm was created based on epidemiological data on risk factors for diabetic retinopathy. Through a website, www.​risk.​is, the algorithm receives clinical data, including type and duration of diabetes, HbA1c or mean blood glucose, blood pressure and the presence and grade of retinopathy. These data are used to calculate risk for sight-threatening retinopathy for each individual’s worse eye over time. A risk margin is defined and the algorithm recommends the screening interval for each patient with standardised risk of developing sight-threatening retinopathy (STR) within the screening interval. We set the risk margin so that the same number of patients develop STR within the screening interval with either fixed annual screening or our individualised screening system. The database for diabetic retinopathy at the Department of Ophthalmology, Aarhus University Hospital, Denmark, was used to empirically test the efficacy of the algorithm. Clinical data exist for 5,199 patients for 20 years and this allows testing of the algorithm in a prospective manner.

Results

In the Danish diabetes database, the algorithm recommends screening intervals ranging from 6 to 60 months with a mean of 29 months. This is 59% fewer visits than with fixed annual screening. This amounts to 41 annual visits per 100 patients.

Conclusion

Information technology based on epidemiological data may facilitate individualised determination of screening intervals for diabetic eye disease. Empirical testing suggests that this approach may be less expensive than conventional annual screening, while not compromising safety. The algorithm determines individual risk and the screening interval is individually determined based on each person’s risk profile. The algorithm has potential to save on healthcare resources and patients’ working hours by reducing the number of screening visits for an ever increasing number of diabetic patients in the world.
Appendix
Available only for authorised users
Literature
1.
go back to reference Javitt JC, Aiello LP, Chiang Y, Ferris FL 3rd, Canner JK, Greenfield S (1994) Preventive eye care in people with diabetes is cost-saving to the federal government. Implications for health-care reform. Diabetes Care 17:909–917PubMed Javitt JC, Aiello LP, Chiang Y, Ferris FL 3rd, Canner JK, Greenfield S (1994) Preventive eye care in people with diabetes is cost-saving to the federal government. Implications for health-care reform. Diabetes Care 17:909–917PubMed
2.
go back to reference Stefansson E, Bek T, Porta M, Larsen N, Kristinsson JK, Agardh E (2000) Screening and prevention of diabetic blindness. Acta Ophthalmol Scand 78:374–385PubMed Stefansson E, Bek T, Porta M, Larsen N, Kristinsson JK, Agardh E (2000) Screening and prevention of diabetic blindness. Acta Ophthalmol Scand 78:374–385PubMed
3.
go back to reference Tung TH, Shih HC, Chen SJ, Chou P, Liu CM, Liu JH (2008) Economic evaluation of screening for diabetic retinopathy among Chinese type 2 diabetics: a community-based study in Kinmen, Taiwan. J Epidemiol 18:225–233PubMed Tung TH, Shih HC, Chen SJ, Chou P, Liu CM, Liu JH (2008) Economic evaluation of screening for diabetic retinopathy among Chinese type 2 diabetics: a community-based study in Kinmen, Taiwan. J Epidemiol 18:225–233PubMed
4.
go back to reference Backlund LB, Algvere PV, Rosenqvist U (1997) New blindness in diabetes reduced by more than one-third in Stockholm County. Diabet Med 14:732–740PubMed Backlund LB, Algvere PV, Rosenqvist U (1997) New blindness in diabetes reduced by more than one-third in Stockholm County. Diabet Med 14:732–740PubMed
5.
go back to reference Piwernetz K, Home PD, Snorgaard O, Antsiferov M, Staehr-Johansen K, Krans M (1993) Monitoring the targets of the St Vincent Declaration and the implementation of quality management in diabetes care: the DIABCARE initiative. The DIABCARE Monitoring Group of the St Vincent Declaration Steering Committee. Diabet Med 10:371–377PubMed Piwernetz K, Home PD, Snorgaard O, Antsiferov M, Staehr-Johansen K, Krans M (1993) Monitoring the targets of the St Vincent Declaration and the implementation of quality management in diabetes care: the DIABCARE initiative. The DIABCARE Monitoring Group of the St Vincent Declaration Steering Committee. Diabet Med 10:371–377PubMed
6.
go back to reference Scanlon PH (2008) The English national screening programme for sight-threatening diabetic retinopathy. J Med Screen 15:1–4PubMed Scanlon PH (2008) The English national screening programme for sight-threatening diabetic retinopathy. J Med Screen 15:1–4PubMed
7.
go back to reference Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053PubMed Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053PubMed
8.
go back to reference Dasbach EJ, Fryback DG, Newcomb PA, Klein R, Klein BE (1991) Cost effectiveness strategies for detecting diabetic retinopathy. Med Care 29(1):20–39PubMed Dasbach EJ, Fryback DG, Newcomb PA, Klein R, Klein BE (1991) Cost effectiveness strategies for detecting diabetic retinopathy. Med Care 29(1):20–39PubMed
9.
go back to reference Kalm H, Jonsson R (1993) Diabetic retinopathy screening. University of Gothenburg, Gothenburg Kalm H, Jonsson R (1993) Diabetic retinopathy screening. University of Gothenburg, Gothenburg
10.
go back to reference Kristinsson JK, Gudmundsson JR, Stefansson E, Jonasson F, Gislason I, Thorsson AV (1995) Screening for diabetic retinopathy. Initiation and frequency. Acta Ophthalmol Scand 73:525–528PubMed Kristinsson JK, Gudmundsson JR, Stefansson E, Jonasson F, Gislason I, Thorsson AV (1995) Screening for diabetic retinopathy. Initiation and frequency. Acta Ophthalmol Scand 73:525–528PubMed
11.
go back to reference Olafsdottir E, Stefansson E (2007) Biennial eye screening in patients with diabetes without retinopathy: 10-year experience. Br J Ophthalmol 91:1599–1601PubMed Olafsdottir E, Stefansson E (2007) Biennial eye screening in patients with diabetes without retinopathy: 10-year experience. Br J Ophthalmol 91:1599–1601PubMed
12.
go back to reference UK Prospective Diabetes Study Group (1998) Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 317:703–713 UK Prospective Diabetes Study Group (1998) Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 317:703–713
13.
go back to reference UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853 UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853
14.
go back to reference Klein R, Klein BE, Moss SE, Cruickshanks KJ (1998) The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XVII. The 14-year incidence and progression of diabetic retinopathy and associated risk factors in type 1 diabetes. Ophthalmology 105:1801–1815PubMed Klein R, Klein BE, Moss SE, Cruickshanks KJ (1998) The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XVII. The 14-year incidence and progression of diabetic retinopathy and associated risk factors in type 1 diabetes. Ophthalmology 105:1801–1815PubMed
15.
go back to reference Kohner EM, Stratton IM, Aldington SJ, Holman RR, Matthews DR (2001) Relationship between the severity of retinopathy and progression to photocoagulation in patients with type 2 diabetes mellitus in the UKPDS (UKPDS 52). Diabet Med 18:178–184PubMed Kohner EM, Stratton IM, Aldington SJ, Holman RR, Matthews DR (2001) Relationship between the severity of retinopathy and progression to photocoagulation in patients with type 2 diabetes mellitus in the UKPDS (UKPDS 52). Diabet Med 18:178–184PubMed
16.
go back to reference Stratton IM, Kohner EM, Aldington SJ et al (2001) UKPDS 50: risk factors for incidence and progression of retinopathy in type II diabetes over 6 years from diagnosis. Diabetologia 44:156–163PubMed Stratton IM, Kohner EM, Aldington SJ et al (2001) UKPDS 50: risk factors for incidence and progression of retinopathy in type II diabetes over 6 years from diagnosis. Diabetologia 44:156–163PubMed
17.
go back to reference Prospective UK (1991) Diabetes study (UKPDS). VIII. Study design, progress and performance. Diabetologia 34:877–890 Prospective UK (1991) Diabetes study (UKPDS). VIII. Study design, progress and performance. Diabetologia 34:877–890
18.
go back to reference Kristinsson JK (1997) Diabetic retinopathy. Screening and prevention of blindness. A doctoral thesis. Acta Ophthalmol Scand Suppl 223:1–76PubMed Kristinsson JK (1997) Diabetic retinopathy. Screening and prevention of blindness. A doctoral thesis. Acta Ophthalmol Scand Suppl 223:1–76PubMed
19.
go back to reference Kristinsson JK, Hauksdottir H, Stefansson E, Jonasson F, Gislason I (1997) Active prevention in diabetic eye disease. A 4-year follow-up. Acta Ophthalmol Scand 75:249–254PubMed Kristinsson JK, Hauksdottir H, Stefansson E, Jonasson F, Gislason I (1997) Active prevention in diabetic eye disease. A 4-year follow-up. Acta Ophthalmol Scand 75:249–254PubMed
20.
go back to reference Kristinsson JK, Stefansson E, Jonasson F, Gislason I, Bjornsson S (1994) Screening for eye disease in type 2 diabetes mellitus. Acta Ophthalmol (Copenh) 72:341–346 Kristinsson JK, Stefansson E, Jonasson F, Gislason I, Bjornsson S (1994) Screening for eye disease in type 2 diabetes mellitus. Acta Ophthalmol (Copenh) 72:341–346
21.
go back to reference Kristinsson JK, Stefansson E, Jonasson F, Gislason I, Bjornsson S (1994) Systematic screening for diabetic eye disease in insulin dependent diabetes. Acta Ophthalmol (Copenh) 72:72–78 Kristinsson JK, Stefansson E, Jonasson F, Gislason I, Bjornsson S (1994) Systematic screening for diabetic eye disease in insulin dependent diabetes. Acta Ophthalmol (Copenh) 72:72–78
22.
go back to reference Conroy RM, Pyörälä K et al (2002) Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 24:987–1003 Conroy RM, Pyörälä K et al (2002) Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 24:987–1003
23.
26.
go back to reference Zoega GM, Gunnarsdottir T, Bjornsdottir S, Hreietharsson AB, Viggosson G, Stefansson E (2005) Screening compliance and visual outcome in diabetes. Acta Ophthalmol Scand 83:687–690PubMed Zoega GM, Gunnarsdottir T, Bjornsdottir S, Hreietharsson AB, Viggosson G, Stefansson E (2005) Screening compliance and visual outcome in diabetes. Acta Ophthalmol Scand 83:687–690PubMed
27.
go back to reference Hansson-Lundblad C, Holm K, Agardh CD, Agardh E (2002) A small number of older type 2 diabetic patients end up visually impaired despite regular photographic screening and laser treatment for diabetic retinopathy. Acta Ophthalmol Scand 80:310–315PubMed Hansson-Lundblad C, Holm K, Agardh CD, Agardh E (2002) A small number of older type 2 diabetic patients end up visually impaired despite regular photographic screening and laser treatment for diabetic retinopathy. Acta Ophthalmol Scand 80:310–315PubMed
28.
go back to reference Henricsson M, Tyrberg M, Heijl A, Janzon L (1996) Incidence of blindness and visual impairment in diabetic patients participating in an ophthalmological control and screening programme. Acta Ophthalmol Scand 74:533–538PubMed Henricsson M, Tyrberg M, Heijl A, Janzon L (1996) Incidence of blindness and visual impairment in diabetic patients participating in an ophthalmological control and screening programme. Acta Ophthalmol Scand 74:533–538PubMed
29.
go back to reference Jeppesen P, Bek T (2004) The occurrence and causes of registered blindness in diabetes patients in Arhus County, Denmark. Acta Ophthalmol Scand 82:526–530PubMed Jeppesen P, Bek T (2004) The occurrence and causes of registered blindness in diabetes patients in Arhus County, Denmark. Acta Ophthalmol Scand 82:526–530PubMed
30.
go back to reference Klein R, Kelin BE, Moss SE (1993) Is gross proteinuria a risk factor for the incidence of proliferative diabetic retinopathy? Ophthalmology 100:1140–1146PubMed Klein R, Kelin BE, Moss SE (1993) Is gross proteinuria a risk factor for the incidence of proliferative diabetic retinopathy? Ophthalmology 100:1140–1146PubMed
31.
go back to reference Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787PubMed Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787PubMed
32.
go back to reference King H, Aubert RE, Herman WH (1998) Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21:1414–1431PubMed King H, Aubert RE, Herman WH (1998) Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21:1414–1431PubMed
33.
go back to reference Cook NR (2008) Statistical evaluation of prognostic vs diagnostic models: beyond the ROC curve. Clin Chem 54:17–23PubMed Cook NR (2008) Statistical evaluation of prognostic vs diagnostic models: beyond the ROC curve. Clin Chem 54:17–23PubMed
34.
go back to reference van Houwelingen HC (2000) Validation, calibration, revision and combination of prognostic survival models. Stat Med 19:3401–3415PubMed van Houwelingen HC (2000) Validation, calibration, revision and combination of prognostic survival models. Stat Med 19:3401–3415PubMed
Metadata
Title
Individual risk assessment and information technology to optimise screening frequency for diabetic retinopathy
Authors
T. Aspelund
Ó. Þórisdóttir
E. Ólafsdottir
A. Gudmundsdottir
A. B. Einarsdóttir
J. Mehlsen
S. Einarsson
Ó. Pálsson
G. Einarsson
T. Bek
E. Stefánsson
Publication date
01-10-2011
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 10/2011
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-011-2257-7

Other articles of this Issue 10/2011

Diabetologia 10/2011 Go to the issue