Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Respiratory Syncytial Virus Infection | Research

Network pharmacology combined with metabolomics to explore the mechanism for Lonicerae Japonicae flos against respiratory syncytial virus

Authors: Jie Ding, Jing Li, Zhe Zhang, Yaxuan Du, Yuhong Liu, Ping Wang, Haitao Du

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

Respiratory Syncytial Virus (RSV) stands out as a primary contributor to lower respiratory tract infections and hospitalizations, particularly in infants. Lonicerae japonicae flos (LJF), a traditional Chinese medicine renowned for its efficacy against various viral infections, including RSV, has been widely employed. Despite its common use, the precise therapeutic mechanism of LJF against RSV remains elusive. This study aimed to investigate the underlying mechanism of LJF against RSV through network pharmacology and metabolomics.

Methods

In this study, based on network pharmacology, potential targets related to LJF and RSV were obtained from PubChem and Swiss Target Prediction. The core targets and pathways were established and verified by enrichment analysis and molecular docking. The anti-RSV efficacy of LJF was determined by in vitro experiments. Additionally, metabolomics analysis was integrated, allowing for the identification of differential metabolites and their correlation with targets following LJF treatment in the context of RSV infection.

Results

A total of 23 active ingredients and 780 targets were obtained, of which 102 targets were associated with LJF anti-RSV. The construction of the corresponding Protein–Protein Interaction (PPI) network unveiled potential core targets, including STAT3, TNF, and AKT1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that LJF's anti-RSV effects primarily involve key pathways such as the PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor resistance, and FoxO signaling pathway. Molecular docking showed that ZINC03978781, 4,5'-Retro-.beta.,.beta.-Carotene -3,3'-dione, 4',5'-didehydro and 7-epi-Vogeloside had better binding ability. The cellular assay showed that the therapeutic index of LJF against RSV was 4.79. Furthermore, 18 metabolites were screened as potential biomarkers of LJF against RSV, and these metabolites were mainly involved in the pathways of purine metabolism, linoleic acid metabolism, alpha-linolenic acid metabolism, and other related pathways.

Conclusions

The intergration of network pharmacology and metabolomics can clarify the active targets and related pathways of LJF against RSV, which could provide a valuable reference for further research and clinical application of LJF.
Appendix
Available only for authorised users
Literature
1.
go back to reference Langedijk AC, Bont LJ. Respiratory syncytial virus infection and novel interventions. Nat Rev Microbiol. 2023;12:1–6. Langedijk AC, Bont LJ. Respiratory syncytial virus infection and novel interventions. Nat Rev Microbiol. 2023;12:1–6.
2.
go back to reference Soni A, Kabra SK, Lodha R. Respiratory Syncytial Virus Infection: An Update. Indian J Pediatr. 2023;16:1–9. Soni A, Kabra SK, Lodha R. Respiratory Syncytial Virus Infection: An Update. Indian J Pediatr. 2023;16:1–9.
3.
go back to reference Colosia A, Costello J, Mcquarrie K, Kato K, Bertzos K. Systematic literature review of the signs and symptoms of respiratory syncytial virus. Influenza Other Respir Viruses. 2023;17(2):e13100.CrossRefPubMedPubMedCentral Colosia A, Costello J, Mcquarrie K, Kato K, Bertzos K. Systematic literature review of the signs and symptoms of respiratory syncytial virus. Influenza Other Respir Viruses. 2023;17(2):e13100.CrossRefPubMedPubMedCentral
4.
go back to reference Abbasi J. “This Is Our COVID”-what physicians need to know about the pediatric RSV surge. JAMA. 2022;328(21):2096–8.CrossRef Abbasi J. “This Is Our COVID”-what physicians need to know about the pediatric RSV surge. JAMA. 2022;328(21):2096–8.CrossRef
5.
go back to reference Mazur NI, Martinon-Torres F, Baraldi E, Fauroux B, Greenough A, Heikkinen T, Manzoni P, Mejias A, Nair H, Papadopoulos NG, et al. Lower respiratory tract infection caused by respiratory syncytial virus: current management and new therapeutics. Lancet Respir Med. 2015;3(11):888–900.CrossRefPubMed Mazur NI, Martinon-Torres F, Baraldi E, Fauroux B, Greenough A, Heikkinen T, Manzoni P, Mejias A, Nair H, Papadopoulos NG, et al. Lower respiratory tract infection caused by respiratory syncytial virus: current management and new therapeutics. Lancet Respir Med. 2015;3(11):888–900.CrossRefPubMed
6.
go back to reference Zheng S, Liu S, Hou A, Wang S, Na Y, Hu J, Jiang H, Yang L. Systematic review of Lonicerae Japonicae Flos: a significant food and traditional Chinese medicine. Front Pharmacol. 2022;13:1013992.CrossRefPubMedPubMedCentral Zheng S, Liu S, Hou A, Wang S, Na Y, Hu J, Jiang H, Yang L. Systematic review of Lonicerae Japonicae Flos: a significant food and traditional Chinese medicine. Front Pharmacol. 2022;13:1013992.CrossRefPubMedPubMedCentral
7.
go back to reference Ding J, Du H, Tan H, Li J, Wang L, Li L, Zhang Y, Liu Y. Optimization of protein removal process of Lonicera japonica polysaccharide and its immunomodulatory mechanism in cyclophosphamide-induced mice by metabolomics and network pharmacology. Food Sci Nutr. 2023;11(1):364–78.CrossRefPubMed Ding J, Du H, Tan H, Li J, Wang L, Li L, Zhang Y, Liu Y. Optimization of protein removal process of Lonicera japonica polysaccharide and its immunomodulatory mechanism in cyclophosphamide-induced mice by metabolomics and network pharmacology. Food Sci Nutr. 2023;11(1):364–78.CrossRefPubMed
8.
go back to reference Li H, Yu Y, Mei Y, Meng Z, Wang Z, Huang W, Xiao W, Yao X. A new hetero dimeric terpenoid derivative, japonicaside C, from the flower buds of Lonicera japonica. Nat Prod Res. 2017;31(2):143–8.CrossRefPubMed Li H, Yu Y, Mei Y, Meng Z, Wang Z, Huang W, Xiao W, Yao X. A new hetero dimeric terpenoid derivative, japonicaside C, from the flower buds of Lonicera japonica. Nat Prod Res. 2017;31(2):143–8.CrossRefPubMed
9.
go back to reference Xie X, Gu L, Xu W, Yu X, Yin G, Wang J, Jin Y, Wang L, Wang B, Wang T. Integrating anti-influenza virus activity and chemical pattern recognition to explore the quality evaluation method of lonicerae japonicae flos. Molecules. 2022;27(18):5789.CrossRefPubMedPubMedCentral Xie X, Gu L, Xu W, Yu X, Yin G, Wang J, Jin Y, Wang L, Wang B, Wang T. Integrating anti-influenza virus activity and chemical pattern recognition to explore the quality evaluation method of lonicerae japonicae flos. Molecules. 2022;27(18):5789.CrossRefPubMedPubMedCentral
10.
go back to reference Yeh YC, Doan LH, Huang ZY, Chu LW, Shi TH, Lee YR, Wu CT, Lin CH, Chiang ST, Liu HK, et al. Honeysuckle (Lonicera japonica) and Huangqi (Astragalus membranaceus) Suppress SARS-CoV-2 Entry and COVID-19 Related Cytokine Storm in Vitro. Front Pharmacol. 2021;12:765553.CrossRefPubMed Yeh YC, Doan LH, Huang ZY, Chu LW, Shi TH, Lee YR, Wu CT, Lin CH, Chiang ST, Liu HK, et al. Honeysuckle (Lonicera japonica) and Huangqi (Astragalus membranaceus) Suppress SARS-CoV-2 Entry and COVID-19 Related Cytokine Storm in Vitro. Front Pharmacol. 2021;12:765553.CrossRefPubMed
11.
go back to reference Huang K, Zhang P, Zhang Z, Youn JY, Wang C, Zhang H, Cai H. Traditional Chinese medicine (TCM) in the treatment of COVID-19 and other viral infections: efficacies and mechanisms. Pharmacol Ther. 2021;225:107843.CrossRefPubMedPubMedCentral Huang K, Zhang P, Zhang Z, Youn JY, Wang C, Zhang H, Cai H. Traditional Chinese medicine (TCM) in the treatment of COVID-19 and other viral infections: efficacies and mechanisms. Pharmacol Ther. 2021;225:107843.CrossRefPubMedPubMedCentral
12.
go back to reference Liang Y, Liu M, Wang Y, Liu L, Gao Y. Analyzing the material basis of anti-RSV efficacy of lonicerae japonicae flos based on the PK-PD model. Molecules. 2023;28(18):6437.CrossRefPubMedPubMedCentral Liang Y, Liu M, Wang Y, Liu L, Gao Y. Analyzing the material basis of anti-RSV efficacy of lonicerae japonicae flos based on the PK-PD model. Molecules. 2023;28(18):6437.CrossRefPubMedPubMedCentral
13.
go back to reference Li M. In vitro anti-respiratory syncytial virus effect of the extraction of Lonicera japonica Thunb. J Trop Med. 2010;10(4):420–2. Li M. In vitro anti-respiratory syncytial virus effect of the extraction of Lonicera japonica Thunb. J Trop Med. 2010;10(4):420–2.
15.
go back to reference Manchester M, Anand A. Metabolomics: strategies to define the role of metabolism in virus infection and pathogenesis. Adv Virus Res. 2017;98:57–81.CrossRefPubMed Manchester M, Anand A. Metabolomics: strategies to define the role of metabolism in virus infection and pathogenesis. Adv Virus Res. 2017;98:57–81.CrossRefPubMed
16.
go back to reference Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–90.CrossRefPubMed Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–90.CrossRefPubMed
17.
go back to reference Xu J, Bai C, Huang L, Liu T, Wan Y, Zheng Z, Ma X, Gao F, Yu H, Gu X. Network pharmacology to dissect the mechanisms of Yinlai decoction for pneumonia. BMC Complement Med Ther. 2020;20(1):168.CrossRefPubMedPubMedCentral Xu J, Bai C, Huang L, Liu T, Wan Y, Zheng Z, Ma X, Gao F, Yu H, Gu X. Network pharmacology to dissect the mechanisms of Yinlai decoction for pneumonia. BMC Complement Med Ther. 2020;20(1):168.CrossRefPubMedPubMedCentral
18.
go back to reference Wang L, Xiong F, Zhao S, Yang Y, Zhou G. Network pharmacology combined with molecular docking to explore the potential mechanisms for the antioxidant activity of Rheum tanguticum seeds. BMC Complement Med Ther. 2022;22(1):121.CrossRefPubMedPubMedCentral Wang L, Xiong F, Zhao S, Yang Y, Zhou G. Network pharmacology combined with molecular docking to explore the potential mechanisms for the antioxidant activity of Rheum tanguticum seeds. BMC Complement Med Ther. 2022;22(1):121.CrossRefPubMedPubMedCentral
19.
go back to reference Du H, Ding J, Wang P, Zhang G, Wang D, Ma Q, Li N, Sun T. Anti-respiratory syncytial virus mechanism of houttuynia cordata thunb exploration based on network pharmacology. Comb Chem High Throughput Screen. 2021;24(8):1137–50.CrossRefPubMed Du H, Ding J, Wang P, Zhang G, Wang D, Ma Q, Li N, Sun T. Anti-respiratory syncytial virus mechanism of houttuynia cordata thunb exploration based on network pharmacology. Comb Chem High Throughput Screen. 2021;24(8):1137–50.CrossRefPubMed
20.
go back to reference Li F, Hatano T, Hattori N. Systematic analysis of the molecular mechanisms mediated by coffee in Parkinson ’ s disease based on network pharmacology approach. J Funct Foods. 2021;87:104764.CrossRef Li F, Hatano T, Hattori N. Systematic analysis of the molecular mechanisms mediated by coffee in Parkinson ’ s disease based on network pharmacology approach. J Funct Foods. 2021;87:104764.CrossRef
21.
go back to reference Liu H, Dai L, Hao Z, Huang W, Yang Q. Hydrophobic cavity in C-terminus is essential for hTNF-alpha trimer conformation. Biochimie. 2012;94(4):1001–8.CrossRefPubMed Liu H, Dai L, Hao Z, Huang W, Yang Q. Hydrophobic cavity in C-terminus is essential for hTNF-alpha trimer conformation. Biochimie. 2012;94(4):1001–8.CrossRefPubMed
22.
go back to reference Song S, Zhou J, Li Y, Liu J, Li J, Shu P. Network pharmacology and experimental verification based research into the effect and mechanism of Aucklandiae Radix-Amomi Fructus against gastric cancer. Sci Rep. 2022;12(1):9401.CrossRefPubMedPubMedCentral Song S, Zhou J, Li Y, Liu J, Li J, Shu P. Network pharmacology and experimental verification based research into the effect and mechanism of Aucklandiae Radix-Amomi Fructus against gastric cancer. Sci Rep. 2022;12(1):9401.CrossRefPubMedPubMedCentral
23.
go back to reference Liang YY, Li KW, Niu FJ, Li Y, Wei HC, Dai YL, Wang YY, Zhou CZ, Wan XH. Salvia plebeia R. Br. polysaccharides (SPP) against RSV (respiratory syncytial virus) infection: Antiviral effect and mechanisms of action. Biomed Pharmacother. 2021;141:111843.CrossRefPubMed Liang YY, Li KW, Niu FJ, Li Y, Wei HC, Dai YL, Wang YY, Zhou CZ, Wan XH. Salvia plebeia R. Br. polysaccharides (SPP) against RSV (respiratory syncytial virus) infection: Antiviral effect and mechanisms of action. Biomed Pharmacother. 2021;141:111843.CrossRefPubMed
24.
go back to reference Abu-Raya B, Reicherz F, Lavoie PM. Correlates of protection against respiratory syncytial virus infection in infancy. Clin Rev Allergy Immunol. 2022;63(3):371–80.CrossRefPubMed Abu-Raya B, Reicherz F, Lavoie PM. Correlates of protection against respiratory syncytial virus infection in infancy. Clin Rev Allergy Immunol. 2022;63(3):371–80.CrossRefPubMed
25.
go back to reference Mazur NI, Terstappen J, Baral R, Bardaji A, Beutels P, Buchholz UJ, Cohen C, Crowe JJ, Cutland CL, Eckert L, et al. Respiratory syncytial virus prevention within reach: the vaccine and monoclonal antibody landscape. Lancet Infect Dis. 2023;23(1):e2–21.CrossRefPubMed Mazur NI, Terstappen J, Baral R, Bardaji A, Beutels P, Buchholz UJ, Cohen C, Crowe JJ, Cutland CL, Eckert L, et al. Respiratory syncytial virus prevention within reach: the vaccine and monoclonal antibody landscape. Lancet Infect Dis. 2023;23(1):e2–21.CrossRefPubMed
26.
go back to reference Martinon-Torres F, Navarro-Alonso JA, Garces-Sanchez M, Soriano-Arandes A. The path towards effective respiratory syncytial virus immunization policies: recommended actions. Arch Bronconeumol. 2023;59(9):581–8.CrossRefPubMed Martinon-Torres F, Navarro-Alonso JA, Garces-Sanchez M, Soriano-Arandes A. The path towards effective respiratory syncytial virus immunization policies: recommended actions. Arch Bronconeumol. 2023;59(9):581–8.CrossRefPubMed
27.
go back to reference Al-Kuraishy HM, Al-Fakhrany OM, Elekhnawy E, Al-Gareeb AI, Alorabi M, De Waard M, Albogami SM, Batiha GE. Traditional herbs against COVID-19: back to old weapons to combat the new pandemic. Eur J Med Res. 2022;27(1):186.CrossRefPubMedPubMedCentral Al-Kuraishy HM, Al-Fakhrany OM, Elekhnawy E, Al-Gareeb AI, Alorabi M, De Waard M, Albogami SM, Batiha GE. Traditional herbs against COVID-19: back to old weapons to combat the new pandemic. Eur J Med Res. 2022;27(1):186.CrossRefPubMedPubMedCentral
28.
go back to reference Zhang B, Qi F. Herbal medicines exhibit a high affinity for ACE2 in treating COVID-19. Biosci Trends. 2023;17(1):14–20.CrossRefPubMed Zhang B, Qi F. Herbal medicines exhibit a high affinity for ACE2 in treating COVID-19. Biosci Trends. 2023;17(1):14–20.CrossRefPubMed
30.
go back to reference Gao Y, Tang H, Xiong L, Zou L, Dai W, Liu H, Hu G. Protective Effects of Aqueous Extracts of Flos lonicerae Japonicae against Hydroquinone-Induced Toxicity in Hepatic L02 Cells. Oxid Med Cell Longev. 2018;2018:4528581.CrossRefPubMedPubMedCentral Gao Y, Tang H, Xiong L, Zou L, Dai W, Liu H, Hu G. Protective Effects of Aqueous Extracts of Flos lonicerae Japonicae against Hydroquinone-Induced Toxicity in Hepatic L02 Cells. Oxid Med Cell Longev. 2018;2018:4528581.CrossRefPubMedPubMedCentral
31.
go back to reference Tchesnokov EP, Feng JY, Porter DP, Gotte M. Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir. Viruses. 2019;11(4):326.CrossRefPubMedPubMedCentral Tchesnokov EP, Feng JY, Porter DP, Gotte M. Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir. Viruses. 2019;11(4):326.CrossRefPubMedPubMedCentral
33.
go back to reference Ding Y, Zeng L, Li R, Chen Q, Zhou B, Chen Q, Cheng PL, Yutao W, Zheng J, Yang Z, et al. The Chinese prescription lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function. BMC Complement Altern Med. 2017;17(1):130.CrossRefPubMedPubMedCentral Ding Y, Zeng L, Li R, Chen Q, Zhou B, Chen Q, Cheng PL, Yutao W, Zheng J, Yang Z, et al. The Chinese prescription lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function. BMC Complement Altern Med. 2017;17(1):130.CrossRefPubMedPubMedCentral
34.
go back to reference Kan Y, Okabayashi T, Yokota S, Yamamoto S, Fujii N, Yamashita T. Imiquimod suppresses propagation of herpes simplex virus 1 by upregulation of cystatin A via the adenosine receptor A1 pathway. J Virol. 2012;86(19):10338–46.CrossRefPubMedPubMedCentral Kan Y, Okabayashi T, Yokota S, Yamamoto S, Fujii N, Yamashita T. Imiquimod suppresses propagation of herpes simplex virus 1 by upregulation of cystatin A via the adenosine receptor A1 pathway. J Virol. 2012;86(19):10338–46.CrossRefPubMedPubMedCentral
35.
go back to reference Xue M, Zhao BS, Zhang Z, Lu M, Harder O, Chen P, Lu Z, Li A, Ma Y, Xu Y, et al. Viral N(6)-methyladenosine upregulates replication and pathogenesis of human respiratory syncytial virus. Nat Commun. 2019;10(1):4595.CrossRefPubMedPubMedCentral Xue M, Zhao BS, Zhang Z, Lu M, Harder O, Chen P, Lu Z, Li A, Ma Y, Xu Y, et al. Viral N(6)-methyladenosine upregulates replication and pathogenesis of human respiratory syncytial virus. Nat Commun. 2019;10(1):4595.CrossRefPubMedPubMedCentral
36.
go back to reference Cao Z, Liu J, Xie X, Zhan S, Song W, Wu S, Sun Z, Dong Y, Tang G, Liu Y, et al. Lipidomic profiling of amniotic fluid and its application in fetal lung maturity prediction. J Clin Lab Anal. 2020;34(4):e23109.CrossRefPubMed Cao Z, Liu J, Xie X, Zhan S, Song W, Wu S, Sun Z, Dong Y, Tang G, Liu Y, et al. Lipidomic profiling of amniotic fluid and its application in fetal lung maturity prediction. J Clin Lab Anal. 2020;34(4):e23109.CrossRefPubMed
38.
go back to reference Du LN, Xie T, Xu JY, Kang A, Di LQ, Shan JJ, Wang SC. A metabolomics approach to studying the effects of Jinxin oral liquid on RSV-infected mice using UPLC/LTQ-Orbitrap mass spectrometry. J Ethnopharmacol. 2015;174:25–36.CrossRefPubMed Du LN, Xie T, Xu JY, Kang A, Di LQ, Shan JJ, Wang SC. A metabolomics approach to studying the effects of Jinxin oral liquid on RSV-infected mice using UPLC/LTQ-Orbitrap mass spectrometry. J Ethnopharmacol. 2015;174:25–36.CrossRefPubMed
39.
go back to reference Moser TS, Schieffer D, Cherry S. AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis. Plos Pathog. 2012;8(4):e1002661.CrossRefPubMedPubMedCentral Moser TS, Schieffer D, Cherry S. AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis. Plos Pathog. 2012;8(4):e1002661.CrossRefPubMedPubMedCentral
Metadata
Title
Network pharmacology combined with metabolomics to explore the mechanism for Lonicerae Japonicae flos against respiratory syncytial virus
Authors
Jie Ding
Jing Li
Zhe Zhang
Yaxuan Du
Yuhong Liu
Ping Wang
Haitao Du
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04286-0

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue