Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Human Papillomavirus | Research

Mechanisms of action of Fu Fang Gang Liu liquid in treating condyloma acuminatum by network pharmacology and experimental validation

Authors: Zhu Fan, Shuxin Wang, Chenchen Xu, Jiao Yang, Bingnan Cui

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

Condyloma acuminatum (CA) is a sexually transmitted disease characterized by the anomalous proliferation of keratinocytes caused by human papillomavirus (HPV) infection. Fu Fang Gang Liu liquid (FFGL) is an effective externally administered prescription used to treat CA; however, its molecular mechanism remains unclear. This study aimed to identify and experimentally validate the major active ingredients and prospective targets of FFGL.

Methods

Network pharmacology, transcriptomics, and enrichment analysis were used to identify the active ingredients and prospective targets of FFGL, which were confirmed through subsequent experimental validation using mass spectrometry, molecular docking, western blotting, and in vitro assays.

Results

The network pharmacology analysis revealed that FFGL contains a total of 78 active compounds, which led to the screening of 610 compound-related targets. Among them, 59 overlapped with CA targets and were considered to be targets with potential therapeutic effects. The protein–protein interaction network analysis revealed that protein kinase B (Akt) serine/threonine kinase 1 was a potential therapeutic target. To further confirm this result, we performed ribonucleic acid sequencing (RNA-seq) assays on HPV 18+ cells after FFGL exposure and conducted enrichment analyses on the differentially expressed genes that were screened. The enrichment analysis results indicated that the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway may be a key pathway through which FFGL exerts its effects. Further in vitro experiments revealed that FFGL significantly inhibited the activity of HPV 18+ cells and reduced PI3K and Akt protein levels. A rescue experiment indicated that the reduction in cell viability induced by FFGL was partially restored after the administration of activators of the PI3K/Akt pathway. We further screened two active components of FFCL that may be efficacious in the treatment of CA: periplogenin and periplocymarin. The molecular docking experiments showed that these two compounds exhibited good binding activity to Akt1.

Conclusion

FFGL reduced HPV 18+ cell viability by inhibiting key proteins in the PI3K/Akt pathway; this pathway may represent an essential mechanism through which FFGL treats CA. Periplogenin and periplocymarin may play a significant role in this process.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kombe Kombe AJ, Li B, Zahid A, Mengist HM, Bounda GA, Zhou Y, et al. Epidemiology and Burden of Human Papillomavirus and Related Diseases, Molecular Pathogenesis, and Vaccine Evaluation. Front Public Health. 2020;8: 552028.PubMedCrossRef Kombe Kombe AJ, Li B, Zahid A, Mengist HM, Bounda GA, Zhou Y, et al. Epidemiology and Burden of Human Papillomavirus and Related Diseases, Molecular Pathogenesis, and Vaccine Evaluation. Front Public Health. 2020;8: 552028.PubMedCrossRef
2.
go back to reference Cong X, Sun R, Zhang X, Wang Y, Wang L, Yu Y. Correlation of human papillomavirus types with clinical features of patients with condyloma acuminatum in China. Int J Dermatol. 2016;55(7):775–80.PubMedCrossRef Cong X, Sun R, Zhang X, Wang Y, Wang L, Yu Y. Correlation of human papillomavirus types with clinical features of patients with condyloma acuminatum in China. Int J Dermatol. 2016;55(7):775–80.PubMedCrossRef
3.
go back to reference Huang GS, Liu GR, Han YZ, Lin J. The Influence of R-HPV Genotypes on Persistent Patients With Condyloma AcuminatM. Chin J Derm Venereol. 2017;31(10):1100–1+4. Huang GS, Liu GR, Han YZ, Lin J. The Influence of R-HPV Genotypes on Persistent Patients With Condyloma AcuminatM. Chin J Derm Venereol. 2017;31(10):1100–1+4.
4.
go back to reference Denny L. Epidemiology and Burden of Disease Associated with HPV Infection. Current Obstetrics and Gynecology Reports. 2016;5(3):189–95.CrossRef Denny L. Epidemiology and Burden of Disease Associated with HPV Infection. Current Obstetrics and Gynecology Reports. 2016;5(3):189–95.CrossRef
5.
6.
go back to reference Day PM, Schelhaas M. Concepts of papillomavirus entry into host cells. Curr Opin Virol. 2014;4:24–31.PubMedCrossRef Day PM, Schelhaas M. Concepts of papillomavirus entry into host cells. Curr Opin Virol. 2014;4:24–31.PubMedCrossRef
7.
go back to reference Pal A, Kundu R. Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Front Microbiol. 2019;10:3116.PubMedCrossRef Pal A, Kundu R. Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Front Microbiol. 2019;10:3116.PubMedCrossRef
8.
go back to reference Schiffman M, Doorbar J, Wentzensen N, de Sanjosé S, Fakhry C, Monk BJ, et al. Carcinogenic human papillomavirus infection. Nat Rev Dis Primers. 2016;2:16086.PubMedCrossRef Schiffman M, Doorbar J, Wentzensen N, de Sanjosé S, Fakhry C, Monk BJ, et al. Carcinogenic human papillomavirus infection. Nat Rev Dis Primers. 2016;2:16086.PubMedCrossRef
10.
go back to reference Münger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. Embo J. 1989;8(13):4099–105.PubMedPubMedCentralCrossRef Münger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. Embo J. 1989;8(13):4099–105.PubMedPubMedCentralCrossRef
11.
go back to reference Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 1993;75(3):495–505.PubMedCrossRef Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 1993;75(3):495–505.PubMedCrossRef
13.
go back to reference Wu J, Chen C, Zhao KN. Phosphatidylinositol 3-kinase signaling as a therapeutic target for cervical cancer. Curr Cancer Drug Targets. 2013;13(2):143–56.PubMedCrossRef Wu J, Chen C, Zhao KN. Phosphatidylinositol 3-kinase signaling as a therapeutic target for cervical cancer. Curr Cancer Drug Targets. 2013;13(2):143–56.PubMedCrossRef
14.
go back to reference Zhang L, Wu J, Ling MT, Zhao L, Zhao K-N. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses. Mol Cancer. 2015;14:87. Zhang L, Wu J, Ling MT, Zhao L, Zhao K-N. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses. Mol Cancer. 2015;14:87.
15.
go back to reference Kim SH, Juhnn YS, Kang S, Park SW, Sung MW, Bang YJ, et al. Human papillomavirus 16 E5 up-regulates the expression of vascular endothelial growth factor through the activation of epidermal growth factor receptor, MEK/ ERK1,2 and PI3K/Akt. Cell Mol Life Sci. 2006;63(7–8):930–8.PubMedCrossRef Kim SH, Juhnn YS, Kang S, Park SW, Sung MW, Bang YJ, et al. Human papillomavirus 16 E5 up-regulates the expression of vascular endothelial growth factor through the activation of epidermal growth factor receptor, MEK/ ERK1,2 and PI3K/Akt. Cell Mol Life Sci. 2006;63(7–8):930–8.PubMedCrossRef
16.
go back to reference Aoki M, Fujishita T. Oncogenic Roles of the PI3K/AKT/mTOR Axis. Curr Top Microbiol Immunol. 2017;407:153–89.PubMed Aoki M, Fujishita T. Oncogenic Roles of the PI3K/AKT/mTOR Axis. Curr Top Microbiol Immunol. 2017;407:153–89.PubMed
17.
go back to reference Contreras-Paredes A, De la Cruz-Hernández E, Martínez-Ramírez I, Dueñas-González A, Lizano M. E6 variants of human papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-kinase (akt/PI3K) signaling pathway. Virology. 2009;383(1):78–85.PubMedCrossRef Contreras-Paredes A, De la Cruz-Hernández E, Martínez-Ramírez I, Dueñas-González A, Lizano M. E6 variants of human papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-kinase (akt/PI3K) signaling pathway. Virology. 2009;383(1):78–85.PubMedCrossRef
18.
go back to reference Menges CW, Baglia LA, Lapoint R, McCance DJ. Human papillomavirus type 16 E7 up-regulates AKT activity through the retinoblastoma protein. Cancer Res. 2006;66(11):5555–9.PubMedPubMedCentralCrossRef Menges CW, Baglia LA, Lapoint R, McCance DJ. Human papillomavirus type 16 E7 up-regulates AKT activity through the retinoblastoma protein. Cancer Res. 2006;66(11):5555–9.PubMedPubMedCentralCrossRef
19.
go back to reference Pim D, Massimi P, Dilworth SM, Banks L. Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A. Oncogene. 2005;24(53):7830–8.PubMedCrossRef Pim D, Massimi P, Dilworth SM, Banks L. Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A. Oncogene. 2005;24(53):7830–8.PubMedCrossRef
20.
go back to reference Henken FE, Banerjee NS, Snijders PJ, Meijer CJ, De-Castro Arce J, Rösl F, et al. PIK3CA-mediated PI3-kinase signalling is essential for HPV-induced transformation in vitro. Mol Cancer. 2011;10:71.PubMedPubMedCentralCrossRef Henken FE, Banerjee NS, Snijders PJ, Meijer CJ, De-Castro Arce J, Rösl F, et al. PIK3CA-mediated PI3-kinase signalling is essential for HPV-induced transformation in vitro. Mol Cancer. 2011;10:71.PubMedPubMedCentralCrossRef
21.
go back to reference Cui BN, Xu X, Zhao YS. Clinical efficacy of compound periploca liquid in treating condyloma acuminatum and its effect on human papilloma virus DNA expression in vitro. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2005;25(5):392–6.PubMed Cui BN, Xu X, Zhao YS. Clinical efficacy of compound periploca liquid in treating condyloma acuminatum and its effect on human papilloma virus DNA expression in vitro. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2005;25(5):392–6.PubMed
23.
go back to reference Zhu N, Hou J. Molecular mechanism of the anti-inflammatory effects of Sophorae Flavescentis Aiton identified by network pharmacology. Sci Rep. 2021;11(1):1005.PubMedPubMedCentralCrossRef Zhu N, Hou J. Molecular mechanism of the anti-inflammatory effects of Sophorae Flavescentis Aiton identified by network pharmacology. Sci Rep. 2021;11(1):1005.PubMedPubMedCentralCrossRef
24.
go back to reference Zhang X, Gao R, Zhou Z, Sun J, Tang X, Li J, et al. Uncovering the mechanism of Huanglian-Wuzhuyu herb pair in treating nonalcoholic steatohepatitis based on network pharmacology and experimental validation. J Ethnopharmacol. 2022;296: 115405.PubMedCrossRef Zhang X, Gao R, Zhou Z, Sun J, Tang X, Li J, et al. Uncovering the mechanism of Huanglian-Wuzhuyu herb pair in treating nonalcoholic steatohepatitis based on network pharmacology and experimental validation. J Ethnopharmacol. 2022;296: 115405.PubMedCrossRef
25.
go back to reference Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. Journal of cheminformatics. 2014;6:13.PubMedPubMedCentralCrossRef Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. Journal of cheminformatics. 2014;6:13.PubMedPubMedCentralCrossRef
26.
go back to reference Xu HY, Zhang YQ, Liu ZM, Chen T, Lv CY, Tang SH, et al. ETCM: an encyclopaedia of traditional Chinese medicine. Nucleic Acids Res. 2019;47(D1):D976–82.PubMedCrossRef Xu HY, Zhang YQ, Liu ZM, Chen T, Lv CY, Tang SH, et al. ETCM: an encyclopaedia of traditional Chinese medicine. Nucleic Acids Res. 2019;47(D1):D976–82.PubMedCrossRef
27.
go back to reference Wang T, Jiang X, Ruan Y, Li L, Chu L. The mechanism of action of the combination of Astragalus membranaceus and Ligusticum chuanxiong in the treatment of ischemic stroke based on network pharmacology and molecular docking. Medicine. 2022;101(28): e29593.PubMedCrossRef Wang T, Jiang X, Ruan Y, Li L, Chu L. The mechanism of action of the combination of Astragalus membranaceus and Ligusticum chuanxiong in the treatment of ischemic stroke based on network pharmacology and molecular docking. Medicine. 2022;101(28): e29593.PubMedCrossRef
28.
go back to reference Wang T, Zhou Y, Wang K, Jiang X, Wang J, Chen J. Prediction and validation of potential molecular targets for the combination of Astragalus membranaceus and Angelica sinensis in the treatment of atherosclerosis based on network pharmacology. Medicine. 2022;101(26):e29762. Wang T, Zhou Y, Wang K, Jiang X, Wang J, Chen J. Prediction and validation of potential molecular targets for the combination of Astragalus membranaceus and Angelica sinensis in the treatment of atherosclerosis based on network pharmacology. Medicine. 2022;101(26):e29762.
29.
go back to reference Wang X, Shen Y, Wang S, Li S, Zhang W, Liu X, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017;45(W1):W356–60.PubMedPubMedCentralCrossRef Wang X, Shen Y, Wang S, Li S, Zhang W, Liu X, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017;45(W1):W356–60.PubMedPubMedCentralCrossRef
30.
go back to reference Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357–64.PubMedPubMedCentralCrossRef Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357–64.PubMedPubMedCentralCrossRef
31.
go back to reference UniProt. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480-d9. UniProt. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480-d9.
32.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedPubMedCentralCrossRef Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedPubMedCentralCrossRef
33.
go back to reference Safran M, Rosen N, Twik M, BarShir R, Stein TI, Dahary D, et al. The GeneCards Suite. In: Abugessaisa I, Kasukawa T, editors., et al., Practical Guide to Life Science Databases. Singapore: Springer Nature Singapore; 2021. p. 27–56.CrossRef Safran M, Rosen N, Twik M, BarShir R, Stein TI, Dahary D, et al. The GeneCards Suite. In: Abugessaisa I, Kasukawa T, editors., et al., Practical Guide to Life Science Databases. Singapore: Springer Nature Singapore; 2021. p. 27–56.CrossRef
34.
go back to reference Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48(D1):D845–55.PubMed Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48(D1):D845–55.PubMed
35.
go back to reference Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.PubMedCrossRef Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.PubMedCrossRef
36.
go back to reference Wang T, Jiang X, Ruan Y, Zhuang J, Yin Y. Based on network pharmacology and in vitro experiments to prove the effective inhibition of myocardial fibrosis by Buyang Huanwu decoction. Bioengineered. 2022;13(5):13767–83.PubMedPubMedCentralCrossRef Wang T, Jiang X, Ruan Y, Zhuang J, Yin Y. Based on network pharmacology and in vitro experiments to prove the effective inhibition of myocardial fibrosis by Buyang Huanwu decoction. Bioengineered. 2022;13(5):13767–83.PubMedPubMedCentralCrossRef
37.
go back to reference Li J, Miao B, Wang S, Dong W, Xu H, Si C, et al. Hiplot: a comprehensive and easy-to-use web service boosting publication-ready biomedical data visualization. 2022:2022.03.16.484681. Li J, Miao B, Wang S, Dong W, Xu H, Si C, et al. Hiplot: a comprehensive and easy-to-use web service boosting publication-ready biomedical data visualization. 2022:2022.03.16.484681.
38.
go back to reference Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021;49(W1):W317–25.PubMedPubMedCentralCrossRef Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021;49(W1):W317–25.PubMedPubMedCentralCrossRef
39.
go back to reference Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Cambridge (Mass)). 2021;2(3):100141. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Cambridge (Mass)). 2021;2(3):100141.
40.
go back to reference Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein science : a publication of the Protein Society. 2019;28(11):1947–51.PubMedCrossRef Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein science : a publication of the Protein Society. 2019;28(11):1947–51.PubMedCrossRef
41.
go back to reference Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–92.PubMedCrossRef Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–92.PubMedCrossRef
43.
go back to reference Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–95.PubMedCrossRef Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–95.PubMedCrossRef
44.
go back to reference Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2020;49(D1):D437–51.PubMedCentralCrossRef Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2020;49(D1):D437–51.PubMedCentralCrossRef
45.
go back to reference Coffer PJ, Woodgett JR. Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem. 1991;201(2):475–81.PubMedCrossRef Coffer PJ, Woodgett JR. Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem. 1991;201(2):475–81.PubMedCrossRef
46.
go back to reference Carrillo-Beltrán D, Muñoz JP, Guerrero-Vásquez N, Blanco R, León O, de Souza Lino V, et al. Human Papillomavirus 16 E7 Promotes EGFR/PI3K/AKT1/NRF2 Signaling Pathway Contributing to PIR/NF-κB Activation in Oral Cancer Cells. Cancers (Basel). 2020;12(7):1904. Carrillo-Beltrán D, Muñoz JP, Guerrero-Vásquez N, Blanco R, León O, de Souza Lino V, et al. Human Papillomavirus 16 E7 Promotes EGFR/PI3K/AKT1/NRF2 Signaling Pathway Contributing to PIR/NF-κB Activation in Oral Cancer Cells. Cancers (Basel). 2020;12(7):1904.
48.
go back to reference Abraham AG, O’Neill E. PI3K/Akt-mediated regulation of p53 in cancer. Biochem Soc Trans. 2014;42(4):798–803.PubMedCrossRef Abraham AG, O’Neill E. PI3K/Akt-mediated regulation of p53 in cancer. Biochem Soc Trans. 2014;42(4):798–803.PubMedCrossRef
50.
go back to reference Gilson R, Nugent D, Werner RN, Ballesteros J, Ross J. 2019 IUSTI-Europe guideline for the management of anogenital warts. Journal of the European Academy of Dermatology and Venereology : JEADV. 2020;34(8):1644–53.PubMedCrossRef Gilson R, Nugent D, Werner RN, Ballesteros J, Ross J. 2019 IUSTI-Europe guideline for the management of anogenital warts. Journal of the European Academy of Dermatology and Venereology : JEADV. 2020;34(8):1644–53.PubMedCrossRef
51.
go back to reference Sindhuja T, Bhari N, Gupta S. Asian guidelines for condyloma acuminatum. J Infect Chemother. 2022. Sindhuja T, Bhari N, Gupta S. Asian guidelines for condyloma acuminatum. J Infect Chemother. 2022.
53.
go back to reference Della Fera AN, Warburton A, Coursey TL, Khurana S, McBride AA. Persistent Human Papillomavirus Infection. Viruses. 2021;13(2):321. Della Fera AN, Warburton A, Coursey TL, Khurana S, McBride AA. Persistent Human Papillomavirus Infection. Viruses. 2021;13(2):321.
54.
go back to reference Lin J, Chen L, Qiu X, Zhang N, Guo Q, Wang Y, et al. Traditional Chinese medicine for human papillomavirus (HPV) infections: A systematic review. Biosci Trends. 2017;11(3):267–73.PubMedCrossRef Lin J, Chen L, Qiu X, Zhang N, Guo Q, Wang Y, et al. Traditional Chinese medicine for human papillomavirus (HPV) infections: A systematic review. Biosci Trends. 2017;11(3):267–73.PubMedCrossRef
55.
go back to reference Paolini F, Carbone A, Benevolo M, Silipo V, Rollo F, Covello R, et al. Human Papillomaviruses, p16INK4a and Akt expression in basal cell carcinoma. J Experiment Clin Cancer Res. 2011;30(1):108.CrossRef Paolini F, Carbone A, Benevolo M, Silipo V, Rollo F, Covello R, et al. Human Papillomaviruses, p16INK4a and Akt expression in basal cell carcinoma. J Experiment Clin Cancer Res. 2011;30(1):108.CrossRef
56.
go back to reference Staal SP. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci U S A. 1987;84(14):5034–7.PubMedPubMedCentralCrossRef Staal SP. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci U S A. 1987;84(14):5034–7.PubMedPubMedCentralCrossRef
57.
go back to reference Zhong Y, Wei J, Song W, Wang Q, Zhang Z, Liu H, et al. Identification of novel biomarkers and key pathways of condyloma acuminata. Genomics. 2022;114(2):110303. Zhong Y, Wei J, Song W, Wang Q, Zhang Z, Liu H, et al. Identification of novel biomarkers and key pathways of condyloma acuminata. Genomics. 2022;114(2):110303.
58.
go back to reference Man X, Zhang X, Tang J, Zheng Z, Yang D, Chen Y, et al. Expressions of phosphatidylinositol 3 kinase and phosphorylated Akt in condyloma acuminatum and cervical squamous cell carcinoma. Chinese Journa of Dermatology. 2011;44(12):857–60. Man X, Zhang X, Tang J, Zheng Z, Yang D, Chen Y, et al. Expressions of phosphatidylinositol 3 kinase and phosphorylated Akt in condyloma acuminatum and cervical squamous cell carcinoma. Chinese Journa of Dermatology. 2011;44(12):857–60.
59.
go back to reference Chen M, Wang J, Fang R, Jia S, Mo Y, Mo J. Expression of Caspase 8 and phospho-Akt in condyloma acuminatum lesions. Chinese Journa of Dermatology. 2017;50(5):366–9. Chen M, Wang J, Fang R, Jia S, Mo Y, Mo J. Expression of Caspase 8 and phospho-Akt in condyloma acuminatum lesions. Chinese Journa of Dermatology. 2017;50(5):366–9.
60.
go back to reference Xie J, Wang S, Li Z, Ao C, Wang J, Wang L, et al. 5-aminolevulinic acid photodynamic therapy reduces HPV viral load via autophagy and apoptosis by modulating Ras/Raf/MEK/ERK and PI3K/AKT pathways in HeLa cells. J Photochem Photobiol, B. 2019;194:46–55.PubMedCrossRef Xie J, Wang S, Li Z, Ao C, Wang J, Wang L, et al. 5-aminolevulinic acid photodynamic therapy reduces HPV viral load via autophagy and apoptosis by modulating Ras/Raf/MEK/ERK and PI3K/AKT pathways in HeLa cells. J Photochem Photobiol, B. 2019;194:46–55.PubMedCrossRef
61.
go back to reference Newman RA, Yang P, Pawlus AD, Block KI. Cardiac glycosides as novel cancer therapeutic agents. Mol Interventions. 2008;8(1):36–49.CrossRef Newman RA, Yang P, Pawlus AD, Block KI. Cardiac glycosides as novel cancer therapeutic agents. Mol Interventions. 2008;8(1):36–49.CrossRef
62.
go back to reference Kumavath R, Paul S, Pavithran H, Paul MK, Ghosh P, Barh D, et al. Emergence of Cardiac Glycosides as Potential Drugs: Current and Future Scope for Cancer Therapeutics. Biomolecules. 2021;11(9):1275.PubMedPubMedCentralCrossRef Kumavath R, Paul S, Pavithran H, Paul MK, Ghosh P, Barh D, et al. Emergence of Cardiac Glycosides as Potential Drugs: Current and Future Scope for Cancer Therapeutics. Biomolecules. 2021;11(9):1275.PubMedPubMedCentralCrossRef
63.
go back to reference Zhang HY, Xu WQ, Wang YW, Omari-Siaw E, Wang Y, Zheng YY, et al. Tumor targeted delivery of octreotide-periplogenin conjugate: Synthesis, in vitro and in vivo evaluation. Int J Pharm. 2016;502(1–2):98–106.PubMedCrossRef Zhang HY, Xu WQ, Wang YW, Omari-Siaw E, Wang Y, Zheng YY, et al. Tumor targeted delivery of octreotide-periplogenin conjugate: Synthesis, in vitro and in vivo evaluation. Int J Pharm. 2016;502(1–2):98–106.PubMedCrossRef
64.
go back to reference Zhang H, Xu W, Omari-Siaw E, Liu Y, Chen B, Chen D, et al. Redox-responsive PEGylated self-assembled prodrug-nanoparticles formed by single disulfide bond bridge periplocymarin-vitamin E conjugate for liver cancer chemotherapy. Drug Delivery. 2017;24(1):1170–8.PubMedPubMedCentralCrossRef Zhang H, Xu W, Omari-Siaw E, Liu Y, Chen B, Chen D, et al. Redox-responsive PEGylated self-assembled prodrug-nanoparticles formed by single disulfide bond bridge periplocymarin-vitamin E conjugate for liver cancer chemotherapy. Drug Delivery. 2017;24(1):1170–8.PubMedPubMedCentralCrossRef
65.
go back to reference Itokawa H, Xu JP, Takeya K. Studies on chemical constituents of antitumor fraction from Periploca sepium BGE. I Chemical & pharmaceutical bulletin. 1987;35(11):4524–9.CrossRef Itokawa H, Xu JP, Takeya K. Studies on chemical constituents of antitumor fraction from Periploca sepium BGE. I Chemical & pharmaceutical bulletin. 1987;35(11):4524–9.CrossRef
66.
go back to reference Hu Y, Liu F, Jia X, Wang P, Gu T, Liu H, et al. Periplogenin suppresses the growth of esophageal squamous cell carcinoma in vitro and in vivo by targeting STAT3. Oncogene. 2021;40(23):3942–58.PubMedCrossRef Hu Y, Liu F, Jia X, Wang P, Gu T, Liu H, et al. Periplogenin suppresses the growth of esophageal squamous cell carcinoma in vitro and in vivo by targeting STAT3. Oncogene. 2021;40(23):3942–58.PubMedCrossRef
67.
go back to reference Ye H, Wei X, Meng C, Wei Y, Liang G, Huang Z, et al. Mechanism of Action of Periplogenin on Nasopharyngeal Carcinoma Based on Network Pharmacology and Experimental Study of Vitamin E Coupled with Periplogenin Self-Assembled Nano-Prodrug for Nasopharyngeal Carcinoma. J Biomed Nanotechnol. 2020;16(9):1406–15.PubMedCrossRef Ye H, Wei X, Meng C, Wei Y, Liang G, Huang Z, et al. Mechanism of Action of Periplogenin on Nasopharyngeal Carcinoma Based on Network Pharmacology and Experimental Study of Vitamin E Coupled with Periplogenin Self-Assembled Nano-Prodrug for Nasopharyngeal Carcinoma. J Biomed Nanotechnol. 2020;16(9):1406–15.PubMedCrossRef
68.
go back to reference Zhang HY, Xu WQ, Zheng YY, Omari-Siaw E, Zhu Y, Cao X, et al. Octreotide-periplocymarin conjugate prodrug for improving targetability and anti-tumor efficiency: synthesis, in vitro and in vivo evaluation. Oncotarget. 2016;7(52):86326–38.PubMedPubMedCentralCrossRef Zhang HY, Xu WQ, Zheng YY, Omari-Siaw E, Zhu Y, Cao X, et al. Octreotide-periplocymarin conjugate prodrug for improving targetability and anti-tumor efficiency: synthesis, in vitro and in vivo evaluation. Oncotarget. 2016;7(52):86326–38.PubMedPubMedCentralCrossRef
69.
go back to reference Bloise E, Braca A, De Tommasi N, Belisario MA. Pro-apoptotic and cytostatic activity of naturally occurring cardenolides. Cancer Chemother Pharmacol. 2009;64(4):793–802.PubMedCrossRef Bloise E, Braca A, De Tommasi N, Belisario MA. Pro-apoptotic and cytostatic activity of naturally occurring cardenolides. Cancer Chemother Pharmacol. 2009;64(4):793–802.PubMedCrossRef
70.
go back to reference Martey ON, He X, Xing H, Deng F, Feng S, Li C, et al. Periplocymarin is a potential natural compound for drug development: highly permeable with absence of P-glycoprotein efflux and cytochrome P450 inhibitions. Biopharm Drug Dispos. 2014;35(4):195–206.PubMedCrossRef Martey ON, He X, Xing H, Deng F, Feng S, Li C, et al. Periplocymarin is a potential natural compound for drug development: highly permeable with absence of P-glycoprotein efflux and cytochrome P450 inhibitions. Biopharm Drug Dispos. 2014;35(4):195–206.PubMedCrossRef
71.
go back to reference Cheng Y, Wang G, Zhao L, Dai S, Han J, Hu X, et al. Periplocymarin Induced Colorectal Cancer Cells Apoptosis Via Impairing PI3K/AKT Pathway. Front Oncol. 2021;11:753598. Cheng Y, Wang G, Zhao L, Dai S, Han J, Hu X, et al. Periplocymarin Induced Colorectal Cancer Cells Apoptosis Via Impairing PI3K/AKT Pathway. Front Oncol. 2021;11:753598.
Metadata
Title
Mechanisms of action of Fu Fang Gang Liu liquid in treating condyloma acuminatum by network pharmacology and experimental validation
Authors
Zhu Fan
Shuxin Wang
Chenchen Xu
Jiao Yang
Bingnan Cui
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-03960-7

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue