Skip to main content
Top
Published in: Current Oral Health Reports 4/2017

Open Access 01-12-2017 | Epidemiology (M Laine, Section Editor)

Current Concepts of Epigenetics and Its Role in Periodontitis

Published in: Current Oral Health Reports | Issue 4/2017

Login to get access

Abstract

Purpose

The focus of this review is to provide an overview of the recent findings on the role of epigenetic mechanisms in periodontal disease, including disease susceptibility, progression, and as potential treatment options.

Recent Findings

The findings on the influence of oral pathogens on epigenetic regulation of pathogen recognition receptors, such as Toll-like receptors, as well as pro-inflammatory cytokines suggest an important role for epigenetics in the regulation of the host immune response. Recent studies also show that the epigenetic pattern in periodontitis lesions differ from that of healthy and gingivitis tissue. In addition, these patterns differ between tissues in the same individual. Research is also indicating a role for both DNA methylation and histone acetylation on cells osteogenic differentiation and bone regeneration.

Summary

Knowledge of epigenetic pattern in periodontal diseases may add not only to the knowledge of susceptibility of the disease but may also be a diagnostic tool to identify patients at risk to develop the severe form of periodontitis. In addition, recent research within gene therapy and tissue engineering indicate a role for epigenetics also to improve regeneration of periodontal tissues.
Literature
1.
go back to reference Kornman KS. Mapping the pathogenesis of periodontitis: a new look. J Periodontol. 2008;79:1560–8.CrossRefPubMed Kornman KS. Mapping the pathogenesis of periodontitis: a new look. J Periodontol. 2008;79:1560–8.CrossRefPubMed
2.
go back to reference Hugosson A, Sjödin B, Norderyd O. Trends over 30 years, 1973-2003, in the prevalence and severity of periodontal diseases. J Clin Periodontol. 2008;35:405–14.CrossRef Hugosson A, Sjödin B, Norderyd O. Trends over 30 years, 1973-2003, in the prevalence and severity of periodontal diseases. J Clin Periodontol. 2008;35:405–14.CrossRef
3.
go back to reference Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res. 2012;91:914–20.CrossRefPubMed Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res. 2012;91:914–20.CrossRefPubMed
4.
go back to reference Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J Dent Res. 2014;93:1045–53.CrossRefPubMedPubMedCentral Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J Dent Res. 2014;93:1045–53.CrossRefPubMedPubMedCentral
5.
go back to reference Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol. 2015;69:7–17.CrossRef Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol. 2015;69:7–17.CrossRef
6.
go back to reference Offenbacher S, Barros SP, Beck JD. Rethinking periodontal inflammation. J Periodontol. 2008;79:1577–84.CrossRefPubMed Offenbacher S, Barros SP, Beck JD. Rethinking periodontal inflammation. J Periodontol. 2008;79:1577–84.CrossRefPubMed
7.
go back to reference Larsson L, Castilho RM, Giannobile WV. Epigenetics and its role in periodontal diseases—a state-of-the-art review. J Periodontol. 2015;86:556–68.CrossRefPubMed Larsson L, Castilho RM, Giannobile WV. Epigenetics and its role in periodontal diseases—a state-of-the-art review. J Periodontol. 2015;86:556–68.CrossRefPubMed
8.
go back to reference Lod S, Johansson T, Abrahamsson KH, Larsson L. The influence of epigenetics in relation to oral health. Int J Dent Hygiene. 2014;12:48–54.CrossRef Lod S, Johansson T, Abrahamsson KH, Larsson L. The influence of epigenetics in relation to oral health. Int J Dent Hygiene. 2014;12:48–54.CrossRef
9.
go back to reference Seo J-Y, Park Y-J, Yi Y-A, Hwang J-Y, Lee I-B, Cho B-H, et al. Epigenetics: general characteristics and implications for oral health. Restor Dent Endod. 2015;40:14–22.CrossRefPubMed Seo J-Y, Park Y-J, Yi Y-A, Hwang J-Y, Lee I-B, Cho B-H, et al. Epigenetics: general characteristics and implications for oral health. Restor Dent Endod. 2015;40:14–22.CrossRefPubMed
10.
go back to reference Waddington CH. The epigenotype. Endeavor 1942:1:18-20. Reprinted in Int J Epidemiol. 2012;41:10–3.CrossRef Waddington CH. The epigenotype. Endeavor 1942:1:18-20. Reprinted in Int J Epidemiol. 2012;41:10–3.CrossRef
13.
14.
go back to reference Tahiliani M, Koh KP, Shen UY, Pastor WA, Bandukwala H, Brudno Y. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.CrossRefPubMedPubMedCentral Tahiliani M, Koh KP, Shen UY, Pastor WA, Bandukwala H, Brudno Y. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.CrossRefPubMedPubMedCentral
15.
go back to reference Kraus TFJ, Globisch D, Wagner M, Eigenbrod S, Widmann D, Münzel M, et al. Low values of 5-hydroxymethylcytosine (5hmC), the sixth base, are associated with anaplasia in human brain tumors. Int J Cancer. 2012;131:1577–90.CrossRefPubMed Kraus TFJ, Globisch D, Wagner M, Eigenbrod S, Widmann D, Münzel M, et al. Low values of 5-hydroxymethylcytosine (5hmC), the sixth base, are associated with anaplasia in human brain tumors. Int J Cancer. 2012;131:1577–90.CrossRefPubMed
16.
go back to reference Barros SP, Offenbacher S. Modifiable risk factors in periodontal disease. Epigenetic regulation of gene expression in the inflammatory response. Periodontol. 2014;64:95–110.CrossRef Barros SP, Offenbacher S. Modifiable risk factors in periodontal disease. Epigenetic regulation of gene expression in the inflammatory response. Periodontol. 2014;64:95–110.CrossRef
17.
go back to reference • Martins MD, Jia Y, Larsson L, Almeida LO, Garaicoa-Pazmino C, Le JM, et al. Epigenetic modifications of histones in periodontal disease. J Dent Res. 2016;95:215–22. This study shows the complex balance between epigenetic mechanisms, pathogen recognition receptors, and inflammatory response. CrossRefPubMed • Martins MD, Jia Y, Larsson L, Almeida LO, Garaicoa-Pazmino C, Le JM, et al. Epigenetic modifications of histones in periodontal disease. J Dent Res. 2016;95:215–22. This study shows the complex balance between epigenetic mechanisms, pathogen recognition receptors, and inflammatory response. CrossRefPubMed
18.
go back to reference Benakanahere M, Abdolhosseini M, Hosur K, Finoti LS, Kinane DF. TLR2 promoter hypermethylation creates innate immune dysbiosis. J Dent Res. 2015;94:183–91.CrossRef Benakanahere M, Abdolhosseini M, Hosur K, Finoti LS, Kinane DF. TLR2 promoter hypermethylation creates innate immune dysbiosis. J Dent Res. 2015;94:183–91.CrossRef
19.
go back to reference De Oliveira NF, Andia DC, Planello AC, Pasetto S, Marques MR, Nociti JRFH, et al. TLR2 and TLR4 gene promoter methylation status during chronic periodontitis. J Clin Periodontol. 2011;38:975–83.CrossRefPubMed De Oliveira NF, Andia DC, Planello AC, Pasetto S, Marques MR, Nociti JRFH, et al. TLR2 and TLR4 gene promoter methylation status during chronic periodontitis. J Clin Periodontol. 2011;38:975–83.CrossRefPubMed
20.
go back to reference de Faria Amormino SA, Arao TC, Saraiva AM, Gomez RS, Dutra WO, da Costa JE, et al. Hypermethylation and low transcription of TLR2 gene in chronic periodontitis. Human Immunobiol. 2013;74:1231–6.CrossRef de Faria Amormino SA, Arao TC, Saraiva AM, Gomez RS, Dutra WO, da Costa JE, et al. Hypermethylation and low transcription of TLR2 gene in chronic periodontitis. Human Immunobiol. 2013;74:1231–6.CrossRef
21.
go back to reference Abu-Amer Y. NF-kappaB signaling and bone resorption. Osteoporosis Int. 2013;24:2377–86.CrossRef Abu-Amer Y. NF-kappaB signaling and bone resorption. Osteoporosis Int. 2013;24:2377–86.CrossRef
22.
go back to reference Takai R, Uehara O, Harada F, Utsunomiya M, Chuju T, Yoshida K, et al. DNA hypermethylation of extracellular matrix-related genes in human periodontal fibroblasts induced by stimulation for a prolonged period with lipopolysaccharide derived from Porhyromonas gingivalis. J Periodontal Res. 2016;51:508–17.CrossRefPubMed Takai R, Uehara O, Harada F, Utsunomiya M, Chuju T, Yoshida K, et al. DNA hypermethylation of extracellular matrix-related genes in human periodontal fibroblasts induced by stimulation for a prolonged period with lipopolysaccharide derived from Porhyromonas gingivalis. J Periodontal Res. 2016;51:508–17.CrossRefPubMed
23.
go back to reference Miao D, Godovikova V, Qian X, Seshadrinathan S, Kapila YL, Fenno JC. Treponema denticola upregulates MMP-2 activation in periodontal ligament cells: interplay between epigenetics and periodontal infection. Arch Oral Biol. 2014;59:1056–64.CrossRefPubMedPubMedCentral Miao D, Godovikova V, Qian X, Seshadrinathan S, Kapila YL, Fenno JC. Treponema denticola upregulates MMP-2 activation in periodontal ligament cells: interplay between epigenetics and periodontal infection. Arch Oral Biol. 2014;59:1056–64.CrossRefPubMedPubMedCentral
24.
go back to reference Franco C, Hernandez-Rios P, Timo S, Biguetti C, Hernandez M. Matrix metalloproteinases as regulators of periodontal inflammation. Int J Mol Sci. 2017;18:440.CrossRefPubMedCentral Franco C, Hernandez-Rios P, Timo S, Biguetti C, Hernandez M. Matrix metalloproteinases as regulators of periodontal inflammation. Int J Mol Sci. 2017;18:440.CrossRefPubMedCentral
25.
go back to reference De Souza AP, Planello AC, Marques MR, De Carvalho DD, Line SRP. High-throughput DNA analysis shows the importance of methylation in the control of immune inflammatory gene transcription in chronic periodontitis. Clin Epigenet. 2014;6:15.CrossRef De Souza AP, Planello AC, Marques MR, De Carvalho DD, Line SRP. High-throughput DNA analysis shows the importance of methylation in the control of immune inflammatory gene transcription in chronic periodontitis. Clin Epigenet. 2014;6:15.CrossRef
26.
go back to reference Schulz S, Immel UD, Just L, Schaller H-G, Gläser C, Reichert S. Epigenetic characteristics in inflammatory candidate genes in aggressive periodontitis. Human Immunol. 2016;77:71–5.CrossRef Schulz S, Immel UD, Just L, Schaller H-G, Gläser C, Reichert S. Epigenetic characteristics in inflammatory candidate genes in aggressive periodontitis. Human Immunol. 2016;77:71–5.CrossRef
27.
go back to reference Stefani FA, Viana MB, Dupim AC, Brito JAR, Gomez RS, da Costa JE, et al. Expression, polymorphism and methylation pattern of interleukin-6 in periodontal tissues. Immunobiology. 2013;218:1012–7.CrossRefPubMed Stefani FA, Viana MB, Dupim AC, Brito JAR, Gomez RS, da Costa JE, et al. Expression, polymorphism and methylation pattern of interleukin-6 in periodontal tissues. Immunobiology. 2013;218:1012–7.CrossRefPubMed
28.
go back to reference Kobayashi T, Ishida K, Yoshie H. Increased expression of interleukin-6 (IL-6) gene transcript in relation to IL-6 promoter hypomethylation in gingival tissue from patients with chronic periodontitis. Arch Oral Biol. 2016;69:89–94.CrossRefPubMed Kobayashi T, Ishida K, Yoshie H. Increased expression of interleukin-6 (IL-6) gene transcript in relation to IL-6 promoter hypomethylation in gingival tissue from patients with chronic periodontitis. Arch Oral Biol. 2016;69:89–94.CrossRefPubMed
29.
go back to reference Kojima A, Kobayashi T, Ito S, Murasawa A, Nakazono K, et al. Tumor necrosis factor-alpha gene promoter methylation in Japanese adults with chronic periodontitis and rheumatoid arthritis. J Periodontal Res. 2016;51:350–8.CrossRefPubMed Kojima A, Kobayashi T, Ito S, Murasawa A, Nakazono K, et al. Tumor necrosis factor-alpha gene promoter methylation in Japanese adults with chronic periodontitis and rheumatoid arthritis. J Periodontal Res. 2016;51:350–8.CrossRefPubMed
30.
go back to reference Baptista NB, Portinho D, Casarin RCV, Vale HF, Casati MZ, De Souza AP, et al. DNA methylation levels of SOCS1 and LINE-1 in oral epithelial cells from aggressive periodontitis patients. Arc Oral Biol. 2014;59:670–8.CrossRef Baptista NB, Portinho D, Casarin RCV, Vale HF, Casati MZ, De Souza AP, et al. DNA methylation levels of SOCS1 and LINE-1 in oral epithelial cells from aggressive periodontitis patients. Arc Oral Biol. 2014;59:670–8.CrossRef
31.
go back to reference Andia DC, Planello AC, Portinho D, Sa Silva RA, Salmon CR, Sallum EA, et al. DNA methylation analysis of SOCS1, SOCS3 and LINE-1 in microdissected gingival tissue. Clin oral invest. 2015;19:2337–44.CrossRef Andia DC, Planello AC, Portinho D, Sa Silva RA, Salmon CR, Sallum EA, et al. DNA methylation analysis of SOCS1, SOCS3 and LINE-1 in microdissected gingival tissue. Clin oral invest. 2015;19:2337–44.CrossRef
32.
go back to reference •• Planello AC, Singhania R, Kron KJ, Bailey SD, Ronlois D, Lupien M, et al. Pre-neoplastic epigenetic disruption of transcriptional enhancers in chronic inflammation. Oncotarget. 2016;7:15772–86. This is a very interesting and in depth study on epigenetics in chronic inflammation and its correlation to epigenetic pattern in cancer. CrossRefPubMedPubMedCentral •• Planello AC, Singhania R, Kron KJ, Bailey SD, Ronlois D, Lupien M, et al. Pre-neoplastic epigenetic disruption of transcriptional enhancers in chronic inflammation. Oncotarget. 2016;7:15772–86. This is a very interesting and in depth study on epigenetics in chronic inflammation and its correlation to epigenetic pattern in cancer. CrossRefPubMedPubMedCentral
33.
go back to reference Uehara O, Abiko Y, Saitoh M, Miyakawa H, Nakazawa F. Lipopolysaccharide extracted from Porphyromonas gingivalis induces DNA hypermethylation of runt-related transcription factor 2 in human periodontal fibroblasts. J Microbiol, immunol Infect. 2014;47:176–81.CrossRef Uehara O, Abiko Y, Saitoh M, Miyakawa H, Nakazawa F. Lipopolysaccharide extracted from Porphyromonas gingivalis induces DNA hypermethylation of runt-related transcription factor 2 in human periodontal fibroblasts. J Microbiol, immunol Infect. 2014;47:176–81.CrossRef
34.
go back to reference • Cho Y, Kim B, Bae H, Kim W, Baek J, Woo K, et al. Direct gingival fibroblast/osteoblast transdifferentiation via epigenetics. J Dent Res. 2017; https://doi.org/10.1177/0022034516686745. This study demonstrates the possibility of differentiate human gingival fibroblast into functional osteoblasts using epigenetics. • Cho Y, Kim B, Bae H, Kim W, Baek J, Woo K, et al. Direct gingival fibroblast/osteoblast transdifferentiation via epigenetics. J Dent Res. 2017; https://​doi.​org/​10.​1177/​0022034516686745​. This study demonstrates the possibility of differentiate human gingival fibroblast into functional osteoblasts using epigenetics.
35.
go back to reference Larsson L, Thorbert-Mros S, Lopez-Lago A, Kalm J, Shikhan A, Berglungh T. Expression of TET2 enzyme indicates enhanced epigenetic modification of cells in periodontitis. Eur J Oral Sci. 2016;124:329–33.CrossRefPubMed Larsson L, Thorbert-Mros S, Lopez-Lago A, Kalm J, Shikhan A, Berglungh T. Expression of TET2 enzyme indicates enhanced epigenetic modification of cells in periodontitis. Eur J Oral Sci. 2016;124:329–33.CrossRefPubMed
36.
go back to reference Jiang R, Jones MJ, Chen E, Neumann SM, Fraser HB, Miller GE, et al. Discordance of DNA methylation variance between two accessible human tissues. Sci Rep. 2015;5:8257.CrossRefPubMedPubMedCentral Jiang R, Jones MJ, Chen E, Neumann SM, Fraser HB, Miller GE, et al. Discordance of DNA methylation variance between two accessible human tissues. Sci Rep. 2015;5:8257.CrossRefPubMedPubMedCentral
37.
go back to reference Sadakierska-Chudy A, Kostrzewa RM, Filip M. A comprehensive view of the epigenetic landscape part I: DNA methylation, passive and active DNA demethylation pathways and histone variants. Neurotox Res. 2015;27:84–97.CrossRefPubMed Sadakierska-Chudy A, Kostrzewa RM, Filip M. A comprehensive view of the epigenetic landscape part I: DNA methylation, passive and active DNA demethylation pathways and histone variants. Neurotox Res. 2015;27:84–97.CrossRefPubMed
38.
go back to reference Kusumoto T, Hamada T, Yamada N, Nagata S, Kanmura Y, Houjou I, et al. Comprehensive epigenetic analysis using oral rinse samples: a pilot study. J Oral Maxillofac Surg. 2012;70:1486–94.CrossRefPubMed Kusumoto T, Hamada T, Yamada N, Nagata S, Kanmura Y, Houjou I, et al. Comprehensive epigenetic analysis using oral rinse samples: a pilot study. J Oral Maxillofac Surg. 2012;70:1486–94.CrossRefPubMed
39.
go back to reference Nagata S, Hamada T, Yamada N, Yokoyama S, Kitamoto S, Kanmura Y, et al. Aberrant DNA methylation of tumor-related genes in oral rinse. Cancer. 2012;118:4298–308.CrossRefPubMed Nagata S, Hamada T, Yamada N, Yokoyama S, Kitamoto S, Kanmura Y, et al. Aberrant DNA methylation of tumor-related genes in oral rinse. Cancer. 2012;118:4298–308.CrossRefPubMed
40.
go back to reference Eipel M, Mayer F, Arent T, Ferreira MRP, Birkhofer C, Gerstenmaier U, et al. Epigenetic age predictions based on buccal swabs are more precise in combination with cell type-specific DNA methylation signatures. Aging. 2016;8:1034–44.CrossRefPubMedPubMedCentral Eipel M, Mayer F, Arent T, Ferreira MRP, Birkhofer C, Gerstenmaier U, et al. Epigenetic age predictions based on buccal swabs are more precise in combination with cell type-specific DNA methylation signatures. Aging. 2016;8:1034–44.CrossRefPubMedPubMedCentral
41.
42.
go back to reference Ivanov M, Barragan I, Ingelman-Sundberg M. Epigenetic mechanisms of importance for drug treatment. Trends Pharmacol Sci. 2014;35:384–96.CrossRefPubMed Ivanov M, Barragan I, Ingelman-Sundberg M. Epigenetic mechanisms of importance for drug treatment. Trends Pharmacol Sci. 2014;35:384–96.CrossRefPubMed
43.
go back to reference Martins MD, Castilho RM. Histones: controlling tumor signaling circuity. J carcinog Mutagen. 2013;29(suppl.5):1–12. Martins MD, Castilho RM. Histones: controlling tumor signaling circuity. J carcinog Mutagen. 2013;29(suppl.5):1–12.
44.
go back to reference •• Cantley MD, Zannettino ACW, Bartold PM, Fairlie DP, Haynes DR. Histone deacetylases (HDAC) in physiological and pathological bone remodelling. Bone. 2017;95:162–74. This is a recent study in a line of several very interesting studies from this group evaluating the role of HDACs and HDACi in bone regeneration and periodontal disease. CrossRefPubMed •• Cantley MD, Zannettino ACW, Bartold PM, Fairlie DP, Haynes DR. Histone deacetylases (HDAC) in physiological and pathological bone remodelling. Bone. 2017;95:162–74. This is a recent study in a line of several very interesting studies from this group evaluating the role of HDACs and HDACi in bone regeneration and periodontal disease. CrossRefPubMed
45.
go back to reference Cantley MD, Fairlie DP, Bartold PM, Rainsford KD, Le GT, Lucke AJ, et al. Inhibitors of histone deacetylases in class I and class II suppress human osteoclasts in vitro. J Cell Physiol. 2011;226:3233–41.CrossRefPubMed Cantley MD, Fairlie DP, Bartold PM, Rainsford KD, Le GT, Lucke AJ, et al. Inhibitors of histone deacetylases in class I and class II suppress human osteoclasts in vitro. J Cell Physiol. 2011;226:3233–41.CrossRefPubMed
46.
go back to reference Cantley MD, Bartold PM, Marino V, Fairlie LGT, Lucke AJ, et al. Histone deacetylase inhibitors and periodontal bone loss. J Periodontal Res. 2011;46:697–703.CrossRefPubMed Cantley MD, Bartold PM, Marino V, Fairlie LGT, Lucke AJ, et al. Histone deacetylase inhibitors and periodontal bone loss. J Periodontal Res. 2011;46:697–703.CrossRefPubMed
47.
go back to reference Kim T-I, Han J-E, Jung H-M, Oh J-W, Woo KM. Analysis of histone deacetylase inhibitor-induced responses in human periodontal ligament fibroblasts. Biotechnol Lett. 2013;35:129–33.CrossRefPubMed Kim T-I, Han J-E, Jung H-M, Oh J-W, Woo KM. Analysis of histone deacetylase inhibitor-induced responses in human periodontal ligament fibroblasts. Biotechnol Lett. 2013;35:129–33.CrossRefPubMed
48.
49.
go back to reference Cantley MD, Dharmapatni AA, Algate K, Crotti TN, Bartold PM, Haynes DR. Class I and II histone deacetylase expression in human chronic periodontitis gingival tissue. J periodont Res. 2016;51:143–51.CrossRefPubMed Cantley MD, Dharmapatni AA, Algate K, Crotti TN, Bartold PM, Haynes DR. Class I and II histone deacetylase expression in human chronic periodontitis gingival tissue. J periodont Res. 2016;51:143–51.CrossRefPubMed
50.
go back to reference Huynh NC-N, Everts V, Pavasant P, Ampornaramveth RS. Inhibition of histone deacetylases enhances the osteogenic differentiation of human periodontal ligament cells. J Cell Biochem. 2016;117:1384–95.CrossRefPubMed Huynh NC-N, Everts V, Pavasant P, Ampornaramveth RS. Inhibition of histone deacetylases enhances the osteogenic differentiation of human periodontal ligament cells. J Cell Biochem. 2016;117:1384–95.CrossRefPubMed
51.
go back to reference Sufarn I-G, Beikircher G, Weinhausel A, Gruber R. Inhibitors of DNA methylation support TGF-b1-induced IL11 expression in gingival fibroblasts. J Periodontal Implant Sci. 2017;47:66–76.CrossRef Sufarn I-G, Beikircher G, Weinhausel A, Gruber R. Inhibitors of DNA methylation support TGF-b1-induced IL11 expression in gingival fibroblasts. J Periodontal Implant Sci. 2017;47:66–76.CrossRef
52.
go back to reference Larsson L, Decker AM, Nibali L, Pilipchuk SP, Berglundh T, Giannobile WV. Regenerative medicine for periodontal and peri-implant diseases. J Dent Res. 2016;95:255–66.CrossRefPubMed Larsson L, Decker AM, Nibali L, Pilipchuk SP, Berglundh T, Giannobile WV. Regenerative medicine for periodontal and peri-implant diseases. J Dent Res. 2016;95:255–66.CrossRefPubMed
54.
go back to reference Rabineau M, Flick F, Mathieu E, Tu A, Senger B, Voegel JC, et al. Cell guidance into quiescent state through chromatin remodeling induced by elastic modulus of substrate. Biomaterials. 2015;37:144–55.CrossRefPubMed Rabineau M, Flick F, Mathieu E, Tu A, Senger B, Voegel JC, et al. Cell guidance into quiescent state through chromatin remodeling induced by elastic modulus of substrate. Biomaterials. 2015;37:144–55.CrossRefPubMed
55.
go back to reference Lv L, Liu Y, Zhang P, Zhang X, Liu J, Chen T, et al. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials. 2015;39:193–205.CrossRefPubMed Lv L, Liu Y, Zhang P, Zhang X, Liu J, Chen T, et al. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials. 2015;39:193–205.CrossRefPubMed
56.
go back to reference Ha S-W, Jang HL, Nam KT, Beck JRGR. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials. 2015;65:32–42.CrossRefPubMedPubMedCentral Ha S-W, Jang HL, Nam KT, Beck JRGR. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials. 2015;65:32–42.CrossRefPubMedPubMedCentral
57.
go back to reference • Du M, Duan X, Yang P. Induced pluripotent stem cells and periodontal regeneration. Curr Oral Health Rep. 2015;2:257–65. This review summarizes the recent concept of stem cells in periodontal regeneration. CrossRefPubMedPubMedCentral • Du M, Duan X, Yang P. Induced pluripotent stem cells and periodontal regeneration. Curr Oral Health Rep. 2015;2:257–65. This review summarizes the recent concept of stem cells in periodontal regeneration. CrossRefPubMedPubMedCentral
58.
go back to reference Lorden ER, Levinson HM, Leong KW. Integration of drug, protein, and gene delivery systems with regenerative medicine. Drug Deliv Transl Res. 2001;5:168–86.CrossRef Lorden ER, Levinson HM, Leong KW. Integration of drug, protein, and gene delivery systems with regenerative medicine. Drug Deliv Transl Res. 2001;5:168–86.CrossRef
59.
60.
go back to reference Fu Y, Luo G-Z, Chen K, Deng X, Yu M, Han D, et al. N6-Methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell. 2015;161:879–92.CrossRefPubMedPubMedCentral Fu Y, Luo G-Z, Chen K, Deng X, Yu M, Han D, et al. N6-Methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell. 2015;161:879–92.CrossRefPubMedPubMedCentral
61.
go back to reference • Willyard C. A new twist on epigenetics. Nature. 2017;542:406–8. This article summarizes the new epigenetic mechanisms and provide an overview on the new regulators controlling gene expression. CrossRefPubMed • Willyard C. A new twist on epigenetics. Nature. 2017;542:406–8. This article summarizes the new epigenetic mechanisms and provide an overview on the new regulators controlling gene expression. CrossRefPubMed
62.
go back to reference Meyer KD, Saletore Y, Zubo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA-methylation reveals enrichments in 2′ UTRs and near stop codons. Cell. 2012;149:1635–46.CrossRefPubMedPubMedCentral Meyer KD, Saletore Y, Zubo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA-methylation reveals enrichments in 2′ UTRs and near stop codons. Cell. 2012;149:1635–46.CrossRefPubMedPubMedCentral
63.
go back to reference Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.CrossRefPubMed Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.CrossRefPubMed
64.
go back to reference Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature. 2017;541:371–5.CrossRefPubMed Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature. 2017;541:371–5.CrossRefPubMed
Metadata
Title
Current Concepts of Epigenetics and Its Role in Periodontitis
Publication date
01-12-2017
Published in
Current Oral Health Reports / Issue 4/2017
Electronic ISSN: 2196-3002
DOI
https://doi.org/10.1007/s40496-017-0156-9

Other articles of this Issue 4/2017

Current Oral Health Reports 4/2017 Go to the issue

Dental Stem Cells in Tissue Regeneration (F Setzer, Section Editor)

Revascularization of Immature Necrotic Teeth

Epidemiology (M Laine, Section Editor)

Proteomics of Periodontal Pocket

Epidemiology (M Laine, Section Editor)

Periodontitis: from Infection to Inflammation

Epidemiology (M Laine, Section Editor)

Use of Probiotics and Oral Health

Epidemiology (M Laine, Section Editor)

Definitions and Epidemiology of Endodontic Infections