Skip to main content
Top
Published in: BMC Oral Health 1/2021

Open Access 01-12-2021 | Computed Tomography | Research article

Comparison of canal transportation and centering ability of manual K-files and reciprocating files in glide path preparation: a micro-computed tomography study of constricted canals

Authors: Jing-Yi Liu, Zhi-Xiong Zhou, Wei-Ju Tseng, Bekir Karabucak

Published in: BMC Oral Health | Issue 1/2021

Login to get access

Abstract

Background

Optimum Glide Path (OGP) is a new reciprocating motion aiming to perform efficient glide path preparation in constricted canals. The aim of this study was to investigate and compare manual and OGP movement in terms of canal transportation and centering ability in glide path preparation of constricted canals.

Methods

Thirty constricted mesial root canals of mandibular molars, with initial apical size no larger than ISO#8, were selected and negotiated with #6–#8 K-files under the microscope. Canals were randomly divided into two experimental groups: Group 1 (MAN, n = 15): Glide path was established by using #10-#15 stainless steel K-files manually; Group 2 (OGP, n = 15): #10-#15 Mechanical Glide Path super-files were used with OGP motion (OGP 90°, 300 rpm). Each instrument was used to prepare only 2 canals (as in one mesial root). Canals were scanned before and after glide path preparation with micro-computed tomography (micro-CT) to evaluate root canal transportation and centering ratio at 1, 3 and 5 mm levels from the root apex. File distortions and separations were recorded. Paired t-test was used to statistically evaluate the data (P < .05).

Results

Group 2 showed a significantly lower transportation value than group 1 at 1-mm and 3-mm levels (P < .05), however the difference at 5-mm level was not significant. There was no significant difference regarding the centering ratio between the groups. Six #10 K-files were severely distorted in group 1, while no file separation or distortion was found in group 2.

Conclusions

OGP motion performed significantly less canal transportation (apical 3 mm) and file distortion during glide path establishment in constricted canals comparing to manual motion, while the centering ability between the two was similar.

Clinical relevance

OGP reciprocating motion provides a safer and efficient clinical approach compared to traditional manual motion in glide path establishment with small files in constricted canals.
Literature
1.
go back to reference Peters OA, Peters CI, Basrani B. Cleaning and shaping of the root canal system. In: Hargreaves KM, Berman LH, editors. Cohen’s pathways of the pulp. 11th ed. St. Louis: Elsevier; 2006. p. 209–79. Peters OA, Peters CI, Basrani B. Cleaning and shaping of the root canal system. In: Hargreaves KM, Berman LH, editors. Cohen’s pathways of the pulp. 11th ed. St. Louis: Elsevier; 2006. p. 209–79.
2.
go back to reference Kwak SW, Ha JH, Cheung GS, Kim HC, Kim SK. Effect of the glide path establishment on the torque generation to the files during instrumentation: an in vitro measurement. J Endod. 2018;44(3):496–500.CrossRef Kwak SW, Ha JH, Cheung GS, Kim HC, Kim SK. Effect of the glide path establishment on the torque generation to the files during instrumentation: an in vitro measurement. J Endod. 2018;44(3):496–500.CrossRef
3.
go back to reference Ha JH, Park SS. Influence of glide path on the screw-in effect and torque of nickel–titanium rotary files in simulated resin root canals. Restor Dent Endod. 2012;37(4):215–9.CrossRef Ha JH, Park SS. Influence of glide path on the screw-in effect and torque of nickel–titanium rotary files in simulated resin root canals. Restor Dent Endod. 2012;37(4):215–9.CrossRef
4.
go back to reference West J. The magic of mastering the glide path: what every endodontist should know. CA: American Association of Endodontists Annual Session. San Diego; 2010. West J. The magic of mastering the glide path: what every endodontist should know. CA: American Association of Endodontists Annual Session. San Diego; 2010.
5.
go back to reference Berutti E, Cantatore G, Castellucci A, Chiandussi G, Pera F, Migliaretti G, et al. Use of nickel–titanium rotary PathFile to create the glide path: comparison with manual preflaring in simulated root canals. J Endod. 2009;35(3):408–12.CrossRef Berutti E, Cantatore G, Castellucci A, Chiandussi G, Pera F, Migliaretti G, et al. Use of nickel–titanium rotary PathFile to create the glide path: comparison with manual preflaring in simulated root canals. J Endod. 2009;35(3):408–12.CrossRef
6.
go back to reference Patiño PV, Biedma BM, Liébana CR, Cantatore G, Bahillo JG. The influence of a manual glide path on the separation rate of NiTi rotary instruments. J Endod. 2005;31(2):114–6.CrossRef Patiño PV, Biedma BM, Liébana CR, Cantatore G, Bahillo JG. The influence of a manual glide path on the separation rate of NiTi rotary instruments. J Endod. 2005;31(2):114–6.CrossRef
7.
go back to reference McCabe PS, Dummer PM. Pulp canal obliteration: an endodontic diagnosis and treatment challenge. Int Endod J. 2012;45(2):177–97.CrossRef McCabe PS, Dummer PM. Pulp canal obliteration: an endodontic diagnosis and treatment challenge. Int Endod J. 2012;45(2):177–97.CrossRef
8.
go back to reference Cvek M, Granath L, Lundberg M. Failures and healing in endodontically treated non-vital anterior teeth with posttraumatically reduced pulpal lumen. Acta Odontol Scand. 1982;40(4):223–8.CrossRef Cvek M, Granath L, Lundberg M. Failures and healing in endodontically treated non-vital anterior teeth with posttraumatically reduced pulpal lumen. Acta Odontol Scand. 1982;40(4):223–8.CrossRef
9.
go back to reference Ferraz CC, Gomes NV, Gomes BP, Zaia AA, Teixeira FB, Souza-Filho FJ. Apical extrusion of debris and irrigants using two hand and three engine-driven instrumentation techniques. Int Endod J. 2001;34(5):354–8.CrossRef Ferraz CC, Gomes NV, Gomes BP, Zaia AA, Teixeira FB, Souza-Filho FJ. Apical extrusion of debris and irrigants using two hand and three engine-driven instrumentation techniques. Int Endod J. 2001;34(5):354–8.CrossRef
10.
go back to reference Kuhn WG, Carnes DL Jr, Clement DJ, Walker WA III. Effect of tip design of nickel–titanium and stainless steel files on root canal preparation. J Endod. 1997;23(12):735–8.CrossRef Kuhn WG, Carnes DL Jr, Clement DJ, Walker WA III. Effect of tip design of nickel–titanium and stainless steel files on root canal preparation. J Endod. 1997;23(12):735–8.CrossRef
11.
go back to reference Glossen CR, Haller RH, Dove SB, del Rio CE. A comparison of root canal preparations using Ni-Ti hand, Ni-Ti engine-driven, and K-Flex endodontic instruments. J Endod. 1995;21(3):146–51.CrossRef Glossen CR, Haller RH, Dove SB, del Rio CE. A comparison of root canal preparations using Ni-Ti hand, Ni-Ti engine-driven, and K-Flex endodontic instruments. J Endod. 1995;21(3):146–51.CrossRef
12.
go back to reference Short JA, Morgan LA, Baumgartner JC. A comparison of canal centering ability of four instrumentation techniques. J Endod. 1997;23(8):503–7.CrossRef Short JA, Morgan LA, Baumgartner JC. A comparison of canal centering ability of four instrumentation techniques. J Endod. 1997;23(8):503–7.CrossRef
13.
go back to reference Roane JB, Sabala CL, Duncanson MG Jr. The “balanced force” concept for instrumentation of curved canals. J Endod. 1985;11(5):203–11.CrossRef Roane JB, Sabala CL, Duncanson MG Jr. The “balanced force” concept for instrumentation of curved canals. J Endod. 1985;11(5):203–11.CrossRef
14.
go back to reference Gambarini G, Piasecki L, Miccoli G, Gaimari G, Giorgio RD, Nardo DD, et al. Classification and cyclic fatigue evaluation of new kinematics for endodontic instruments. Aust Endod J. 2019;45(2):154–62.CrossRef Gambarini G, Piasecki L, Miccoli G, Gaimari G, Giorgio RD, Nardo DD, et al. Classification and cyclic fatigue evaluation of new kinematics for endodontic instruments. Aust Endod J. 2019;45(2):154–62.CrossRef
15.
go back to reference Poly A, AlMalki F, Marques F, Karabucak B. Canal transportation and centering ratio after preparation in severely curved canals: analysis by micro-computed tomography and double-digital radiography. Clin Oral Investig. 2019;23(12):4255–62.CrossRef Poly A, AlMalki F, Marques F, Karabucak B. Canal transportation and centering ratio after preparation in severely curved canals: analysis by micro-computed tomography and double-digital radiography. Clin Oral Investig. 2019;23(12):4255–62.CrossRef
16.
go back to reference Hassan R, Roshdy N, Issa N. Comparison of canal transportation and centering ability of XP Shaper, WaveOne and Oneshape: a cone beam computed tomography study of curved root canals. Acta Odontol Latinoam. 2018;31(1):67–74.PubMed Hassan R, Roshdy N, Issa N. Comparison of canal transportation and centering ability of XP Shaper, WaveOne and Oneshape: a cone beam computed tomography study of curved root canals. Acta Odontol Latinoam. 2018;31(1):67–74.PubMed
17.
go back to reference Schneider SW. A comparison of canal preparations in straight and curved root canals. Oral Surg Oral Med Oral Pathol. 1971;32(2):271–5.CrossRef Schneider SW. A comparison of canal preparations in straight and curved root canals. Oral Surg Oral Med Oral Pathol. 1971;32(2):271–5.CrossRef
19.
go back to reference Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30(9):1323–41.CrossRef Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30(9):1323–41.CrossRef
20.
go back to reference Gambill JM, Alder M, del Rio CE. Comparison of nickel–titanium and stainless steel hand-file instrumentation using computed tomography. J Endod. 1996;22(7):369–75.CrossRef Gambill JM, Alder M, del Rio CE. Comparison of nickel–titanium and stainless steel hand-file instrumentation using computed tomography. J Endod. 1996;22(7):369–75.CrossRef
21.
go back to reference Souza RA. The importance of apical patency and cleaning of the apical foramen on root canal preparation. Braz Dent J. 2006;17(1):6–9.CrossRef Souza RA. The importance of apical patency and cleaning of the apical foramen on root canal preparation. Braz Dent J. 2006;17(1):6–9.CrossRef
23.
go back to reference Wu MK, Fan B, Wesselink PR. Leakage along apical root fillings in curved root canals. Part I: effects of apical transportation on seal of root fillings. J Endod. 2000;26(4):210–6.CrossRef Wu MK, Fan B, Wesselink PR. Leakage along apical root fillings in curved root canals. Part I: effects of apical transportation on seal of root fillings. J Endod. 2000;26(4):210–6.CrossRef
24.
go back to reference Aydin U, Karataslioglu E. Evaluation of canal transportation after preparation with Reciproc single-file systems with or without glide path files. J Conserv Dent. 2017;20(4):230–3.CrossRef Aydin U, Karataslioglu E. Evaluation of canal transportation after preparation with Reciproc single-file systems with or without glide path files. J Conserv Dent. 2017;20(4):230–3.CrossRef
25.
go back to reference Grande NM, Ahmed HM, Cohen S, Bukiet F, Plotino G. Current assessment of reciprocation in Endodontic preparation: a comprehensive review—part I: historic perspectives and current applications. J Endod. 2015;41(11):1778–83.CrossRef Grande NM, Ahmed HM, Cohen S, Bukiet F, Plotino G. Current assessment of reciprocation in Endodontic preparation: a comprehensive review—part I: historic perspectives and current applications. J Endod. 2015;41(11):1778–83.CrossRef
26.
go back to reference Lim YJ, Park SJ, Kim HC, Min KS. Comparison of the centering ability of WaveOne and Reciproc nickel–titanium instruments in simulated curved canals. Restor Dent Endod. 2013;38(1):21–5.CrossRef Lim YJ, Park SJ, Kim HC, Min KS. Comparison of the centering ability of WaveOne and Reciproc nickel–titanium instruments in simulated curved canals. Restor Dent Endod. 2013;38(1):21–5.CrossRef
27.
go back to reference McGuigan MB, Louca C, Duncan HF. Endodontic instrument fracture: causes and prevention. Br Dent J. 2013;214(7):341–8.CrossRef McGuigan MB, Louca C, Duncan HF. Endodontic instrument fracture: causes and prevention. Br Dent J. 2013;214(7):341–8.CrossRef
28.
go back to reference Tokita D, Ebihara A, Nishijo M, Miyara K, Okiji T. Dynamic torque and vertical force analysis during nickel–titanium rotary root canal preparation with different modes of reciprocal rotation. J Endod. 2017;43(10):1706–10.CrossRef Tokita D, Ebihara A, Nishijo M, Miyara K, Okiji T. Dynamic torque and vertical force analysis during nickel–titanium rotary root canal preparation with different modes of reciprocal rotation. J Endod. 2017;43(10):1706–10.CrossRef
29.
go back to reference Htun PH, Ebihara A, Maki K, Kimura S, Nishijo M, Tokita D, et al. Comparison of torque, force generation and canal shaping ability between manual and nickel–titanium glide path instruments in rotary and optimum glide path motion. Odontology. 2020;108(2):188–93.CrossRef Htun PH, Ebihara A, Maki K, Kimura S, Nishijo M, Tokita D, et al. Comparison of torque, force generation and canal shaping ability between manual and nickel–titanium glide path instruments in rotary and optimum glide path motion. Odontology. 2020;108(2):188–93.CrossRef
30.
go back to reference Saber Sel D, Abu El Sadat SM. Effect of altering the reciprocation range on the fatigue life and the shaping ability of WaveOne nickel–titanium instruments. J Endod. 2013;39(5):685–8.CrossRef Saber Sel D, Abu El Sadat SM. Effect of altering the reciprocation range on the fatigue life and the shaping ability of WaveOne nickel–titanium instruments. J Endod. 2013;39(5):685–8.CrossRef
31.
go back to reference Gambarini G, Rubini AG, Al Sudani D, Gergi R, Culla A, Angelis FD, et al. Influence of different angles of reciprocation on the cyclic fatigue of nickel–titanium endodontic instruments. J Endod. 2012;38(10):1408–11.CrossRef Gambarini G, Rubini AG, Al Sudani D, Gergi R, Culla A, Angelis FD, et al. Influence of different angles of reciprocation on the cyclic fatigue of nickel–titanium endodontic instruments. J Endod. 2012;38(10):1408–11.CrossRef
32.
go back to reference Ha JH, Kwak SW, Sigurdsson A, Chang SW, Kim SK, Kim HC. Stress generation during pecking motion of rotary nickel–titanium instruments with different pecking depth. J Endod. 2017;43(10):1688–91.CrossRef Ha JH, Kwak SW, Sigurdsson A, Chang SW, Kim SK, Kim HC. Stress generation during pecking motion of rotary nickel–titanium instruments with different pecking depth. J Endod. 2017;43(10):1688–91.CrossRef
33.
go back to reference Maki K, Ebihara A, Kimura S, Nishijo M, Tokita D, Okiji T. Effect of different speeds of up-and-down motion on canal centering ability and vertical force and torque generation of nickel–titanium rotary instruments. J Endod. 2019;45(1):68-72.e1.CrossRef Maki K, Ebihara A, Kimura S, Nishijo M, Tokita D, Okiji T. Effect of different speeds of up-and-down motion on canal centering ability and vertical force and torque generation of nickel–titanium rotary instruments. J Endod. 2019;45(1):68-72.e1.CrossRef
Metadata
Title
Comparison of canal transportation and centering ability of manual K-files and reciprocating files in glide path preparation: a micro-computed tomography study of constricted canals
Authors
Jing-Yi Liu
Zhi-Xiong Zhou
Wei-Ju Tseng
Bekir Karabucak
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2021
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-021-01440-3

Other articles of this Issue 1/2021

BMC Oral Health 1/2021 Go to the issue