Skip to main content
Top
Published in: Osteoporosis International 9/2013

01-09-2013 | Review

NF-κB signaling and bone resorption

Author: Y. Abu-Amer

Published in: Osteoporosis International | Issue 9/2013

Login to get access

Abstract

The transcription factor NF-κB is a family of proteins involved in signaling pathways essential for normal cellular functions and development. Deletion of various components of this pathway resulted with abnormal skeletal development. Research in the last decade has established that NF-κB signaling mediates RANK ligand-induced osteoclastogenesis. Consistently, it was shown that inhibition of NF-κB was an effective approach to inhibit osteoclast formation and bone resorptive activity. Identification of the molecular machinery underlying NF-κB activation permitted osteoclast-specific deletion of the major components of this pathway. As a result, it was clear that deletion of members of the proximal IKK kinase complex and the distal NF-κB subunits and downstream regulators affected skeletal development. These studies provided several targets of therapeutic intervention in osteolytic diseases. NF-κB activity has been also described as the centerpiece of inflammatory responses and is considered a potent mediator of inflammatory osteolysis. Indeed, inflammatory insults exacerbate physiologic RANKL-induced NF-κB signals leading to exaggerated responses and to inflammatory osteolysis. These superimposed NF-κB activities appear to underlie several bone pathologies. This review will describe the individual roles of NF-κB molecules in bone resorption and inflammatory osteolysis.
Literature
1.
2.
go back to reference Baldwin AS Jr (1996) The NF-kB and IkB proteins: new discoveries and insights. Annu Rev Immunol 14:649–683 [Review; 180 refs]PubMedCrossRef Baldwin AS Jr (1996) The NF-kB and IkB proteins: new discoveries and insights. Annu Rev Immunol 14:649–683 [Review; 180 refs]PubMedCrossRef
5.
go back to reference Siebenlist U, Franzoso G (2001) Structure, regulation and function of NF-kB. Proc Natl Acad Sci U S A 89:4333–4337 Siebenlist U, Franzoso G (2001) Structure, regulation and function of NF-kB. Proc Natl Acad Sci U S A 89:4333–4337
6.
7.
go back to reference Woronicz J, Gao X, Cao Z, Rothe M, Goeddel D (1997) IkB kinase-beta: NF-kB activation and complex formation with IkB kinase-alpha and NIK. Science 278:866–869PubMedCrossRef Woronicz J, Gao X, Cao Z, Rothe M, Goeddel D (1997) IkB kinase-beta: NF-kB activation and complex formation with IkB kinase-alpha and NIK. Science 278:866–869PubMedCrossRef
8.
go back to reference Zandi E, Chen Y, Karin M (1998) Direct phosphorylation of IkB by IKKa and IKKb: discrimination between free and NF-kB-bound substrate. Science 281:1360–1363PubMedCrossRef Zandi E, Chen Y, Karin M (1998) Direct phosphorylation of IkB by IKKa and IKKb: discrimination between free and NF-kB-bound substrate. Science 281:1360–1363PubMedCrossRef
9.
go back to reference Fan C, Li Q, Zhang Y, Liu X, Luo M, Abbott D, Zhou W, Engelhardt JF (2004) I{kappa}B{alpha} and IkB-beta possess injury context-specific functions that uniquely influence hepatic NF-kB induction and inflammation. J Clin Invest 113:746–755PubMed Fan C, Li Q, Zhang Y, Liu X, Luo M, Abbott D, Zhou W, Engelhardt JF (2004) I{kappa}B{alpha} and IkB-beta possess injury context-specific functions that uniquely influence hepatic NF-kB induction and inflammation. J Clin Invest 113:746–755PubMed
10.
go back to reference Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62PubMedCrossRef Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62PubMedCrossRef
11.
go back to reference Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280–288PubMedCrossRef Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280–288PubMedCrossRef
12.
go back to reference Karin M, Yamamoto Y, Wang M (2004) The IKK NF-kB system: a treasure trove for drug development. Nat Rev 3:17–26CrossRef Karin M, Yamamoto Y, Wang M (2004) The IKK NF-kB system: a treasure trove for drug development. Nat Rev 3:17–26CrossRef
13.
go back to reference Iotsova V, Caamaäno J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3:1285–1289PubMedCrossRef Iotsova V, Caamaäno J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3:1285–1289PubMedCrossRef
14.
go back to reference Franzoso G, Carlson L, Poljak L, Shores E, Brown K, Leonardi A, Tran T, Boyce B, Siebenlist U (1997) Requirment for NF-kB in osteoclast and B-cell development. Genes Dev 11:3482–3496PubMedCrossRef Franzoso G, Carlson L, Poljak L, Shores E, Brown K, Leonardi A, Tran T, Boyce B, Siebenlist U (1997) Requirment for NF-kB in osteoclast and B-cell development. Genes Dev 11:3482–3496PubMedCrossRef
15.
go back to reference Boyce B, Xing L, Fransozo G, Siebenlist U (1999) Required and nonessential functions of nuclear factor-kB in bone cells. Bone 25:137–139PubMedCrossRef Boyce B, Xing L, Fransozo G, Siebenlist U (1999) Required and nonessential functions of nuclear factor-kB in bone cells. Bone 25:137–139PubMedCrossRef
16.
go back to reference Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira DSA, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323PubMedCrossRef Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira DSA, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323PubMedCrossRef
17.
go back to reference Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602PubMedCrossRef Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602PubMedCrossRef
19.
go back to reference Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci 97:1566–1571PubMedCrossRef Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci 97:1566–1571PubMedCrossRef
20.
go back to reference Wong BR, Besser D, Kim N, Arron JR, Vologodskaia M, Hanafusa H, Choi Y (1999) TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell 4:1041–1049PubMedCrossRef Wong BR, Besser D, Kim N, Arron JR, Vologodskaia M, Hanafusa H, Choi Y (1999) TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell 4:1041–1049PubMedCrossRef
21.
go back to reference Josien R, Wong BR, Li HL, Steinman RM, Choi Y (1999) TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol 162:2562–2568PubMed Josien R, Wong BR, Li HL, Steinman RM, Choi Y (1999) TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol 162:2562–2568PubMed
22.
go back to reference Boyce BF, Xing L, Franzoso G, Siebenlist U (1999) Required and nonessential functions of nuclear factor-kappa B in bone cells. Bone 25:137–139PubMedCrossRef Boyce BF, Xing L, Franzoso G, Siebenlist U (1999) Required and nonessential functions of nuclear factor-kappa B in bone cells. Bone 25:137–139PubMedCrossRef
23.
go back to reference Abu-Amer Y (2005) Advances in osteoclast differentiation and function. Curr Drug Targets Immune Endocr Metabol Disord 5:347–355PubMedCrossRef Abu-Amer Y (2005) Advances in osteoclast differentiation and function. Curr Drug Targets Immune Endocr Metabol Disord 5:347–355PubMedCrossRef
24.
go back to reference Xiao G, Harhaj EW, Sun SC (2001) NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 7:401–409PubMedCrossRef Xiao G, Harhaj EW, Sun SC (2001) NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 7:401–409PubMedCrossRef
25.
go back to reference Smith C, Andreakos E, Crawley JB, Brennan FM, Feldmann M, Foxwell BM (2001) NF-kappaB-inducing kinase is dispensable for activation of NF-kappaB in inflammatory settings but essential for lymphotoxin beta receptor activation of NF-kappaB in primary human fibroblasts. J Immunol 167:5895–5903PubMed Smith C, Andreakos E, Crawley JB, Brennan FM, Feldmann M, Foxwell BM (2001) NF-kappaB-inducing kinase is dispensable for activation of NF-kappaB in inflammatory settings but essential for lymphotoxin beta receptor activation of NF-kappaB in primary human fibroblasts. J Immunol 167:5895–5903PubMed
26.
go back to reference Soysa NS, Alles N, Takahashi M, Aoki K, Ohya K (2011) Defective nuclear factor-kappaB-inducing kinase in aly/aly mice prevents bone resorption induced by local injection of lipopolysaccharide. J Periodontal Res 46:280–284PubMedCrossRef Soysa NS, Alles N, Takahashi M, Aoki K, Ohya K (2011) Defective nuclear factor-kappaB-inducing kinase in aly/aly mice prevents bone resorption induced by local injection of lipopolysaccharide. J Periodontal Res 46:280–284PubMedCrossRef
27.
go back to reference Soysa NS, Alles N, Weih D, Lovas A, Mian AH, Shimokawa H, Yasuda H, Weih F, Jimi E, Ohya K, Aoki K (2010) The pivotal role of the alternative NF-kappaB pathway in maintenance of basal bone homeostasis and osteoclastogenesis. J Bone Miner Res 25:809–818PubMed Soysa NS, Alles N, Weih D, Lovas A, Mian AH, Shimokawa H, Yasuda H, Weih F, Jimi E, Ohya K, Aoki K (2010) The pivotal role of the alternative NF-kappaB pathway in maintenance of basal bone homeostasis and osteoclastogenesis. J Bone Miner Res 25:809–818PubMed
28.
go back to reference Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278:860–866PubMedCrossRef Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278:860–866PubMedCrossRef
29.
go back to reference Regnier C, Song H, Gao X, Goeddel D, Cao Z, Rothe M (1997) Identification and characterization of an I-kB kinase. Cell 90:373–383PubMedCrossRef Regnier C, Song H, Gao X, Goeddel D, Cao Z, Rothe M (1997) Identification and characterization of an I-kB kinase. Cell 90:373–383PubMedCrossRef
30.
go back to reference Chaisson ML, Branstetter DG, Derry JM, Armstrong AP, Tometsko ME, Takeda K, Akira S, Dougall WC (2004) Osteoclast differentiation is impaired in the absence of IkB kinase-alpha. J Biol Chem 279:54841–54848PubMedCrossRef Chaisson ML, Branstetter DG, Derry JM, Armstrong AP, Tometsko ME, Takeda K, Akira S, Dougall WC (2004) Osteoclast differentiation is impaired in the absence of IkB kinase-alpha. J Biol Chem 279:54841–54848PubMedCrossRef
31.
go back to reference Ruocco MG, Maeda S, Park JM, Lawrence T, Hsu L-C, Cao Y, Schett G, Wagner EF, Karin M (2005) IkB kinase-beta, but not IKK-alpha, is a critical mediator of osteoclast survival and is required for inflammation-induced bone loss. J Exp Med 201:1677–1687PubMedCrossRef Ruocco MG, Maeda S, Park JM, Lawrence T, Hsu L-C, Cao Y, Schett G, Wagner EF, Karin M (2005) IkB kinase-beta, but not IKK-alpha, is a critical mediator of osteoclast survival and is required for inflammation-induced bone loss. J Exp Med 201:1677–1687PubMedCrossRef
32.
go back to reference Novack DV, Yin L, Hagen-Stapleton A, Schreiber RD, Goeddel DV, Ross FP, Teitelbaum SL (2003) The I-kappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 198:771–781PubMedCrossRef Novack DV, Yin L, Hagen-Stapleton A, Schreiber RD, Goeddel DV, Ross FP, Teitelbaum SL (2003) The I-kappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 198:771–781PubMedCrossRef
33.
go back to reference Vaira S, Johnson T, Hirbe AC, Alhawagri M, Anwisye I, Sammut B, O'Neal J, Zou W, Weilbaecher KN, Faccio R, Novack DV (2008) RelB is the NF-kappaB subunit downstream of NIK responsible for osteoclast differentiation. Proc Natl Acad Sci U S A 105:3897–3902PubMedCrossRef Vaira S, Johnson T, Hirbe AC, Alhawagri M, Anwisye I, Sammut B, O'Neal J, Zou W, Weilbaecher KN, Faccio R, Novack DV (2008) RelB is the NF-kappaB subunit downstream of NIK responsible for osteoclast differentiation. Proc Natl Acad Sci U S A 105:3897–3902PubMedCrossRef
34.
go back to reference Smith C, Andreakos E, Crawley JB, Brennan FM, Feldmann M, Foxwell BM (2001) NF-kappaB-inducing kinase is dispensable for activation of NF-kappaB in inflammatory settings but essential for lymphotoxin beta receptor activation of NF-kappaB in primary human fibroblasts. J Immunol 167:5895–5903PubMed Smith C, Andreakos E, Crawley JB, Brennan FM, Feldmann M, Foxwell BM (2001) NF-kappaB-inducing kinase is dispensable for activation of NF-kappaB in inflammatory settings but essential for lymphotoxin beta receptor activation of NF-kappaB in primary human fibroblasts. J Immunol 167:5895–5903PubMed
35.
go back to reference Yao Z, Xing L, Boyce BF (2009) NF-kappaB p100 limits TNF-induced bone resorption in mice by a TRAF3-dependent mechanism. J Clin Invest 119:3024–3034PubMedCrossRef Yao Z, Xing L, Boyce BF (2009) NF-kappaB p100 limits TNF-induced bone resorption in mice by a TRAF3-dependent mechanism. J Clin Invest 119:3024–3034PubMedCrossRef
36.
go back to reference Otero JE, Dai S, Foglia D, Alhawagri M, Vacher J, Pasparakis M, Abu-Amer Y (2008) Defective osteoclastogenesis by IKKbeta-null precursors is a result of receptor activator of NF-kappaB ligand (RANKL)-induced JNK-dependent apoptosis and impaired differentiation. J Biol Chem 283:24546–24553PubMedCrossRef Otero JE, Dai S, Foglia D, Alhawagri M, Vacher J, Pasparakis M, Abu-Amer Y (2008) Defective osteoclastogenesis by IKKbeta-null precursors is a result of receptor activator of NF-kappaB ligand (RANKL)-induced JNK-dependent apoptosis and impaired differentiation. J Biol Chem 283:24546–24553PubMedCrossRef
37.
go back to reference Otero JE, Dai S, Alhawagri MA, Darwech I, Abu-Amer Y (2010) IKKbeta activation is sufficient for RANK-independent osteoclast differentiation and osteolysis. J Bone Miner Res 25:1282–1294PubMedCrossRef Otero JE, Dai S, Alhawagri MA, Darwech I, Abu-Amer Y (2010) IKKbeta activation is sufficient for RANK-independent osteoclast differentiation and osteolysis. J Bone Miner Res 25:1282–1294PubMedCrossRef
38.
go back to reference Otero JE, Chen T, Zhang K, Abu-Amer Y (2012) Constitutively active canonical NF-kappaB pathway induces severe bone loss in mice. PLoS One 7:e38694PubMedCrossRef Otero JE, Chen T, Zhang K, Abu-Amer Y (2012) Constitutively active canonical NF-kappaB pathway induces severe bone loss in mice. PLoS One 7:e38694PubMedCrossRef
39.
go back to reference Ruocco MG, Karin M (2005) IKK{beta} as a target for treatment of inflammation induced bone loss. Ann Rheum Dis 64(Suppl 4):iv81–iv85PubMedCrossRef Ruocco MG, Karin M (2005) IKK{beta} as a target for treatment of inflammation induced bone loss. Ann Rheum Dis 64(Suppl 4):iv81–iv85PubMedCrossRef
40.
go back to reference Ruocco MG, Karin M (2007) Control of osteoclast activity and bone loss by IKK subunits: new targets for therapy. Adv Exp Med Biol 602:125–134PubMedCrossRef Ruocco MG, Karin M (2007) Control of osteoclast activity and bone loss by IKK subunits: new targets for therapy. Adv Exp Med Biol 602:125–134PubMedCrossRef
41.
go back to reference Bingham AH, Davenport RJ, Gowers L, Knight RL, Lowe C, Owen DA, Parry DM, Pitt WR (2004) A novel series of potent and selective IKK2 inhibitors. Bioorg Med Chem Lett 14:409–412PubMedCrossRef Bingham AH, Davenport RJ, Gowers L, Knight RL, Lowe C, Owen DA, Parry DM, Pitt WR (2004) A novel series of potent and selective IKK2 inhibitors. Bioorg Med Chem Lett 14:409–412PubMedCrossRef
42.
go back to reference May MJ, Marienfeld RB, Ghosh S (2002) Characterization of the Ikappa B-kinase NEMO binding domain. J Biol Chem 277:45992–46000PubMedCrossRef May MJ, Marienfeld RB, Ghosh S (2002) Characterization of the Ikappa B-kinase NEMO binding domain. J Biol Chem 277:45992–46000PubMedCrossRef
43.
go back to reference Choi M, Rolle S, Wellner M, Cardoso MC, Scheidereit C, Luft FC, Kettritz R (2003) Inhibition of NF-kB by a TAT-NEMO-binding domain peptide accelerates constitutive apoptosis and abrogates LPS-delayed neutrophil apoptosis. Blood 102:2259–2267PubMedCrossRef Choi M, Rolle S, Wellner M, Cardoso MC, Scheidereit C, Luft FC, Kettritz R (2003) Inhibition of NF-kB by a TAT-NEMO-binding domain peptide accelerates constitutive apoptosis and abrogates LPS-delayed neutrophil apoptosis. Blood 102:2259–2267PubMedCrossRef
44.
go back to reference Clohisy JC, Yamanaka Y, Faccio R, Abu-Amer Y (2006) Inhibition of IKK activation, through sequestering NEMO, blocks PMMA-induced osteoclastogenesis and calvarial inflammatory osteolysis. J Orthop Res 24:1358–1365PubMedCrossRef Clohisy JC, Yamanaka Y, Faccio R, Abu-Amer Y (2006) Inhibition of IKK activation, through sequestering NEMO, blocks PMMA-induced osteoclastogenesis and calvarial inflammatory osteolysis. J Orthop Res 24:1358–1365PubMedCrossRef
45.
go back to reference Dai S, Hirayama T, Abbas S, Abu-Amer Y (2004) The IkappaB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks osteoclastogenesis and bone erosion in inflammatory arthritis. J Biol Chem 279:37219–37222PubMedCrossRef Dai S, Hirayama T, Abbas S, Abu-Amer Y (2004) The IkappaB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks osteoclastogenesis and bone erosion in inflammatory arthritis. J Biol Chem 279:37219–37222PubMedCrossRef
46.
go back to reference Shibata W, Maeda S, Hikiba Y, Yanai A, Ohmae T, Sakamoto K, Nakagawa H, Ogura K, Omata M (2007) Cutting edge: the I{kappa}B Kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks inflammatory injury in murine colitis. J Immunol 179:2681–2685PubMed Shibata W, Maeda S, Hikiba Y, Yanai A, Ohmae T, Sakamoto K, Nakagawa H, Ogura K, Omata M (2007) Cutting edge: the I{kappa}B Kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks inflammatory injury in murine colitis. J Immunol 179:2681–2685PubMed
47.
go back to reference Tas SW, de Jong EC, Hajji N, May MJ, Ghosh S, Vervoordeldonk MJ, Tak PP (2005) Selective inhibition of NF-kappaB in dendritic cells by the NEMO-binding domain peptide blocks maturation and prevents T cell proliferation and polarization. Eur J Immunol 35:1164–1174PubMedCrossRef Tas SW, de Jong EC, Hajji N, May MJ, Ghosh S, Vervoordeldonk MJ, Tak PP (2005) Selective inhibition of NF-kappaB in dendritic cells by the NEMO-binding domain peptide blocks maturation and prevents T cell proliferation and polarization. Eur J Immunol 35:1164–1174PubMedCrossRef
48.
go back to reference Wysong A, Couch M, Shadfar S, Li L, Rodriguez JE, Asher S, Yin X, Gore M, Baldwin A, Patterson C, Willis MS (2011) NF-κB inhibition protects against tumor-induced cardiac atrophy in vivo. Am J Pathol 178:1059–1068PubMedCrossRef Wysong A, Couch M, Shadfar S, Li L, Rodriguez JE, Asher S, Yin X, Gore M, Baldwin A, Patterson C, Willis MS (2011) NF-κB inhibition protects against tumor-induced cardiac atrophy in vivo. Am J Pathol 178:1059–1068PubMedCrossRef
49.
go back to reference Jimi E, Aoki K, Saito H, D'Acquisto F, May MJ, Nakamura I, Sudo T, Kojima T, Okamoto F, Fukushima H, Okabe K, Ohya K, Ghosh S (2004) Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med 10:617–624PubMedCrossRef Jimi E, Aoki K, Saito H, D'Acquisto F, May MJ, Nakamura I, Sudo T, Kojima T, Okamoto F, Fukushima H, Okabe K, Ohya K, Ghosh S (2004) Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med 10:617–624PubMedCrossRef
50.
go back to reference May MJ, Larsen SE, Shim JH, Madge LA, Ghosh S (2004) A novel ubiquitin-like domain in Ikappa B-kinase beta is required for functional activity of the kinase. J Biol Chem 279:45528–45539PubMedCrossRef May MJ, Larsen SE, Shim JH, Madge LA, Ghosh S (2004) A novel ubiquitin-like domain in Ikappa B-kinase beta is required for functional activity of the kinase. J Biol Chem 279:45528–45539PubMedCrossRef
51.
go back to reference Darwech I, Otero JE, Alhawagri MA, Abu-Amer Y (2010) Tyrosine phosphorylation is required for IkappaB kinase-beta (IKKbeta) activation and function in osteoclastogenesis. J Biol Chem 285:25522–25530PubMedCrossRef Darwech I, Otero JE, Alhawagri MA, Abu-Amer Y (2010) Tyrosine phosphorylation is required for IkappaB kinase-beta (IKKbeta) activation and function in osteoclastogenesis. J Biol Chem 285:25522–25530PubMedCrossRef
52.
go back to reference Courtois G, Smahi A, Israel A (2001) NEMO/IKK-gamma: linking NF-kB to human disease. Trends Mol Med 7:427–430PubMedCrossRef Courtois G, Smahi A, Israel A (2001) NEMO/IKK-gamma: linking NF-kB to human disease. Trends Mol Med 7:427–430PubMedCrossRef
53.
go back to reference Hacker H, and Karin M (2006) Regulation and function of IKK and IKK-related kinases. Science's Stke [Electronic Resource]: Signal Transduction Knowledge Environment 2006, re13 Hacker H, and Karin M (2006) Regulation and function of IKK and IKK-related kinases. Science's Stke [Electronic Resource]: Signal Transduction Knowledge Environment 2006, re13
55.
go back to reference Li XH, Fang X, Gaynor RB (2001) Role of IKK-gamma /NEMO in assembly of the IkB kinase complex. J Biol Chem 276:4494–4500PubMedCrossRef Li XH, Fang X, Gaynor RB (2001) Role of IKK-gamma /NEMO in assembly of the IkB kinase complex. J Biol Chem 276:4494–4500PubMedCrossRef
56.
go back to reference Burns KA, Martinon F (2004) Inflammatory diseases: is ubiquitinated NEMO at the hub? Curr Biol 14:R1040–R1042PubMedCrossRef Burns KA, Martinon F (2004) Inflammatory diseases: is ubiquitinated NEMO at the hub? Curr Biol 14:R1040–R1042PubMedCrossRef
57.
go back to reference Cordier F, Grubisha O, Traincard F, Véron M, Delepierre M, Agou F (2009) The zinc finger of NEMO is a functional ubiquitin-binding domain. J Biol Chem 284:2902–2907PubMedCrossRef Cordier F, Grubisha O, Traincard F, Véron M, Delepierre M, Agou F (2009) The zinc finger of NEMO is a functional ubiquitin-binding domain. J Biol Chem 284:2902–2907PubMedCrossRef
58.
go back to reference Kawadler H, Yang X (2006) Lys63-linked polyubiquitin chains: linking more than just ubiquitin. Cancer Biol Ther 5:1273–1274PubMedCrossRef Kawadler H, Yang X (2006) Lys63-linked polyubiquitin chains: linking more than just ubiquitin. Cancer Biol Ther 5:1273–1274PubMedCrossRef
59.
go back to reference Laplantine E, Fontan E, Chiaravalli J, Lopez T, Lakisic G, Veron M, Agou F, Israel A (2009) NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J 28:2885–2895PubMedCrossRef Laplantine E, Fontan E, Chiaravalli J, Lopez T, Lakisic G, Veron M, Agou F, Israel A (2009) NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J 28:2885–2895PubMedCrossRef
60.
go back to reference Adhikari A, Xu M, Chen ZJ (2007) Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 26:3214–3226PubMedCrossRef Adhikari A, Xu M, Chen ZJ (2007) Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 26:3214–3226PubMedCrossRef
61.
go back to reference Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33:275–286PubMedCrossRef Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33:275–286PubMedCrossRef
62.
go back to reference Gautheron J, Courtois G (2010) “Without Ub I am nothing”: NEMO as a multifunctional player in ubiquitin-mediated control of NF-kappaB activation. Cell Mol Life Sci 67:3101–3113PubMedCrossRef Gautheron J, Courtois G (2010) “Without Ub I am nothing”: NEMO as a multifunctional player in ubiquitin-mediated control of NF-kappaB activation. Cell Mol Life Sci 67:3101–3113PubMedCrossRef
63.
go back to reference Ni C-Y, Wu Z-H, Florence WC, Parekh VV, Arrate MP, Pierce S, Schweitzer B, Van Kaer L, Joyce S, Miyamoto S, Ballard DW, Oltz EM (2008) Cutting edge: K63-linked polyubiquitination of NEMO modulates TLR signaling and inflammation in vivo. J Immunol 180:7107–7111PubMed Ni C-Y, Wu Z-H, Florence WC, Parekh VV, Arrate MP, Pierce S, Schweitzer B, Van Kaer L, Joyce S, Miyamoto S, Ballard DW, Oltz EM (2008) Cutting edge: K63-linked polyubiquitination of NEMO modulates TLR signaling and inflammation in vivo. J Immunol 180:7107–7111PubMed
64.
go back to reference Tokunaga F, Sakata S-I, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K (2009) Involvement of linear polyubiquitylation of NEMO in NF-[kappa]B activation. Nat Cell Biol 11:123–132PubMedCrossRef Tokunaga F, Sakata S-I, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K (2009) Involvement of linear polyubiquitylation of NEMO in NF-[kappa]B activation. Nat Cell Biol 11:123–132PubMedCrossRef
65.
go back to reference Zhou H, Wertz I, O'Rourke K, Ultsch M, Seshagiri S, Eby M, Xiao W, Dixit VM (2004) Bcl10 activates the NF-[kappa]B pathway through ubiquitination of NEMO. Nature 427:167–171PubMedCrossRef Zhou H, Wertz I, O'Rourke K, Ultsch M, Seshagiri S, Eby M, Xiao W, Dixit VM (2004) Bcl10 activates the NF-[kappa]B pathway through ubiquitination of NEMO. Nature 427:167–171PubMedCrossRef
66.
go back to reference Dèoffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, Bodemer C, Kenwrick S, Dupuis-Girod S, Blanche S, Wood P, Rabia SH, Headon DJ, Overbeek PA, Le Deist F, Holland SM, Belani K, Kumararatne DS, Fischer A, Shapiro R, Conley ME, Reimund E, Kalhoff H, Abinun M, Munnich A, Israèel A, Courtois G, Casanova JL (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 27:277–285CrossRef Dèoffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, Bodemer C, Kenwrick S, Dupuis-Girod S, Blanche S, Wood P, Rabia SH, Headon DJ, Overbeek PA, Le Deist F, Holland SM, Belani K, Kumararatne DS, Fischer A, Shapiro R, Conley ME, Reimund E, Kalhoff H, Abinun M, Munnich A, Israèel A, Courtois G, Casanova JL (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 27:277–285CrossRef
67.
go back to reference Kawai T, Nishikomori R, Heike T (2012) Diagnosis and treatment in anhidrotic ectodermal dysplasia with immunodeficiency. Allergol Int 61:207–217PubMed Kawai T, Nishikomori R, Heike T (2012) Diagnosis and treatment in anhidrotic ectodermal dysplasia with immunodeficiency. Allergol Int 61:207–217PubMed
68.
go back to reference Roberts CM, Angus JE, Leach IH, McDermott EM, Walker DA, Ravenscroft JC (2010) A novel NEMO gene mutation causing osteopetrosis, lymphoedema, hypohidrotic ectodermal dysplasia and immunodeficiency (OL-HED-ID). Eur J Pediatr 169:1403–1407PubMedCrossRef Roberts CM, Angus JE, Leach IH, McDermott EM, Walker DA, Ravenscroft JC (2010) A novel NEMO gene mutation causing osteopetrosis, lymphoedema, hypohidrotic ectodermal dysplasia and immunodeficiency (OL-HED-ID). Eur J Pediatr 169:1403–1407PubMedCrossRef
69.
go back to reference Permaul P, Narla A, Hornick JL, Pai SY (2009) Allogeneic hematopoietic stem cell transplantation for X-linked ectodermal dysplasia and immunodeficiency: case report and review of outcomes. Immunol Res 44:89–98PubMedCrossRef Permaul P, Narla A, Hornick JL, Pai SY (2009) Allogeneic hematopoietic stem cell transplantation for X-linked ectodermal dysplasia and immunodeficiency: case report and review of outcomes. Immunol Res 44:89–98PubMedCrossRef
70.
go back to reference Smahi A, Courtois G, Rabia SH, Doffinger R, Bodemer C, Munnich A, Casanova JL, Israel A (2002) The NF-kappaB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum Mol Genet 11:2371–2375PubMedCrossRef Smahi A, Courtois G, Rabia SH, Doffinger R, Bodemer C, Munnich A, Casanova JL, Israel A (2002) The NF-kappaB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum Mol Genet 11:2371–2375PubMedCrossRef
71.
go back to reference Mansour S, Woffendin H, Mitton S, Jeffery I, Jakins T, Kenwrick S, Murday VA (2001) Incontinentia pigmenti in a surviving male is accompanied by hypohidrotic ectodermal dysplasia and recurrent infection. Am J Med Genet 99:172–177PubMedCrossRef Mansour S, Woffendin H, Mitton S, Jeffery I, Jakins T, Kenwrick S, Murday VA (2001) Incontinentia pigmenti in a surviving male is accompanied by hypohidrotic ectodermal dysplasia and recurrent infection. Am J Med Genet 99:172–177PubMedCrossRef
72.
go back to reference Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R, Green H, Brown C, Biggs PJ, Lakhani SR, Jones C, Hansen J, Blair E, Hofmann B, Siebert R, Turner G, Evans DG, Schrander-Stumpel C, Beemer FA, van Den Ouweland A, Halley D, Delpech B, Cleveland MG, Leigh I, Leisti J, Rasmussen S (2000) Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet 25:160–165PubMedCrossRef Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R, Green H, Brown C, Biggs PJ, Lakhani SR, Jones C, Hansen J, Blair E, Hofmann B, Siebert R, Turner G, Evans DG, Schrander-Stumpel C, Beemer FA, van Den Ouweland A, Halley D, Delpech B, Cleveland MG, Leigh I, Leisti J, Rasmussen S (2000) Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet 25:160–165PubMedCrossRef
73.
go back to reference Krikos A, Laherty CD, Dixit VM (1992) Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappa B elements. J Biol Chem 267:17971–17976PubMed Krikos A, Laherty CD, Dixit VM (1992) Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappa B elements. J Biol Chem 267:17971–17976PubMed
74.
go back to reference Jono H, Lim JH, Chen LF, Xu H, Trompouki E, Pan ZK, Mosialos G, Li JD (2004) NF-kappaB is essential for induction of CYLD, the negative regulator of NF-kappaB: evidence for a novel inducible autoregulatory feedback pathway. J Biol Chem 279:36171–36174PubMedCrossRef Jono H, Lim JH, Chen LF, Xu H, Trompouki E, Pan ZK, Mosialos G, Li JD (2004) NF-kappaB is essential for induction of CYLD, the negative regulator of NF-kappaB: evidence for a novel inducible autoregulatory feedback pathway. J Biol Chem 279:36171–36174PubMedCrossRef
75.
go back to reference Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A (2000) Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289:2350–2354PubMedCrossRef Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A (2000) Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289:2350–2354PubMedCrossRef
76.
go back to reference Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, Wright A, Zhang M, You J, Sun SC (2008) Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest 118:1858–1866PubMedCrossRef Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, Wright A, Zhang M, You J, Sun SC (2008) Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest 118:1858–1866PubMedCrossRef
77.
go back to reference Ciani B, Layfield R, Cavey JR, Sheppard PW, Searle MS (2003) Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget's disease of bone. J Biol Chem 278:37409–37412PubMedCrossRef Ciani B, Layfield R, Cavey JR, Sheppard PW, Searle MS (2003) Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget's disease of bone. J Biol Chem 278:37409–37412PubMedCrossRef
78.
go back to reference Layfield R, Shaw B (2007) Ubiquitin-mediated signalling and Paget's disease of bone. BMC Biochem 8(Suppl 1):S5PubMedCrossRef Layfield R, Shaw B (2007) Ubiquitin-mediated signalling and Paget's disease of bone. BMC Biochem 8(Suppl 1):S5PubMedCrossRef
79.
go back to reference Xu J, Wu HF, Ang ES, Yip K, Woloszyn M, Zheng MH, Tan RX (2009) NF-kappaB modulators in osteolytic bone diseases. Cytokine Growth Factor Rev 20:7–17PubMedCrossRef Xu J, Wu HF, Ang ES, Yip K, Woloszyn M, Zheng MH, Tan RX (2009) NF-kappaB modulators in osteolytic bone diseases. Cytokine Growth Factor Rev 20:7–17PubMedCrossRef
80.
go back to reference Matmati M, Jacques P, Maelfait J, Verheugen E, Kool M, Sze M, Geboes L, Louagie E, Mc Guire C, Vereecke L, Chu Y, Boon L, Staelens S, Matthys P, Lambrecht BN, Schmidt-Supprian M, Pasparakis M, Elewaut D, Beyaert R, van Loo G (2011) A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet 43:908–912PubMedCrossRef Matmati M, Jacques P, Maelfait J, Verheugen E, Kool M, Sze M, Geboes L, Louagie E, Mc Guire C, Vereecke L, Chu Y, Boon L, Staelens S, Matthys P, Lambrecht BN, Schmidt-Supprian M, Pasparakis M, Elewaut D, Beyaert R, van Loo G (2011) A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet 43:908–912PubMedCrossRef
81.
go back to reference Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901PubMedCrossRef Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901PubMedCrossRef
82.
go back to reference Kubota T, Hoshino M, Aoki K, Ohya K, Komano Y, Nanki T, Miyasaka N, Umezawa K (2007) NF-kappaB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor. Arthritis Res Ther 9:R97PubMedCrossRef Kubota T, Hoshino M, Aoki K, Ohya K, Komano Y, Nanki T, Miyasaka N, Umezawa K (2007) NF-kappaB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor. Arthritis Res Ther 9:R97PubMedCrossRef
83.
go back to reference Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K (2008) The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol 28:6402–6412PubMedCrossRef Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K (2008) The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol 28:6402–6412PubMedCrossRef
84.
go back to reference Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, Morita I, Wagner EF, Mak TW, Serfling E, Takayanagi H (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202:1261–1269PubMedCrossRef Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, Morita I, Wagner EF, Mak TW, Serfling E, Takayanagi H (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202:1261–1269PubMedCrossRef
85.
go back to reference Wagner EF, Eferl R (2005) Fos/AP-1 proteins in bone and the immune system. Immunol Rev 208:126–140PubMedCrossRef Wagner EF, Eferl R (2005) Fos/AP-1 proteins in bone and the immune system. Immunol Rev 208:126–140PubMedCrossRef
86.
go back to reference Aliprantis AO, Ueki Y, Sulyanto R, Park A, Sigrist KS, Sharma SM, Ostrowski MC, Olsen BR, Glimcher LH (2008) NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest 118:3775–3789PubMedCrossRef Aliprantis AO, Ueki Y, Sulyanto R, Park A, Sigrist KS, Sharma SM, Ostrowski MC, Olsen BR, Glimcher LH (2008) NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest 118:3775–3789PubMedCrossRef
87.
go back to reference Yamashita T, Yao Z, Li F, Zhang Q, Badell IR, Schwarz EM, Takeshita S, Wagner EF, Noda M, Matsuo K, Xing L, Boyce BF (2007) NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem 282:18245–18253PubMedCrossRef Yamashita T, Yao Z, Li F, Zhang Q, Badell IR, Schwarz EM, Takeshita S, Wagner EF, Noda M, Matsuo K, Xing L, Boyce BF (2007) NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem 282:18245–18253PubMedCrossRef
88.
go back to reference Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZ, Bachler MA, Amano H, Aburatani H, Ishikawa H, Wagner EF (2004) Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem 279:26475–26480PubMedCrossRef Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZ, Bachler MA, Amano H, Aburatani H, Ishikawa H, Wagner EF (2004) Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem 279:26475–26480PubMedCrossRef
90.
go back to reference Baker RG, Hayden MS, Ghosh S (2011) NF-kappaB, inflammation, and metabolic disease. Cell Metab 13:11–22PubMedCrossRef Baker RG, Hayden MS, Ghosh S (2011) NF-kappaB, inflammation, and metabolic disease. Cell Metab 13:11–22PubMedCrossRef
91.
go back to reference Karin M (2008) The I[kappa]B kinase—a bridge between inflammation and cancer. Cell Res 18:334–342PubMedCrossRef Karin M (2008) The I[kappa]B kinase—a bridge between inflammation and cancer. Cell Res 18:334–342PubMedCrossRef
92.
go back to reference Sweeney SE, Firestein GS (2004) Rheumatoid arthritis: regulation of synovial inflammation. Int J Biochem Cell Biol 36:372–378PubMedCrossRef Sweeney SE, Firestein GS (2004) Rheumatoid arthritis: regulation of synovial inflammation. Int J Biochem Cell Biol 36:372–378PubMedCrossRef
93.
go back to reference Findlay DM, Haynes DR (2005) Mechanisms of bone loss in rheumatoid arthritis. Mod Rheumatol 15:232–240PubMedCrossRef Findlay DM, Haynes DR (2005) Mechanisms of bone loss in rheumatoid arthritis. Mod Rheumatol 15:232–240PubMedCrossRef
94.
go back to reference McInnes IB, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7:429–442PubMedCrossRef McInnes IB, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7:429–442PubMedCrossRef
96.
97.
go back to reference Feldmann M (2002) Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2:364–371PubMedCrossRef Feldmann M (2002) Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2:364–371PubMedCrossRef
98.
go back to reference Gabay C (2002) Cytokine inhibitors in the treatment of rheumatoid arthritis. Expert Opin Biol Ther 2:135–149PubMedCrossRef Gabay C (2002) Cytokine inhibitors in the treatment of rheumatoid arthritis. Expert Opin Biol Ther 2:135–149PubMedCrossRef
99.
go back to reference Nakashima T, Wada T, Penninger J (2003) RANKL and RANK as novel therapeutic targets for arthritis. Curr Op Rheum 15:280–287CrossRef Nakashima T, Wada T, Penninger J (2003) RANKL and RANK as novel therapeutic targets for arthritis. Curr Op Rheum 15:280–287CrossRef
100.
go back to reference Pincus T, Yazici Y, Sokka T, Aletaha D, Smolen JS (2003) Methotrexate as the “anchor drug” for the treatment of early rheumatoid arthritis. Clin Exp Rheumatol 21:S179–S185PubMed Pincus T, Yazici Y, Sokka T, Aletaha D, Smolen JS (2003) Methotrexate as the “anchor drug” for the treatment of early rheumatoid arthritis. Clin Exp Rheumatol 21:S179–S185PubMed
101.
go back to reference Smolen JS, Steiner G (2003) Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov 2:473–488PubMedCrossRef Smolen JS, Steiner G (2003) Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov 2:473–488PubMedCrossRef
102.
103.
go back to reference Cohen SB, Dore RK, Lane NE, Ory PA, Peterfy CG, Sharp JT, van der Heijde D, Zhou L, Tsuji W, Newmark R, Denosumab Rheumatoid Arthritis Study Group (2008) Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 58:1299–1309 [see comment]PubMedCrossRef Cohen SB, Dore RK, Lane NE, Ory PA, Peterfy CG, Sharp JT, van der Heijde D, Zhou L, Tsuji W, Newmark R, Denosumab Rheumatoid Arthritis Study Group (2008) Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 58:1299–1309 [see comment]PubMedCrossRef
104.
go back to reference Abu-Amer Y, Faccio R (2006) Therapeutic approaches in bone pathogeneses: targeting the IKK/NF-kB axis. Future Med 1:133–146 Abu-Amer Y, Faccio R (2006) Therapeutic approaches in bone pathogeneses: targeting the IKK/NF-kB axis. Future Med 1:133–146
105.
go back to reference Seetharaman R, Mora AL, Nabozny G, Boothby M, Chen J (1999) Essential role of T cell NF-kappa B activation in collagen-induced arthritis. J Immunol 163:1577–1583PubMed Seetharaman R, Mora AL, Nabozny G, Boothby M, Chen J (1999) Essential role of T cell NF-kappa B activation in collagen-induced arthritis. J Immunol 163:1577–1583PubMed
106.
go back to reference Clohisy JC, Roy BC, Biondo C, Frazier E, Willis D, Teitelbaum SL, Abu-Amer Y (2003) Direct inhibition of NF-kappa B blocks bone erosion associated with inflammatory arthritis. J Immunol 171:5547–5553PubMed Clohisy JC, Roy BC, Biondo C, Frazier E, Willis D, Teitelbaum SL, Abu-Amer Y (2003) Direct inhibition of NF-kappa B blocks bone erosion associated with inflammatory arthritis. J Immunol 171:5547–5553PubMed
107.
go back to reference Gallo J, Kamâinek P, Tichâa V, Rihâakovâa P, Ditmar R (2002) Particle disease. A comprehensive theory of periprosthetic osteolysis: a review. Biomed Pap Med Fac Univ Palackây Olomouc Czech Repub 146:21–28CrossRef Gallo J, Kamâinek P, Tichâa V, Rihâakovâa P, Ditmar R (2002) Particle disease. A comprehensive theory of periprosthetic osteolysis: a review. Biomed Pap Med Fac Univ Palackây Olomouc Czech Repub 146:21–28CrossRef
108.
go back to reference Abu-Amer Y, Darwech I, Clohisy JC (2007) Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther 9(Suppl 1):S6PubMedCrossRef Abu-Amer Y, Darwech I, Clohisy JC (2007) Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther 9(Suppl 1):S6PubMedCrossRef
109.
go back to reference Purdue PE, Koulouvaris P, Potter HG, Nestor BJ, Sculco TP (2007) The cellular and molecular biology of periprosthetic osteolysis. Clin Orthop Relat Res 454:251–261PubMedCrossRef Purdue PE, Koulouvaris P, Potter HG, Nestor BJ, Sculco TP (2007) The cellular and molecular biology of periprosthetic osteolysis. Clin Orthop Relat Res 454:251–261PubMedCrossRef
110.
go back to reference Yamanaka Y, Karuppaiah K, Abu-Amer Y (2011) Polyubiquitination events mediate polymethylmethacrylate (PMMA) particle activation of NF-kappaB pathway. J Biol Chem 286:23735–23741PubMedCrossRef Yamanaka Y, Karuppaiah K, Abu-Amer Y (2011) Polyubiquitination events mediate polymethylmethacrylate (PMMA) particle activation of NF-kappaB pathway. J Biol Chem 286:23735–23741PubMedCrossRef
111.
go back to reference Alhawagri M, Yamanaka Y, Ballard D, Oltz E, Abu-Amer Y (2012) Lysine392, a K63-linked ubiquitination site in NEMO, mediates inflammatory osteoclastogenesis and osteolysis. J Orthop Res 30:554–560PubMedCrossRef Alhawagri M, Yamanaka Y, Ballard D, Oltz E, Abu-Amer Y (2012) Lysine392, a K63-linked ubiquitination site in NEMO, mediates inflammatory osteoclastogenesis and osteolysis. J Orthop Res 30:554–560PubMedCrossRef
112.
113.
114.
go back to reference Sanz L, Diaz-Meco MT, Nakano H, Moscat J (2000) The atypical PKC-interacting protein p62 channels NF-kappa B activation by the IL-1-TRAF6 pathway. EMBO J 19:1576–1586PubMedCrossRef Sanz L, Diaz-Meco MT, Nakano H, Moscat J (2000) The atypical PKC-interacting protein p62 channels NF-kappa B activation by the IL-1-TRAF6 pathway. EMBO J 19:1576–1586PubMedCrossRef
115.
116.
go back to reference de Oliveira RR, Novaes AB Jr, Garlet GP, de Souza RF, Taba M Jr, Sato S, de Souza SL, Palioto DB, Grisi MF, Feres M (2011) The effect of a single episode of antimicrobial photodynamic therapy in the treatment of experimental periodontitis. Microbiological profile and cytokine pattern in the dog mandible. Lasers Med Sci 26:359–367PubMedCrossRef de Oliveira RR, Novaes AB Jr, Garlet GP, de Souza RF, Taba M Jr, Sato S, de Souza SL, Palioto DB, Grisi MF, Feres M (2011) The effect of a single episode of antimicrobial photodynamic therapy in the treatment of experimental periodontitis. Microbiological profile and cytokine pattern in the dog mandible. Lasers Med Sci 26:359–367PubMedCrossRef
117.
go back to reference Feldman M, Tanabe S, Epifano F, Genovese S, Curini M, Grenier D (2011) Antibacterial and anti-inflammatory activities of 4-hydroxycordoin: potential therapeutic benefits. J Nat Prod 74:26–31PubMedCrossRef Feldman M, Tanabe S, Epifano F, Genovese S, Curini M, Grenier D (2011) Antibacterial and anti-inflammatory activities of 4-hydroxycordoin: potential therapeutic benefits. J Nat Prod 74:26–31PubMedCrossRef
118.
go back to reference Milward MR, Chapple IL, Wright HJ, Millard JL, Matthews JB, Cooper PR (2007) Differential activation of NF-kappaB and gene expression in oral epithelial cells by periodontal pathogens. Clin Exp Immunol 148:307–324PubMedCrossRef Milward MR, Chapple IL, Wright HJ, Millard JL, Matthews JB, Cooper PR (2007) Differential activation of NF-kappaB and gene expression in oral epithelial cells by periodontal pathogens. Clin Exp Immunol 148:307–324PubMedCrossRef
119.
go back to reference Huang GT, Zhang HB, Dang HN, Haake SK (2004) Differential regulation of cytokine genes in gingival epithelial cells challenged by Fusobacterium nucleatum and Porphyromonas gingivalis. Microb Pathog 37:303–312PubMedCrossRef Huang GT, Zhang HB, Dang HN, Haake SK (2004) Differential regulation of cytokine genes in gingival epithelial cells challenged by Fusobacterium nucleatum and Porphyromonas gingivalis. Microb Pathog 37:303–312PubMedCrossRef
120.
go back to reference Abu-Amer Y, Ross FP, Edwards J, Teitelbaum SL (1997) Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J Clin Invest 100:1557–1565PubMedCrossRef Abu-Amer Y, Ross FP, Edwards J, Teitelbaum SL (1997) Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J Clin Invest 100:1557–1565PubMedCrossRef
121.
go back to reference McCormick RK (2007) Osteoporosis: integrating biomarkers and other diagnostic correlates into the management of bone fragility. Altern Med Rev 12:113–145PubMed McCormick RK (2007) Osteoporosis: integrating biomarkers and other diagnostic correlates into the management of bone fragility. Altern Med Rev 12:113–145PubMed
123.
go back to reference Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302PubMedCrossRef Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302PubMedCrossRef
124.
go back to reference Rizzoli R, Bonjour JP, Ferrari SL (2001) Osteoporosis, genetics and hormones. J Mol Endocrinol 26:79–94PubMedCrossRef Rizzoli R, Bonjour JP, Ferrari SL (2001) Osteoporosis, genetics and hormones. J Mol Endocrinol 26:79–94PubMedCrossRef
125.
go back to reference Stein B, Yang MX (1995) Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol 15:4971–4979PubMed Stein B, Yang MX (1995) Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol 15:4971–4979PubMed
126.
go back to reference Sugiyama T (2001) Involvement of interleukin-6 and prostaglandin E2 in periarticular osteoporosis of postmenopausal women with rheumatoid arthritis. J Bone Miner Metab 19:89–96PubMedCrossRef Sugiyama T (2001) Involvement of interleukin-6 and prostaglandin E2 in periarticular osteoporosis of postmenopausal women with rheumatoid arthritis. J Bone Miner Metab 19:89–96PubMedCrossRef
127.
go back to reference Kalaitzidis D, Gilmore TD (2005) Transcription factor cross-talk: the estrogen receptor and NF-kappaB. Trends Endocrinol Metab 16:46–52PubMedCrossRef Kalaitzidis D, Gilmore TD (2005) Transcription factor cross-talk: the estrogen receptor and NF-kappaB. Trends Endocrinol Metab 16:46–52PubMedCrossRef
128.
go back to reference Lencel P, Magne D (2011) Inflammaging: the driving force in osteoporosis? Med Hypotheses 76:317–321PubMedCrossRef Lencel P, Magne D (2011) Inflammaging: the driving force in osteoporosis? Med Hypotheses 76:317–321PubMedCrossRef
129.
go back to reference Romas E, Gillespie MT (2006) Inflammation-induced bone loss: can it be prevented? Rheum Dis Clin North Am 32:759–773PubMedCrossRef Romas E, Gillespie MT (2006) Inflammation-induced bone loss: can it be prevented? Rheum Dis Clin North Am 32:759–773PubMedCrossRef
130.
go back to reference Tilg H, Moschen AR, Kaser A, Pines A, Dotan I (2008) Gut, inflammation and osteoporosis: basic and clinical concepts. Gut 57:684–694PubMedCrossRef Tilg H, Moschen AR, Kaser A, Pines A, Dotan I (2008) Gut, inflammation and osteoporosis: basic and clinical concepts. Gut 57:684–694PubMedCrossRef
131.
go back to reference Davignon J, Jacob RF, Mason RP (2004) The antioxidant effects of statins. Coron Artery Dis 15:251–258PubMedCrossRef Davignon J, Jacob RF, Mason RP (2004) The antioxidant effects of statins. Coron Artery Dis 15:251–258PubMedCrossRef
132.
go back to reference Nazrun AS, Norazlina M, Norliza M, Nirwana SI (2012) The anti-inflammatory role of vitamin E in prevention of osteoporosis. Adv Pharmacol Sci 2012:7 Nazrun AS, Norazlina M, Norliza M, Nirwana SI (2012) The anti-inflammatory role of vitamin E in prevention of osteoporosis. Adv Pharmacol Sci 2012:7
133.
go back to reference Moon HJ, Kim SE, Yun YP, Hwang YS, Bang JB, Park JH, Kwon IK (2011) Simvastatin inhibits osteoclast differentiation by scavenging reactive oxygen species. Exp Mol Med 43:605–612PubMedCrossRef Moon HJ, Kim SE, Yun YP, Hwang YS, Bang JB, Park JH, Kwon IK (2011) Simvastatin inhibits osteoclast differentiation by scavenging reactive oxygen species. Exp Mol Med 43:605–612PubMedCrossRef
Metadata
Title
NF-κB signaling and bone resorption
Author
Y. Abu-Amer
Publication date
01-09-2013
Publisher
Springer London
Published in
Osteoporosis International / Issue 9/2013
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-013-2313-x

Other articles of this Issue 9/2013

Osteoporosis International 9/2013 Go to the issue