Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Cervical Cancer | Research

Potent anti-cancer activity of Sphaerocoryne affinis fruit against cervical cancer HeLa cells via inhibition of cell proliferation and induction of apoptosis

Authors: Nghia Le-Trung, Tue Minh Duong, Thao Thi Phuong Dang, Kaeko Kamei

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

Cervical cancer remains a significant global health issue, highlighting the need for effective therapeutic strategies. Given that Sphaerocoryne affinis (SA) has shown potential anti-cancer activity in several cancer types, herein, we investigate the effects of SA fruit (SAF) on human cervical cancer HeLa cells and their underlying mechanisms of action.

Methods

SAF extract cytotoxicity was assessed in various cancer cell lines. The effects of the hexane fraction (SAF-Hex) on HeLa cell viability, cell cycle protein expression, apoptosis, and DNA damage were evaluated using cytotoxicity assays, Western blotting, quantitative PCR, 4′,6-diamidino-2-phenylindole (DAPI) staining, and a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay.

Results

SAF-Hex selectively inhibited HeLa cell viability with an IC50 of 4.20 ± 0.36 µg/mL and a selectivity index of 5.11 ± 0.58. The time-dependent cytotoxicity assay showed decreased cell survival after 48 h of treatment, accompanied by morphological changes and apoptotic bodies in HeLa cells. SAF-Hex also suppressed HeLa cell cycle proteins (Cyclin E, CDK2, and CDK1), reduced PCNA transcription, and diminished AKT and mTOR activation, thus inhibiting cell proliferation. The increased γH2AX expression, DNA fragmentation, and caspases-3 and -9 activation indicated SAF-Hex-induced DNA damage and apoptosis. However, the BAX/BCL-2 ratio remained unchanged, and BAX and BCL2 expression was attenuated.

Conclusion

SAF-Hex effectively inhibits HeLa cell proliferation and induces DNA damage in that cervical cancer cell line activating apoptosis through the intrinsic pathway. Interestingly, the BAX/BCL-2 ratio remained unchanged while BAX and BCL2 transcription was attenuated. Hence, further research is required to explore this unexpected finding and facilitate the development of novel therapies targeting cervical cancer HeLa cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed
3.
go back to reference Johnson CA, James D, Marzan A, Armaos M. Cervical cancer: an overview of pathophysiology and management. Semin Oncol Nurs. 2019;35(2):166–74.CrossRefPubMed Johnson CA, James D, Marzan A, Armaos M. Cervical cancer: an overview of pathophysiology and management. Semin Oncol Nurs. 2019;35(2):166–74.CrossRefPubMed
5.
go back to reference Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment. Clin Ther. 2016;38(7):1551–66.CrossRefPubMed Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment. Clin Ther. 2016;38(7):1551–66.CrossRefPubMed
6.
go back to reference Jung JH, Chang CJ, Smith DL, McLaughlin JL, Pummangura S, Chaichantipyuth C, et al. Additional bioactive heptenes from Melodorum fruticosum. J Nat Prod. 1991;54(2):500–5.CrossRefPubMed Jung JH, Chang CJ, Smith DL, McLaughlin JL, Pummangura S, Chaichantipyuth C, et al. Additional bioactive heptenes from Melodorum fruticosum. J Nat Prod. 1991;54(2):500–5.CrossRefPubMed
7.
go back to reference Tuchinda P, Udchachon J, Reutrakul V, Santisuk T, Taylor WC, Farnsworth NR, et al. Bioactive butenolides from Melodorum fruticosum. Phytochemistry. 1991;30(8):2685–9.CrossRef Tuchinda P, Udchachon J, Reutrakul V, Santisuk T, Taylor WC, Farnsworth NR, et al. Bioactive butenolides from Melodorum fruticosum. Phytochemistry. 1991;30(8):2685–9.CrossRef
8.
go back to reference Jung JH, Pummangura S, Chaichantipyuth C, Patarapanich C, McLaughlin JL. Bioactive constituents of Melodorum fruticosum. Phytochemistry. 1990;29(5):1667–70.CrossRef Jung JH, Pummangura S, Chaichantipyuth C, Patarapanich C, McLaughlin JL. Bioactive constituents of Melodorum fruticosum. Phytochemistry. 1990;29(5):1667–70.CrossRef
9.
go back to reference Jung JH, Pummangura S, Chaichantipyuth C, Patarapanich C, Fanwick PE, Chang C-J, et al. New bioactive heptenes from Melodorum fruticosum (Annonaceae). Tetrahedron. 1990;46(15):5043–54.CrossRef Jung JH, Pummangura S, Chaichantipyuth C, Patarapanich C, Fanwick PE, Chang C-J, et al. New bioactive heptenes from Melodorum fruticosum (Annonaceae). Tetrahedron. 1990;46(15):5043–54.CrossRef
10.
go back to reference Chaichantipyuth C, Tiyaworanan S, Mekaroonreung S, Ngamrojnavanich N, Roengsumran S, Puthong S, et al. Oxidized heptenes from flowers of Melodorum fruticosum. Phytochemistry. 2001;58(8):1311–5.CrossRefPubMed Chaichantipyuth C, Tiyaworanan S, Mekaroonreung S, Ngamrojnavanich N, Roengsumran S, Puthong S, et al. Oxidized heptenes from flowers of Melodorum fruticosum. Phytochemistry. 2001;58(8):1311–5.CrossRefPubMed
11.
go back to reference Nghi NBT, Uyen TT, Anh HM, Linh DM, Thao DTP. Rumdul (Sphaerocoryne affinis) antioxidant activity and its potential for Parkinson’s disease treatment. Oxid Med Cell Longev. 2022;2022:8918966.CrossRefPubMedPubMedCentral Nghi NBT, Uyen TT, Anh HM, Linh DM, Thao DTP. Rumdul (Sphaerocoryne affinis) antioxidant activity and its potential for Parkinson’s disease treatment. Oxid Med Cell Longev. 2022;2022:8918966.CrossRefPubMedPubMedCentral
12.
go back to reference Salae AW, Chairerk O, Sukkoet P, Chairat T, Prawat U, Tuntiwachwuttikul P, et al. Antiplasmodial dimeric chalcone derivatives from the roots of Uvaria siamensis. Phytochemistry. 2017;135:135–43.CrossRefPubMed Salae AW, Chairerk O, Sukkoet P, Chairat T, Prawat U, Tuntiwachwuttikul P, et al. Antiplasmodial dimeric chalcone derivatives from the roots of Uvaria siamensis. Phytochemistry. 2017;135:135–43.CrossRefPubMed
13.
go back to reference Amatori S, Persico G, Fanelli M. Real-time quantitative PCR array to study drug-induced changes of gene expression in tumor cell lines. J Cancer Metastasis Treat. 2017;3:90–9.CrossRef Amatori S, Persico G, Fanelli M. Real-time quantitative PCR array to study drug-induced changes of gene expression in tumor cell lines. J Cancer Metastasis Treat. 2017;3:90–9.CrossRef
14.
go back to reference Phan RT, Dalla-Favera R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature. 2004;432(7017):635–9.CrossRefPubMed Phan RT, Dalla-Favera R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature. 2004;432(7017):635–9.CrossRefPubMed
15.
go back to reference Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36(3):131–49.CrossRefPubMedPubMedCentral Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36(3):131–49.CrossRefPubMedPubMedCentral
16.
go back to reference Nitulescu GM, Van De Venter M, Nitulescu G, Ungurianu A, Juzenas P, Peng Q, et al. The AKT pathway in oncology therapy and beyond (Review). Int J Oncol. 2018;53(6):2319–31.PubMedPubMedCentral Nitulescu GM, Van De Venter M, Nitulescu G, Ungurianu A, Juzenas P, Peng Q, et al. The AKT pathway in oncology therapy and beyond (Review). Int J Oncol. 2018;53(6):2319–31.PubMedPubMedCentral
17.
go back to reference Mah LJ, El-Osta A, Karagiannis TC. γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia. 2010;24(4):679–86.CrossRefPubMed Mah LJ, El-Osta A, Karagiannis TC. γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia. 2010;24(4):679–86.CrossRefPubMed
18.
go back to reference Kitazumi I, Tsukahara M. Regulation of DNA fragmentation: the role of caspases and phosphorylation. FEBS J. 2011;278(3):427–41.CrossRefPubMed Kitazumi I, Tsukahara M. Regulation of DNA fragmentation: the role of caspases and phosphorylation. FEBS J. 2011;278(3):427–41.CrossRefPubMed
19.
go back to reference Walsh JG, Cullen SP, Sheridan C, Lüthi AU, Gerner C, Martin SJ. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A. 2008;105(35):12815–9.CrossRefPubMedPubMedCentral Walsh JG, Cullen SP, Sheridan C, Lüthi AU, Gerner C, Martin SJ. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A. 2008;105(35):12815–9.CrossRefPubMedPubMedCentral
20.
go back to reference Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6(2):99–104.CrossRefPubMed Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6(2):99–104.CrossRefPubMed
21.
go back to reference Yadav P, Yadav R, Jain S, Vaidya A. Caspase-3: a primary target for natural and synthetic compounds for cancer therapy. Chem Biol Drug Des. 2021;98(1):144–65.CrossRefPubMed Yadav P, Yadav R, Jain S, Vaidya A. Caspase-3: a primary target for natural and synthetic compounds for cancer therapy. Chem Biol Drug Des. 2021;98(1):144–65.CrossRefPubMed
22.
go back to reference Hongnak S, Jongaramruong J, Khumkratok S, Siriphong P, Tip-pyang S. Chemical constituents and derivatization of melodorinol from the roots of Melodorum fruticosum. Nat Prod Commun. 2015;10(4):633–6.PubMed Hongnak S, Jongaramruong J, Khumkratok S, Siriphong P, Tip-pyang S. Chemical constituents and derivatization of melodorinol from the roots of Melodorum fruticosum. Nat Prod Commun. 2015;10(4):633–6.PubMed
23.
go back to reference Weerapreeyakul N, Nonpunya A, Barusrux S, Thitimetharoch T, Sripanidkulchai B. Evaluation of the anticancer potential of six herbs against a hepatoma cell line. Chin Med. 2012;7(1):15.CrossRefPubMedPubMedCentral Weerapreeyakul N, Nonpunya A, Barusrux S, Thitimetharoch T, Sripanidkulchai B. Evaluation of the anticancer potential of six herbs against a hepatoma cell line. Chin Med. 2012;7(1):15.CrossRefPubMedPubMedCentral
24.
go back to reference Indrayanto G, Putra GS, Suhud F. Chapter six - validation of in vitro bioassay methods: application in herbal drug research. In: Al-Majed AA, editor. Profiles Drug Subst Excip Relat Methodol. USA: Academic Press. 2021;46:273-307. Indrayanto G, Putra GS, Suhud F. Chapter six - validation of in vitro bioassay methods: application in herbal drug research. In: Al-Majed AA, editor. Profiles Drug Subst Excip Relat Methodol. USA: Academic Press. 2021;46:273-307.
25.
go back to reference Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. 2000;45(3):528–37.CrossRefPubMed Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. 2000;45(3):528–37.CrossRefPubMed
27.
go back to reference Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann Bot. 2011;107(7):1127–40.CrossRefPubMed Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann Bot. 2011;107(7):1127–40.CrossRefPubMed
29.
go back to reference Pouliliou S, Koukourakis MI. Gamma histone 2AX (γ-H2AX)as a predictive tool in radiation oncology. Biomarkers. 2014;19(3):167–80.CrossRefPubMed Pouliliou S, Koukourakis MI. Gamma histone 2AX (γ-H2AX)as a predictive tool in radiation oncology. Biomarkers. 2014;19(3):167–80.CrossRefPubMed
30.
go back to reference Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem. 2000;275(13):9390–5.CrossRefPubMed Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem. 2000;275(13):9390–5.CrossRefPubMed
31.
go back to reference Appella E, Anderson CW. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem. 2001;268(10):2764–72.CrossRefPubMed Appella E, Anderson CW. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem. 2001;268(10):2764–72.CrossRefPubMed
32.
go back to reference Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage. Oncogene. 1999;18(53):7644–55.CrossRefPubMed Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage. Oncogene. 1999;18(53):7644–55.CrossRefPubMed
33.
go back to reference Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene. 2005;24(17):2899–908.CrossRefPubMed Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene. 2005;24(17):2899–908.CrossRefPubMed
34.
go back to reference Ljungman M, Zhang F, Chen F, Rainbow AJ, McKay BC. Inhibition of RNA polymerase II as a trigger for the p53 response. Oncogene. 1999;18(3):583–92.CrossRefPubMed Ljungman M, Zhang F, Chen F, Rainbow AJ, McKay BC. Inhibition of RNA polymerase II as a trigger for the p53 response. Oncogene. 1999;18(3):583–92.CrossRefPubMed
35.
go back to reference Asadi M, Taghizadeh S, Kaviani E, Vakili O, Taheri-Anganeh M, Tahamtan M, et al. Caspase-3: structure, function, and biotechnological aspects. Biotechnol Appl Biochem. 2022;69(4):1633–45.CrossRefPubMed Asadi M, Taghizadeh S, Kaviani E, Vakili O, Taheri-Anganeh M, Tahamtan M, et al. Caspase-3: structure, function, and biotechnological aspects. Biotechnol Appl Biochem. 2022;69(4):1633–45.CrossRefPubMed
37.
go back to reference Molouki A, Hsu Y-T, Jahanshiri F, Rosli R, Yusoff K. Newcastle disease virus infection promotes BAX redistribution to mitochondria and cell death in HeLa cells. Intervirology. 2009;53(2):87–94.CrossRefPubMed Molouki A, Hsu Y-T, Jahanshiri F, Rosli R, Yusoff K. Newcastle disease virus infection promotes BAX redistribution to mitochondria and cell death in HeLa cells. Intervirology. 2009;53(2):87–94.CrossRefPubMed
38.
go back to reference Arıcan G, Çakır O, Arıcan E, Kara T, Dağdeviren O, Arı S. Effects of Geven root extract on proliferation of HeLa cells and BCL-2 gene expressions. Afr J Biotechnol. 2012;11(18):4296–304. Arıcan G, Çakır O, Arıcan E, Kara T, Dağdeviren O, Arı S. Effects of Geven root extract on proliferation of HeLa cells and BCL-2 gene expressions. Afr J Biotechnol. 2012;11(18):4296–304.
Metadata
Title
Potent anti-cancer activity of Sphaerocoryne affinis fruit against cervical cancer HeLa cells via inhibition of cell proliferation and induction of apoptosis
Authors
Nghia Le-Trung
Tue Minh Duong
Thao Thi Phuong Dang
Kaeko Kamei
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04127-0

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue