Skip to main content
Top
Published in: Reviews in Endocrine and Metabolic Disorders 2/2021

01-06-2021 | Diabetic Retinopathy

Circular RNAs: Novel target of diabetic retinopathy

Authors: Huan-ran Zhou, Hong-yu Kuang

Published in: Reviews in Endocrine and Metabolic Disorders | Issue 2/2021

Login to get access

Abstract

In diabetic patients, diabetic retinopathy (DR) is the leading cause of blindness and seriously affects the quality of life. However, current treatment methods of DR are not satisfactory. Advances have been made in understanding abnormal protein interactions and signaling pathways in DR pathology, but little is known about epigenetic regulation. Non-coding RNAs, such as circular RNAs (circRNAs), have been shown to be associated with DR. In this review, we summarized the function of circRNAs and indicated their roles in the pathogenesis of DR, which may provide new therapeutic targets for clinical treatment.
Literature
1.
2.
3.
go back to reference Yu J, et al. CircRNA-104718 acts as competing endogenous RNA and promotes hepatocellular carcinoma progression through microRNA-218-5p/TXNDC5 signaling pathway. Clin Sci (Lond). 2019;133(13):1487–503.CrossRef Yu J, et al. CircRNA-104718 acts as competing endogenous RNA and promotes hepatocellular carcinoma progression through microRNA-218-5p/TXNDC5 signaling pathway. Clin Sci (Lond). 2019;133(13):1487–503.CrossRef
4.
5.
6.
go back to reference Wang Z, et al. Identifying circRNA-associated-ceRNA networks in the hippocampus of Abeta1-42-induced Alzheimer’s disease-like rats using microarray analysis. Aging (Albany NY). 2018;10(4):775–88.CrossRef Wang Z, et al. Identifying circRNA-associated-ceRNA networks in the hippocampus of Abeta1-42-induced Alzheimer’s disease-like rats using microarray analysis. Aging (Albany NY). 2018;10(4):775–88.CrossRef
7.
go back to reference Zurawska A, Mycko MP, Selmaj KW. Circular RNAs as a novel layer of regulatory mechanism in multiple sclerosis. J Neuroimmunol. 2019;334:576971.PubMedCrossRef Zurawska A, Mycko MP, Selmaj KW. Circular RNAs as a novel layer of regulatory mechanism in multiple sclerosis. J Neuroimmunol. 2019;334:576971.PubMedCrossRef
9.
go back to reference He M, et al. Circular RNAs: Potential Star Molecules Involved in Diabetic Retinopathy. Curr Eye Res. 2021;46(3):277–83.PubMedCrossRef He M, et al. Circular RNAs: Potential Star Molecules Involved in Diabetic Retinopathy. Curr Eye Res. 2021;46(3):277–83.PubMedCrossRef
10.
go back to reference Hu W, et al. Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-beta1. J Cell Physiol. 2019;234(2):1469–76.PubMedCrossRef Hu W, et al. Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-beta1. J Cell Physiol. 2019;234(2):1469–76.PubMedCrossRef
11.
15.
go back to reference Flaxel CJ, et al. Diabetic Retinopathy Preferred Practice Pattern(R). Ophthalmology. 2020;127(1):P66–145.PubMedCrossRef Flaxel CJ, et al. Diabetic Retinopathy Preferred Practice Pattern(R). Ophthalmology. 2020;127(1):P66–145.PubMedCrossRef
16.
go back to reference Klein BE. Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol. 2007;14(4):179–83.PubMedCrossRef Klein BE. Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol. 2007;14(4):179–83.PubMedCrossRef
17.
go back to reference Simo R, Hernandez C. European Consortium for the Early Treatment of Diabetic, Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab. 2014;25(1): p. 23–33. Simo R, Hernandez C. European Consortium for the Early Treatment of Diabetic, Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab. 2014;25(1): p. 23–33.
18.
go back to reference Klein R, et al. "The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years". Arch Ophthalmol. 1984;102(4): p. 520–6. Klein R, et al. "The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years". Arch Ophthalmol. 1984;102(4): p. 520–6.
19.
go back to reference Xie X, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016;387(10017):435–43.PubMedCrossRef Xie X, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016;387(10017):435–43.PubMedCrossRef
20.
go back to reference White NH, et al. Prolonged effect of intensive therapy on the risk of retinopathy complications in patients with type 1 diabetes mellitus: 10 years after the Diabetes Control and Complications Trial. Arch Ophthalmol. 2008;126(12):1707–15.PubMedCrossRef White NH, et al. Prolonged effect of intensive therapy on the risk of retinopathy complications in patients with type 1 diabetes mellitus: 10 years after the Diabetes Control and Complications Trial. Arch Ophthalmol. 2008;126(12):1707–15.PubMedCrossRef
21.
go back to reference Wong TY, et al. Relation between fasting glucose and retinopathy for diagnosis of diabetes: three population-based cross-sectional studies. Lancet. 2008;371(9614):736–43.PubMedPubMedCentralCrossRef Wong TY, et al. Relation between fasting glucose and retinopathy for diagnosis of diabetes: three population-based cross-sectional studies. Lancet. 2008;371(9614):736–43.PubMedPubMedCentralCrossRef
22.
23.
go back to reference Li X, Yang L, Chen LL. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol Cell. 2018;71(3):428–42.PubMedCrossRef Li X, Yang L, Chen LL. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol Cell. 2018;71(3):428–42.PubMedCrossRef
24.
25.
go back to reference Li Z, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22(3):256–64.PubMedCrossRef Li Z, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22(3):256–64.PubMedCrossRef
27.
go back to reference Ebbesen KK, Hansen TB, Kjems J. Insights into circular RNA biology. RNA Biol. 2017;14(8):1035–45.PubMedCrossRef Ebbesen KK, Hansen TB, Kjems J. Insights into circular RNA biology. RNA Biol. 2017;14(8):1035–45.PubMedCrossRef
28.
30.
go back to reference Hansen TB, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8.PubMedCrossRef Hansen TB, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8.PubMedCrossRef
32.
go back to reference Ashwal-Fluss R, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55–66.PubMedCrossRef Ashwal-Fluss R, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55–66.PubMedCrossRef
33.
35.
go back to reference Legnini I, et al. "Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis". Mol Cell. 2017;66(1): p. 22–37 e9. Legnini I, et al. "Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis". Mol Cell. 2017;66(1): p. 22–37 e9.
36.
go back to reference Pamudurti NR, et al. Translation of CircRNAs. Mol Cell, 2017;66(1): p. 9–21 e7. Pamudurti NR, et al. Translation of CircRNAs. Mol Cell, 2017;66(1): p. 9–21 e7.
37.
go back to reference Hall IF, et al. Circ_Lrp6, a Circular RNA Enriched in Vascular Smooth Muscle Cells, Acts as a Sponge Regulating miRNA-145 Function. Circ Res. 2019;124(4):498–510.PubMedCrossRef Hall IF, et al. Circ_Lrp6, a Circular RNA Enriched in Vascular Smooth Muscle Cells, Acts as a Sponge Regulating miRNA-145 Function. Circ Res. 2019;124(4):498–510.PubMedCrossRef
39.
go back to reference Zhang X, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 2019;18(1):20.PubMedPubMedCentralCrossRef Zhang X, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 2019;18(1):20.PubMedPubMedCentralCrossRef
42.
go back to reference Conn VM, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants. 2017;3:17053.PubMedCrossRef Conn VM, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants. 2017;3:17053.PubMedCrossRef
43.
go back to reference Du WW, et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44(6):2846–58.PubMedPubMedCentralCrossRef Du WW, et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44(6):2846–58.PubMedPubMedCentralCrossRef
44.
go back to reference Chen N, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 2018;19(1):218.PubMedPubMedCentralCrossRef Chen N, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 2018;19(1):218.PubMedPubMedCentralCrossRef
45.
go back to reference Kovacs B, et al. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci. 2011;52(7):4402–9.PubMedCrossRef Kovacs B, et al. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci. 2011;52(7):4402–9.PubMedCrossRef
46.
go back to reference Wang X, et al. microRNA-20b contributes to high glucose-induced podocyte apoptosis by targeting SIRT7. Mol Med Rep. 2017;16(4):5667–74.PubMedCrossRef Wang X, et al. microRNA-20b contributes to high glucose-induced podocyte apoptosis by targeting SIRT7. Mol Med Rep. 2017;16(4):5667–74.PubMedCrossRef
47.
go back to reference Zhu K, et al. Downregulation of circRNA DMNT3B contributes to diabetic retinal vascular dysfunction through targeting miR-20b-5p and BAMBI. EBioMedicine. 2019;49:341–53.PubMedPubMedCentralCrossRef Zhu K, et al. Downregulation of circRNA DMNT3B contributes to diabetic retinal vascular dysfunction through targeting miR-20b-5p and BAMBI. EBioMedicine. 2019;49:341–53.PubMedPubMedCentralCrossRef
48.
go back to reference Guillot N, et al. BAMBI regulates angiogenesis and endothelial homeostasis through modulation of alternative TGFbeta signaling. PLoS One. 2012;7(6):e39406.PubMedPubMedCentralCrossRef Guillot N, et al. BAMBI regulates angiogenesis and endothelial homeostasis through modulation of alternative TGFbeta signaling. PLoS One. 2012;7(6):e39406.PubMedPubMedCentralCrossRef
49.
go back to reference Boeckel JN, et al. Identification and characterization of hypoxia-regulated endothelial circular RNA. Circ Res. 2015;117(10):884–90.PubMedCrossRef Boeckel JN, et al. Identification and characterization of hypoxia-regulated endothelial circular RNA. Circ Res. 2015;117(10):884–90.PubMedCrossRef
52.
go back to reference Hamik A, Wang B, Jain MK. Transcriptional regulators of angiogenesis. Arterioscler Thromb Vasc Biol. 2006;26(9):1936–47.PubMedCrossRef Hamik A, Wang B, Jain MK. Transcriptional regulators of angiogenesis. Arterioscler Thromb Vasc Biol. 2006;26(9):1936–47.PubMedCrossRef
53.
go back to reference Shan K, et al. Circular Noncoding RNA HIPK3 Mediates Retinal Vascular Dysfunction in Diabetes Mellitus. Circulation. 2017;136(17):1629–42.PubMedCrossRef Shan K, et al. Circular Noncoding RNA HIPK3 Mediates Retinal Vascular Dysfunction in Diabetes Mellitus. Circulation. 2017;136(17):1629–42.PubMedCrossRef
54.
go back to reference Lee YH, et al. C-myb regulates autophagy for pulp vitality in glucose oxidative stress. J Dent Res. 2016;95(4):430–8.PubMedCrossRef Lee YH, et al. C-myb regulates autophagy for pulp vitality in glucose oxidative stress. J Dent Res. 2016;95(4):430–8.PubMedCrossRef
55.
go back to reference Liu YC, et al. CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res. 2016;44(D1):D209–15.PubMedCrossRef Liu YC, et al. CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res. 2016;44(D1):D209–15.PubMedCrossRef
56.
go back to reference Munoz-Chapuli R, Quesada AR, Angel MA. Angiogenesis and signal transduction in endothelial cells. Cell Mol Life Sci. 2004;61(17): p. 2224–43. Munoz-Chapuli R, Quesada AR, Angel MA. Angiogenesis and signal transduction in endothelial cells. Cell Mol Life Sci. 2004;61(17): p. 2224–43.
57.
go back to reference Robitaille J, et al. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nat Genet. 2002;32(2):326–30.PubMedCrossRef Robitaille J, et al. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nat Genet. 2002;32(2):326–30.PubMedCrossRef
58.
go back to reference Ao J, et al. Retinal pigment epithelium in the pathogenesis of age-related macular degeneration and photobiomodulation as a potential therapy? Clin Exp Ophthalmol. 2018;46(6):670–86.PubMedCrossRef Ao J, et al. Retinal pigment epithelium in the pathogenesis of age-related macular degeneration and photobiomodulation as a potential therapy? Clin Exp Ophthalmol. 2018;46(6):670–86.PubMedCrossRef
59.
go back to reference Chen Q, et al. Oxidative stress mediated by lipid metabolism contributes to high glucose-induced senescence in retinal pigment epithelium. Free Radic Biol Med. 2019;130:48–58.PubMedCrossRef Chen Q, et al. Oxidative stress mediated by lipid metabolism contributes to high glucose-induced senescence in retinal pigment epithelium. Free Radic Biol Med. 2019;130:48–58.PubMedCrossRef
60.
go back to reference Li Y, et al. circRNA_0084043 contributes to the progression of diabetic retinopathy via sponging miR-140-3p and inducing TGFA gene expression in retinal pigment epithelial cells. Gene. 2020;747:144653.PubMedCrossRef Li Y, et al. circRNA_0084043 contributes to the progression of diabetic retinopathy via sponging miR-140-3p and inducing TGFA gene expression in retinal pigment epithelial cells. Gene. 2020;747:144653.PubMedCrossRef
61.
go back to reference Collares CV, et al. Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. BMC Res Notes. 2013;6:491.PubMedPubMedCentralCrossRef Collares CV, et al. Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. BMC Res Notes. 2013;6:491.PubMedPubMedCentralCrossRef
62.
go back to reference Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97(6):512–23.PubMedCrossRef Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97(6):512–23.PubMedCrossRef
63.
go back to reference Liu C, et al. Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction. Proc Natl Acad Sci USA. 2019;116(15):7455–64.PubMedPubMedCentralCrossRef Liu C, et al. Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction. Proc Natl Acad Sci USA. 2019;116(15):7455–64.PubMedPubMedCentralCrossRef
65.
go back to reference Fiedler U, Augustin HG. Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol. 2006;27(12):552–8.PubMedCrossRef Fiedler U, Augustin HG. Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol. 2006;27(12):552–8.PubMedCrossRef
66.
go back to reference Murakami T, Felinski EA, Antonetti DA. Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. J Biol Chem. 2009;284(31):21036–46.PubMedPubMedCentralCrossRef Murakami T, Felinski EA, Antonetti DA. Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. J Biol Chem. 2009;284(31):21036–46.PubMedPubMedCentralCrossRef
68.
go back to reference Zhang SJ, et al. Identification and Characterization of Circular RNAs as a New Class of Putative Biomarkers in Diabetes Retinopathy. Invest Ophthalmol Vis Sci. 2017;58(14):6500–9.PubMedCrossRef Zhang SJ, et al. Identification and Characterization of Circular RNAs as a New Class of Putative Biomarkers in Diabetes Retinopathy. Invest Ophthalmol Vis Sci. 2017;58(14):6500–9.PubMedCrossRef
69.
go back to reference Zou J, et al. Circular RNA COL1A2 promotes angiogenesis via regulating miR-29b/VEGF axis in diabetic retinopathy. Life Sci. 2020;256:117888.PubMedCrossRef Zou J, et al. Circular RNA COL1A2 promotes angiogenesis via regulating miR-29b/VEGF axis in diabetic retinopathy. Life Sci. 2020;256:117888.PubMedCrossRef
70.
go back to reference Dantas da Costa e Silva ME, et al. Plasma levels of miR-29b and miR-200b in type 2 diabetic retinopathy. J Cell Mol Med. 2019;23(2): p. 1280–1287. Dantas da Costa e Silva ME, et al. Plasma levels of miR-29b and miR-200b in type 2 diabetic retinopathy. J Cell Mol Med. 2019;23(2): p. 1280–1287.
71.
go back to reference Bahr HI, et al. Duloxetine protects against experimental diabetic retinopathy in mice through retinal GFAP downregulation and modulation of neurotrophic factors. Exp Eye Res. 2019;186:107742.PubMedCrossRef Bahr HI, et al. Duloxetine protects against experimental diabetic retinopathy in mice through retinal GFAP downregulation and modulation of neurotrophic factors. Exp Eye Res. 2019;186:107742.PubMedCrossRef
72.
73.
go back to reference Jiang Q, et al. Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction. J Clin Invest. 2020;130(7):3833–47.PubMedPubMedCentralCrossRef Jiang Q, et al. Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction. J Clin Invest. 2020;130(7):3833–47.PubMedPubMedCentralCrossRef
74.
go back to reference Bischoff FC, et al. Identification and functional characterization of hypoxia-induced endoplasmic reticulum stress regulating lncRNA (HypERlnc) in pericytes. Circ Res. 2017;121(4):368–75.PubMedCrossRef Bischoff FC, et al. Identification and functional characterization of hypoxia-induced endoplasmic reticulum stress regulating lncRNA (HypERlnc) in pericytes. Circ Res. 2017;121(4):368–75.PubMedCrossRef
75.
go back to reference Pagano M, et al. Regulation of the cell cycle by the cdk2 protein kinase in cultured human fibroblasts. J Cell Biol. 1993;121(1):101–11.PubMedCrossRef Pagano M, et al. Regulation of the cell cycle by the cdk2 protein kinase in cultured human fibroblasts. J Cell Biol. 1993;121(1):101–11.PubMedCrossRef
76.
go back to reference Sun H, Kang X. hsa_circ_0041795 contributes to human retinal pigment epithelial cells (ARPE 19) injury induced by high glucose via sponging miR-646 and activating VEGFC. Gene. 2020;747:144654.PubMedCrossRef Sun H, Kang X. hsa_circ_0041795 contributes to human retinal pigment epithelial cells (ARPE 19) injury induced by high glucose via sponging miR-646 and activating VEGFC. Gene. 2020;747:144654.PubMedCrossRef
77.
78.
go back to reference Pan H, et al. Enhanced expression of circ_0000267 in hepatocellular carcinoma indicates poor prognosis and facilitates cell progression by sponging miR-646. J Cell Biochem. 2019. Pan H, et al. Enhanced expression of circ_0000267 in hepatocellular carcinoma indicates poor prognosis and facilitates cell progression by sponging miR-646. J Cell Biochem. 2019.
79.
go back to reference Liu G, et al. Inhibition of hsa_circ_0002570 suppresses high-glucose-induced angiogenesis and inflammation in retinal microvascular endothelial cells through miR-1243/angiomotin axis. Cell Stress Chaperon. 2020. Liu G, et al. Inhibition of hsa_circ_0002570 suppresses high-glucose-induced angiogenesis and inflammation in retinal microvascular endothelial cells through miR-1243/angiomotin axis. Cell Stress Chaperon. 2020.
80.
go back to reference Hiramoto H, et al. miR-509-5p and miR-1243 increase the sensitivity to gemcitabine by inhibiting epithelial-mesenchymal transition in pancreatic cancer. Sci Rep. 2017;7(1):4002.PubMedPubMedCentralCrossRef Hiramoto H, et al. miR-509-5p and miR-1243 increase the sensitivity to gemcitabine by inhibiting epithelial-mesenchymal transition in pancreatic cancer. Sci Rep. 2017;7(1):4002.PubMedPubMedCentralCrossRef
81.
go back to reference Taghavi Y, et al. Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: latest evidence and clinical considerations. J Cell Commun Signal. 2019;13(4):451–62.PubMedPubMedCentralCrossRef Taghavi Y, et al. Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: latest evidence and clinical considerations. J Cell Commun Signal. 2019;13(4):451–62.PubMedPubMedCentralCrossRef
82.
go back to reference Stępień, E, et al. The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases. Acta Pharmacol Sin. 2018;39(7): p. 1085–1099. Stępień, E, et al. The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases. Acta Pharmacol Sin. 2018;39(7): p. 1085–1099.
83.
go back to reference Wu Z, et al. Discovery and validation of hsa_circ_0001953 as a potential biomarker for proliferative diabetic retinopathy in human blood. Acta Ophthalmol. 2020. Wu Z, et al. Discovery and validation of hsa_circ_0001953 as a potential biomarker for proliferative diabetic retinopathy in human blood. Acta Ophthalmol. 2020.
Metadata
Title
Circular RNAs: Novel target of diabetic retinopathy
Authors
Huan-ran Zhou
Hong-yu Kuang
Publication date
01-06-2021
Publisher
Springer US
Published in
Reviews in Endocrine and Metabolic Disorders / Issue 2/2021
Print ISSN: 1389-9155
Electronic ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-021-09646-0

Other articles of this Issue 2/2021

Reviews in Endocrine and Metabolic Disorders 2/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.