Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Research

Danlou Recipe promotes cholesterol efflux in macrophages RAW264.7 and reverses cholesterol transport in mice with hyperlipidemia induced by P407

Authors: Wenrun Han, Dandan Zhang, Peng Zhang, Qianqian Tao, Xiaoli Du, Chunquan Yu, Pengzhi Dong, Yan Zhu

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Introduction

Liver X Receptor (LXR) agonists could attenuate the development of atherosclerosis but bring excess lipid accumulation in the liver. Danlou Recipe was believed to be a benefit for improving the lipid profile. Thus, it is unclear whether Danlou Recipe could attenuate hyperlipidemia without excess lipid accumulated in the liver of mice. This study aimed to clarify if Danlou Recipe could alleviate the progression of hyperlipidemia in mice without extra lipids accumulated in the liver.

Methods

Male murine macrophage RAW264.7 cells and murine peritoneal macrophages were used for the in vitro experiments. Cellular cholesterol efflux was determined using the fluorescent cholesterol labeling method. Those genes involved in lipid metabolism were evaluated by qRT‐PCR and western blotting respectively. In vivo, a mouse model of hyperlipidemia induced by P407 was used to figure out the effect of Danlou Recipe on reverse cholesterol transport (RCT) and hyperlipidemia. Ethanol extract of Danlou tablet (EEDL) was prepared by extracting the whole powder of Danlou Prescription from ethanol, and the chemical composition was analyzed by ultra-performance liquid chromatography (UPLC).

Results

EEDL inhibits the formation of RAW264.7 macrophage-derived foam cells, and promotes ABCA1/apoA1 conducted cholesterol efflux in RAW264.7 macrophages and mouse peritoneal macrophages. In the P407-induced hyperlipidemia mouse model, oral administration of EEDL can promote RCT in vivo and improve fatty liver induced by a high-fat diet. Consistent with the findings in vitro, EEDL promotes RCT by upregulating the LXR activities.

Conclusion

Our results demonstrate that EEDL has the potential for targeting RCT/LXR in the treatment of lipid metabolism disorders to be developed as a safe and effective therapy.
Literature
1.
go back to reference Guo S, Li L, Yin H. Cholesterol Homeostasis and Liver X Receptor (LXR) in Atherosclerosis. Cardiovasc Hematol Disord Drug Targets. 2018;18(1):27–33.PubMedCrossRef Guo S, Li L, Yin H. Cholesterol Homeostasis and Liver X Receptor (LXR) in Atherosclerosis. Cardiovasc Hematol Disord Drug Targets. 2018;18(1):27–33.PubMedCrossRef
2.
go back to reference Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl). 2017;95(11):1153–65.PubMedCrossRef Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl). 2017;95(11):1153–65.PubMedCrossRef
4.
go back to reference Francque S, Szabo G, Abdelmalek MF, Byrne CD, Cusi K, Dufour JF, Roden M, Sacks F, Tacke F. Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors. Nat Rev Gastroenterol Hepatol. 2021;18(1):24–39.PubMedCrossRef Francque S, Szabo G, Abdelmalek MF, Byrne CD, Cusi K, Dufour JF, Roden M, Sacks F, Tacke F. Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors. Nat Rev Gastroenterol Hepatol. 2021;18(1):24–39.PubMedCrossRef
5.
6.
go back to reference Han X, Cui ZY, Song J, Piao HQ, Lian LH, Hou LS, Wang G, Zheng S, Dong XX, Nan JX, et al. Acanthoic acid modulates lipogenesis in nonalcoholic fatty liver disease via FXR/LXRs-dependent manner. Chem Biol Interact. 2019;311:108794.PubMedCrossRef Han X, Cui ZY, Song J, Piao HQ, Lian LH, Hou LS, Wang G, Zheng S, Dong XX, Nan JX, et al. Acanthoic acid modulates lipogenesis in nonalcoholic fatty liver disease via FXR/LXRs-dependent manner. Chem Biol Interact. 2019;311:108794.PubMedCrossRef
7.
go back to reference Stols-Gonçalves D, Hovingh GK, Nieuwdorp M, Holleboom AG. NAFLD and Atherosclerosis: Two Sides of the Same Dysmetabolic Coin? Trends Endocrinol Metab. 2019;30(12):891–902.PubMedCrossRef Stols-Gonçalves D, Hovingh GK, Nieuwdorp M, Holleboom AG. NAFLD and Atherosclerosis: Two Sides of the Same Dysmetabolic Coin? Trends Endocrinol Metab. 2019;30(12):891–902.PubMedCrossRef
9.
go back to reference Becares N, Gage MC, Pineda-Torra I. Posttranslational modifications of lipid-activated nuclear receptors: focus on metabolism. Endocrinology. 2017;158(2):213–25.PubMedCrossRef Becares N, Gage MC, Pineda-Torra I. Posttranslational modifications of lipid-activated nuclear receptors: focus on metabolism. Endocrinology. 2017;158(2):213–25.PubMedCrossRef
10.
go back to reference Dixon ED, Nardo AD, Claudel T, Trauner M. The role of lipid sensing nuclear receptors (PPARs and LXR) and metabolic lipases in obesity, diabetes and NAFLD. Genes (Basel). 2021;12(5):645.PubMedCrossRef Dixon ED, Nardo AD, Claudel T, Trauner M. The role of lipid sensing nuclear receptors (PPARs and LXR) and metabolic lipases in obesity, diabetes and NAFLD. Genes (Basel). 2021;12(5):645.PubMedCrossRef
13.
go back to reference Glaria E, Letelier NA, Valledor AF. Integrating the roles of liver X receptors in inflammation and infection: mechanisms and outcomes. Curr Opin Pharmacol. 2020;53:55–65.PubMedCrossRef Glaria E, Letelier NA, Valledor AF. Integrating the roles of liver X receptors in inflammation and infection: mechanisms and outcomes. Curr Opin Pharmacol. 2020;53:55–65.PubMedCrossRef
14.
go back to reference Ni M, Zhang B, Zhao J, Feng Q, Peng J, Hu Y, Zhao Y. Biological mechanisms and related natural modulators of liver X receptor in nonalcoholic fatty liver disease. Biomed Pharmacother. 2019;113:108778.PubMedCrossRef Ni M, Zhang B, Zhao J, Feng Q, Peng J, Hu Y, Zhao Y. Biological mechanisms and related natural modulators of liver X receptor in nonalcoholic fatty liver disease. Biomed Pharmacother. 2019;113:108778.PubMedCrossRef
15.
go back to reference Gao S, Xue X, Yin J, Gao L, Li Z, Li L, Gao S, Wang S, Liang R, Xu Y, et al. Danlou tablet inhibits the inflammatory reaction of high-fat diet-induced atherosclerosis in ApoE knockout mice with myocardial ischemia via the NF-kappaB signaling pathway. J Ethnopharmacol. 2020;263:113158.PubMedCrossRef Gao S, Xue X, Yin J, Gao L, Li Z, Li L, Gao S, Wang S, Liang R, Xu Y, et al. Danlou tablet inhibits the inflammatory reaction of high-fat diet-induced atherosclerosis in ApoE knockout mice with myocardial ischemia via the NF-kappaB signaling pathway. J Ethnopharmacol. 2020;263:113158.PubMedCrossRef
16.
go back to reference Hao D, Danbin W, Maojuan G, Chun S, Bin L, Lin Y, Yingxin S, Guanwei F, Yefei C, Qing G, et al. Ethanol extracts of Danlou tablet attenuate atherosclerosis via inhibiting inflammation and promoting lipid effluent. Pharmacol Res. 2019;146:104306.PubMedCrossRef Hao D, Danbin W, Maojuan G, Chun S, Bin L, Lin Y, Yingxin S, Guanwei F, Yefei C, Qing G, et al. Ethanol extracts of Danlou tablet attenuate atherosclerosis via inhibiting inflammation and promoting lipid effluent. Pharmacol Res. 2019;146:104306.PubMedCrossRef
17.
go back to reference Ding M, Ma W, Wang X, Chen S, Zou S, Wei J, Yang Y, Li J, Yang X, Wang H, et al. A network pharmacology integrated pharmacokinetics strategy for uncovering pharmacological mechanism of compounds absorbed into the blood of Dan-Lou tablet on coronary heart disease. J Ethnopharmacol. 2019;242:112055.PubMedCrossRef Ding M, Ma W, Wang X, Chen S, Zou S, Wei J, Yang Y, Li J, Yang X, Wang H, et al. A network pharmacology integrated pharmacokinetics strategy for uncovering pharmacological mechanism of compounds absorbed into the blood of Dan-Lou tablet on coronary heart disease. J Ethnopharmacol. 2019;242:112055.PubMedCrossRef
18.
go back to reference Gao LN, Zhou X, Zhang Y, Cui YL, Yu CQ, Gao S. The anti-inflammatory activities of ethanol extract from Dan-Lou prescription in vivo and in vitro. BMC Complement Altern Med. 2015;15:317.PubMedPubMedCentralCrossRef Gao LN, Zhou X, Zhang Y, Cui YL, Yu CQ, Gao S. The anti-inflammatory activities of ethanol extract from Dan-Lou prescription in vivo and in vitro. BMC Complement Altern Med. 2015;15:317.PubMedPubMedCentralCrossRef
19.
go back to reference Ma C, Zhang W, Yang X, Liu Y, Liu L, Feng K, Zhang X, Yang S, Sun L, Yu M, et al. Functional interplay between liver X receptor and AMP-activated protein kinase alpha inhibits atherosclerosis in apolipoprotein E-deficient mice - a new anti-atherogenic strategy. Br J Pharmacol. 2018;175(9):1486–503.PubMedPubMedCentralCrossRef Ma C, Zhang W, Yang X, Liu Y, Liu L, Feng K, Zhang X, Yang S, Sun L, Yu M, et al. Functional interplay between liver X receptor and AMP-activated protein kinase alpha inhibits atherosclerosis in apolipoprotein E-deficient mice - a new anti-atherogenic strategy. Br J Pharmacol. 2018;175(9):1486–503.PubMedPubMedCentralCrossRef
20.
go back to reference Zhang L, Jiang M, Shui Y, Chen Y, Wang Q, Hu W, Ma X, Li X, Liu X, Cao X, et al. DNA topoisomerase II inhibitors induce macrophage ABCA1 expression and cholesterol efflux-an LXR-dependent mechanism. Biochim Biophys Acta. 2013;1831(6):1134–45.PubMedCrossRef Zhang L, Jiang M, Shui Y, Chen Y, Wang Q, Hu W, Ma X, Li X, Liu X, Cao X, et al. DNA topoisomerase II inhibitors induce macrophage ABCA1 expression and cholesterol efflux-an LXR-dependent mechanism. Biochim Biophys Acta. 2013;1831(6):1134–45.PubMedCrossRef
21.
go back to reference Korolenko TA, Johnston TP, Tuzikov FV, Tuzikova NA, Pupyshev AB, Spiridonov VK, Goncharova NV, Maiborodin IV, Zhukova NA. Early-stage atherosclerosis in poloxamer 407-induced hyperlipidemic mice: pathological features and changes in the lipid composition of serum lipoprotein fractions and subfractions. Lipids Health Dis. 2016;15:16.PubMedPubMedCentralCrossRef Korolenko TA, Johnston TP, Tuzikov FV, Tuzikova NA, Pupyshev AB, Spiridonov VK, Goncharova NV, Maiborodin IV, Zhukova NA. Early-stage atherosclerosis in poloxamer 407-induced hyperlipidemic mice: pathological features and changes in the lipid composition of serum lipoprotein fractions and subfractions. Lipids Health Dis. 2016;15:16.PubMedPubMedCentralCrossRef
22.
go back to reference Sankaranarayanan S, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Asztalos BF, Bittman R, Rothblat GH. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol. J Lipid Res. 2011;52(12):2332–40.PubMedPubMedCentralCrossRef Sankaranarayanan S, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Asztalos BF, Bittman R, Rothblat GH. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol. J Lipid Res. 2011;52(12):2332–40.PubMedPubMedCentralCrossRef
23.
go back to reference Ge Z, Zhang M, Deng X, Zhu W, Li K, Li C. Persimmon tannin promoted macrophage reverse cholesterol transport through inhibiting ERK1/2 and activating PPARγ both in vitro and in vivo. Journal of Functional Foods. 2017;38:338–48.CrossRef Ge Z, Zhang M, Deng X, Zhu W, Li K, Li C. Persimmon tannin promoted macrophage reverse cholesterol transport through inhibiting ERK1/2 and activating PPARγ both in vitro and in vivo. Journal of Functional Foods. 2017;38:338–48.CrossRef
24.
go back to reference Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang XC, Phillips MC, Rader DJ, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125(15):1905–19.PubMedPubMedCentralCrossRef Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang XC, Phillips MC, Rader DJ, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125(15):1905–19.PubMedPubMedCentralCrossRef
26.
go back to reference Hafiane A, Genest J. ATP binding cassette A1 (ABCA1) mediates microparticle formation during high-density lipoprotein (HDL) biogenesis. Atherosclerosis. 2017;257:90–9.PubMedCrossRef Hafiane A, Genest J. ATP binding cassette A1 (ABCA1) mediates microparticle formation during high-density lipoprotein (HDL) biogenesis. Atherosclerosis. 2017;257:90–9.PubMedCrossRef
28.
go back to reference Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res. 2019;73:65–91.PubMedCrossRef Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res. 2019;73:65–91.PubMedCrossRef
29.
go back to reference Westerterp M, Fotakis P, Ouimet M, Bochem AE, Zhang H, Molusky MM, Wang W, Abramowicz S, la Bastide-van GS, Wang N, et al. Cholesterol Efflux Pathways Suppress Inflammasome Activation, NETosis, and Atherogenesis. Circulation. 2018;138(9):898–912.PubMedPubMedCentralCrossRef Westerterp M, Fotakis P, Ouimet M, Bochem AE, Zhang H, Molusky MM, Wang W, Abramowicz S, la Bastide-van GS, Wang N, et al. Cholesterol Efflux Pathways Suppress Inflammasome Activation, NETosis, and Atherogenesis. Circulation. 2018;138(9):898–912.PubMedPubMedCentralCrossRef
30.
go back to reference Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul Pharmacol. 2019;112:54–71.PubMedCrossRef Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul Pharmacol. 2019;112:54–71.PubMedCrossRef
31.
go back to reference Bonamassa B, Moschetta A. Atherosclerosis: lessons from LXR and the intestine. Trends Endocrinol Metab. 2013;24(3):120–8.PubMedCrossRef Bonamassa B, Moschetta A. Atherosclerosis: lessons from LXR and the intestine. Trends Endocrinol Metab. 2013;24(3):120–8.PubMedCrossRef
33.
go back to reference Fessler MB. The challenges and promise of targeting the Liver X Receptors for treatment of inflammatory disease. Pharmacol Ther. 2018;181:1–12.PubMedCrossRef Fessler MB. The challenges and promise of targeting the Liver X Receptors for treatment of inflammatory disease. Pharmacol Ther. 2018;181:1–12.PubMedCrossRef
34.
go back to reference Zhang Y, Breevoort SR, Angdisen J, Fu M, Schmidt DR, Holmstrom SR, Kliewer SA, Mangelsdorf DJ, Schulman IG. Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J Clin Investig. 2012;122(5):1688–99.PubMedPubMedCentralCrossRef Zhang Y, Breevoort SR, Angdisen J, Fu M, Schmidt DR, Holmstrom SR, Kliewer SA, Mangelsdorf DJ, Schulman IG. Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J Clin Investig. 2012;122(5):1688–99.PubMedPubMedCentralCrossRef
36.
go back to reference Iwanicki T, Balcerzyk A, Niemiec P, Nowak T, Ochalska-Tyka A, Krauze J, Kosiorz-Gorczynska S, Grzeszczak W, Zak I. CYP7A1 gene polymorphism located in the 5’ upstream region modifies the risk of coronary artery disease. Dis Markers. 2015;2015:185969.PubMedPubMedCentralCrossRef Iwanicki T, Balcerzyk A, Niemiec P, Nowak T, Ochalska-Tyka A, Krauze J, Kosiorz-Gorczynska S, Grzeszczak W, Zak I. CYP7A1 gene polymorphism located in the 5’ upstream region modifies the risk of coronary artery disease. Dis Markers. 2015;2015:185969.PubMedPubMedCentralCrossRef
37.
go back to reference Zhang X, Liu J, Su W, Wu J, Wang C, Kong X, Gustafsson JA, Ding J, Ma X, Guan Y. Liver X receptor activation increases hepatic fatty acid desaturation by the induction of SCD1 expression through an LXRalpha-SREBP1c-dependent mechanism. J Diabetes. 2014;6(3):212–20.PubMedCrossRef Zhang X, Liu J, Su W, Wu J, Wang C, Kong X, Gustafsson JA, Ding J, Ma X, Guan Y. Liver X receptor activation increases hepatic fatty acid desaturation by the induction of SCD1 expression through an LXRalpha-SREBP1c-dependent mechanism. J Diabetes. 2014;6(3):212–20.PubMedCrossRef
38.
go back to reference Sahebi R, Hassanian SM, Ghayour-Mobarhan M, Farrokhi E, Rezayi M, Samadi S, Bahramian S, Ferns GA, Avan A. Scavenger receptor Class B type I as a potential risk stratification biomarker and therapeutic target in cardiovascular disease. J Cell Physiol. 2019;234(10):16925–32.PubMedCrossRef Sahebi R, Hassanian SM, Ghayour-Mobarhan M, Farrokhi E, Rezayi M, Samadi S, Bahramian S, Ferns GA, Avan A. Scavenger receptor Class B type I as a potential risk stratification biomarker and therapeutic target in cardiovascular disease. J Cell Physiol. 2019;234(10):16925–32.PubMedCrossRef
39.
go back to reference Johnston TP. The P-407-induced murine model of dose-controlled hyperlipidemia and atherosclerosis: a review of findings to date. J Cardiovasc Pharmacol. 2004;43(4):595–606.PubMedCrossRef Johnston TP. The P-407-induced murine model of dose-controlled hyperlipidemia and atherosclerosis: a review of findings to date. J Cardiovasc Pharmacol. 2004;43(4):595–606.PubMedCrossRef
40.
go back to reference Johnston TP, Korolenko TA, Sahebkar A. P-407-induced Mouse Model of Dose-controlled Hyperlipidemia and Atherosclerosis: 25 Years Later. J Cardiovasc Pharmacol. 2017;70(5):339–52.PubMedCrossRef Johnston TP, Korolenko TA, Sahebkar A. P-407-induced Mouse Model of Dose-controlled Hyperlipidemia and Atherosclerosis: 25 Years Later. J Cardiovasc Pharmacol. 2017;70(5):339–52.PubMedCrossRef
41.
go back to reference Yan C, Zhang Y, Zhang X, Aa J, Wang G, Xie Y. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomed Pharmacother. 2018;105:274–81.PubMedCrossRef Yan C, Zhang Y, Zhang X, Aa J, Wang G, Xie Y. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomed Pharmacother. 2018;105:274–81.PubMedCrossRef
42.
go back to reference Ma Z, Deng C, Hu W, Zhou J, Fan C, Di S, Liu D, Yang Y, Wang D. Liver X Receptors and their Agonists: Targeting for Cholesterol Homeostasis and Cardiovascular Diseases. Curr Issues Mol Biol. 2017;22:41–64.PubMedCrossRef Ma Z, Deng C, Hu W, Zhou J, Fan C, Di S, Liu D, Yang Y, Wang D. Liver X Receptors and their Agonists: Targeting for Cholesterol Homeostasis and Cardiovascular Diseases. Curr Issues Mol Biol. 2017;22:41–64.PubMedCrossRef
43.
go back to reference Benitez-Santana T, Hugo SE, Schlegel A. Role of Intestinal LXRalpha in Regulating Post-prandial Lipid Excursion and Diet-Induced Hypercholesterolemia and Hepatic Lipid Accumulation. Front Physiol. 2017;8:280.PubMedPubMedCentralCrossRef Benitez-Santana T, Hugo SE, Schlegel A. Role of Intestinal LXRalpha in Regulating Post-prandial Lipid Excursion and Diet-Induced Hypercholesterolemia and Hepatic Lipid Accumulation. Front Physiol. 2017;8:280.PubMedPubMedCentralCrossRef
44.
go back to reference Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov. 2014;13(6):433–44.PubMedCrossRef Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov. 2014;13(6):433–44.PubMedCrossRef
45.
go back to reference Becares N, Gage MC, Voisin M, Shrestha E, Martin-Gutierrez L, Liang N, Louie R, Pourcet B, Pello OM, Luong TV, et al. Impaired LXRalpha Phosphorylation Attenuates Progression of Fatty Liver Disease. Cell Rep. 2019;26(4):984-995 e986.PubMedPubMedCentralCrossRef Becares N, Gage MC, Voisin M, Shrestha E, Martin-Gutierrez L, Liang N, Louie R, Pourcet B, Pello OM, Luong TV, et al. Impaired LXRalpha Phosphorylation Attenuates Progression of Fatty Liver Disease. Cell Rep. 2019;26(4):984-995 e986.PubMedPubMedCentralCrossRef
46.
go back to reference Liu Y, Qiu DK, Ma X. Liver X receptors bridge hepatic lipid metabolism and inflammation. J Dig Dis. 2012;13(2):69–74.PubMedCrossRef Liu Y, Qiu DK, Ma X. Liver X receptors bridge hepatic lipid metabolism and inflammation. J Dig Dis. 2012;13(2):69–74.PubMedCrossRef
47.
go back to reference Cave MC, Clair HB, Hardesty JE, Falkner KC, Feng W, Clark BJ, Sidey J, Shi H, Aqel BA, McClain CJ, et al. Nuclear receptors and nonalcoholic fatty liver disease. Biochim Biophys Acta. 2016;1859(9):1083–99.PubMedPubMedCentralCrossRef Cave MC, Clair HB, Hardesty JE, Falkner KC, Feng W, Clark BJ, Sidey J, Shi H, Aqel BA, McClain CJ, et al. Nuclear receptors and nonalcoholic fatty liver disease. Biochim Biophys Acta. 2016;1859(9):1083–99.PubMedPubMedCentralCrossRef
48.
go back to reference Marwarha G, Raza S, Hammer K, Ghribi O. 27-hydroxycholesterol: A novel player in molecular carcinogenesis of breast and prostate cancer. Chem Phys Lipids. 2017;207(Pt B):108–26.PubMedCrossRef Marwarha G, Raza S, Hammer K, Ghribi O. 27-hydroxycholesterol: A novel player in molecular carcinogenesis of breast and prostate cancer. Chem Phys Lipids. 2017;207(Pt B):108–26.PubMedCrossRef
49.
go back to reference Endo-Umeda K, Makishima M. Liver X receptors regulate cholesterol metabolism and immunity in hepatic nonparenchymal cells. Int J Mol Sci. 2019;20(20):5045.PubMedPubMedCentralCrossRef Endo-Umeda K, Makishima M. Liver X receptors regulate cholesterol metabolism and immunity in hepatic nonparenchymal cells. Int J Mol Sci. 2019;20(20):5045.PubMedPubMedCentralCrossRef
50.
go back to reference Huang P, Kaluba B, Jiang XL, Chang S, Tang XF, Mao LF, Zhang ZP, Huang FZ. Liver X receptor inverse agonist SR9243 suppresses nonalcoholic steatohepatitis intrahepatic inflammation and fibrosis. Biomed Res Int. 2018;2018:8071093.PubMedPubMedCentralCrossRef Huang P, Kaluba B, Jiang XL, Chang S, Tang XF, Mao LF, Zhang ZP, Huang FZ. Liver X receptor inverse agonist SR9243 suppresses nonalcoholic steatohepatitis intrahepatic inflammation and fibrosis. Biomed Res Int. 2018;2018:8071093.PubMedPubMedCentralCrossRef
51.
go back to reference Variya BC, Bakrania AK, Chen Y, Han J, Patel SS. Suppression of abdominal fat and anti-hyperlipidemic potential of Emblica officinalis: Upregulation of PPARs and identification of active moiety. Biomed Pharmacother. 2018;108:1274–81.PubMedCrossRef Variya BC, Bakrania AK, Chen Y, Han J, Patel SS. Suppression of abdominal fat and anti-hyperlipidemic potential of Emblica officinalis: Upregulation of PPARs and identification of active moiety. Biomed Pharmacother. 2018;108:1274–81.PubMedCrossRef
52.
go back to reference Cui K, Zhang L, La X, Wu H, Yang R, Li H, Li Z. Ferulic Acid and P-Coumaric acid synergistically attenuate non-alcoholic fatty liver disease through HDAC1/PPARG-mediated free fatty acid uptake. Int J Mol Sci. 2022;23(23):15297.PubMedPubMedCentralCrossRef Cui K, Zhang L, La X, Wu H, Yang R, Li H, Li Z. Ferulic Acid and P-Coumaric acid synergistically attenuate non-alcoholic fatty liver disease through HDAC1/PPARG-mediated free fatty acid uptake. Int J Mol Sci. 2022;23(23):15297.PubMedPubMedCentralCrossRef
53.
go back to reference Luo Z, Li M, Yang Q, Zhang Y, Liu F, Gong L, Han L, Wang M. Ferulic acid prevents nonalcoholic fatty liver disease by promoting fatty acid oxidation and energy expenditure in C57BL/6 mice fed a high-fat diet. Nutrients. 2022;14(12):2530.PubMedPubMedCentralCrossRef Luo Z, Li M, Yang Q, Zhang Y, Liu F, Gong L, Han L, Wang M. Ferulic acid prevents nonalcoholic fatty liver disease by promoting fatty acid oxidation and energy expenditure in C57BL/6 mice fed a high-fat diet. Nutrients. 2022;14(12):2530.PubMedPubMedCentralCrossRef
54.
go back to reference Xiang J, Zhang C, Di T, Chen L, Zhao W, Wei L, Zhou S, Wu X, Wang G, Zhang Y. Salvianolic acid B alleviates diabetic endothelial and mitochondrial dysfunction by down-regulating apoptosis and mitophagy of endothelial cells. Bioengineered. 2022;13(2):3486–502.PubMedPubMedCentralCrossRef Xiang J, Zhang C, Di T, Chen L, Zhao W, Wei L, Zhou S, Wu X, Wang G, Zhang Y. Salvianolic acid B alleviates diabetic endothelial and mitochondrial dysfunction by down-regulating apoptosis and mitophagy of endothelial cells. Bioengineered. 2022;13(2):3486–502.PubMedPubMedCentralCrossRef
55.
go back to reference Pan X, Wan R, Wang Y, Liu S, He Y, Deng B, Luo S, Chen Y, Wen L, Hong T, et al. Inhibition of chemically and mechanically activated Piezo1 channels as a mechanism for ameliorating atherosclerosis with salvianolic acid B. Br J Pharmacol. 2022;179(14):3778–814.PubMedCrossRef Pan X, Wan R, Wang Y, Liu S, He Y, Deng B, Luo S, Chen Y, Wen L, Hong T, et al. Inhibition of chemically and mechanically activated Piezo1 channels as a mechanism for ameliorating atherosclerosis with salvianolic acid B. Br J Pharmacol. 2022;179(14):3778–814.PubMedCrossRef
56.
go back to reference Meng LC, Zheng JY, Qiu YH, Zheng L, Zheng JY, Liu YQ, Miao XL, Lu XY. Salvianolic acid B ameliorates non-alcoholic fatty liver disease by inhibiting hepatic lipid accumulation and NLRP3 inflammasome in ob/ob mice. Int Immunopharmacol. 2022;111:109099.PubMedCrossRef Meng LC, Zheng JY, Qiu YH, Zheng L, Zheng JY, Liu YQ, Miao XL, Lu XY. Salvianolic acid B ameliorates non-alcoholic fatty liver disease by inhibiting hepatic lipid accumulation and NLRP3 inflammasome in ob/ob mice. Int Immunopharmacol. 2022;111:109099.PubMedCrossRef
57.
go back to reference Zhang HH, Zhou XJ, Zhong YS, Ji LT, Yu WY, Fang J, Ying HZ, Li CY. Naringin suppressed airway inflammation and ameliorated pulmonary endothelial hyperpermeability by upregulating Aquaporin1 in lipopolysaccharide/cigarette smoke-induced mice. Biomed Pharmacother. 2022;150:113035.PubMedCrossRef Zhang HH, Zhou XJ, Zhong YS, Ji LT, Yu WY, Fang J, Ying HZ, Li CY. Naringin suppressed airway inflammation and ameliorated pulmonary endothelial hyperpermeability by upregulating Aquaporin1 in lipopolysaccharide/cigarette smoke-induced mice. Biomed Pharmacother. 2022;150:113035.PubMedCrossRef
58.
go back to reference Wang F, Zhao C, Tian G, Wei X, Ma Z, Cui J, Wei R, Bao Y, Kong W, Zheng J. Naringin Alleviates Atherosclerosis in ApoE(-/-) Mice by Regulating Cholesterol Metabolism Involved in Gut Microbiota Remodeling. J Agric Food Chem. 2020;68(45):12651–60.PubMedCrossRef Wang F, Zhao C, Tian G, Wei X, Ma Z, Cui J, Wei R, Bao Y, Kong W, Zheng J. Naringin Alleviates Atherosclerosis in ApoE(-/-) Mice by Regulating Cholesterol Metabolism Involved in Gut Microbiota Remodeling. J Agric Food Chem. 2020;68(45):12651–60.PubMedCrossRef
59.
go back to reference Li J, Li Y, Yuan X, Yao D, Gao Z, Niu Z, Wang Z, Zhang Y. The effective constituent puerarin, from Pueraria lobata, inhibits the proliferation and inflammation of vascular smooth muscle in atherosclerosis through the miR-29b-3p/IGF1 pathway. Pharm Biol. 2023;61(1):1–11.PubMedCrossRef Li J, Li Y, Yuan X, Yao D, Gao Z, Niu Z, Wang Z, Zhang Y. The effective constituent puerarin, from Pueraria lobata, inhibits the proliferation and inflammation of vascular smooth muscle in atherosclerosis through the miR-29b-3p/IGF1 pathway. Pharm Biol. 2023;61(1):1–11.PubMedCrossRef
60.
go back to reference Xu DX, Guo XX, Zeng Z, Wang Y, Qiu J. Puerarin improves hepatic glucose and lipid homeostasis in vitro and in vivo by regulating the AMPK pathway. Food Funct. 2021;12(6):2726–40.PubMedCrossRef Xu DX, Guo XX, Zeng Z, Wang Y, Qiu J. Puerarin improves hepatic glucose and lipid homeostasis in vitro and in vivo by regulating the AMPK pathway. Food Funct. 2021;12(6):2726–40.PubMedCrossRef
61.
go back to reference Li W, Xu X, Dong D, Lei T, Ou H. Up-regulation of thioredoxin system by puerarin inhibits lipid uptake in macrophages. Free Radic Biol Med. 2021;162:542–54.PubMedCrossRef Li W, Xu X, Dong D, Lei T, Ou H. Up-regulation of thioredoxin system by puerarin inhibits lipid uptake in macrophages. Free Radic Biol Med. 2021;162:542–54.PubMedCrossRef
62.
go back to reference Kim E, Woo MS, Qin L, Ma T, Beltran CD, Bao Y, Bailey JA, Corbett D, Ratan RR, Lahiri DK, et al. Daidzein Augments Cholesterol Homeostasis via ApoE to Promote Functional Recovery in Chronic Stroke. J Neurosci. 2015;35(45):15113–26.PubMedPubMedCentralCrossRef Kim E, Woo MS, Qin L, Ma T, Beltran CD, Bao Y, Bailey JA, Corbett D, Ratan RR, Lahiri DK, et al. Daidzein Augments Cholesterol Homeostasis via ApoE to Promote Functional Recovery in Chronic Stroke. J Neurosci. 2015;35(45):15113–26.PubMedPubMedCentralCrossRef
Metadata
Title
Danlou Recipe promotes cholesterol efflux in macrophages RAW264.7 and reverses cholesterol transport in mice with hyperlipidemia induced by P407
Authors
Wenrun Han
Dandan Zhang
Peng Zhang
Qianqian Tao
Xiaoli Du
Chunquan Yu
Pengzhi Dong
Yan Zhu
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04253-9

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue