Skip to main content
Top
Published in: BMC Oral Health 1/2021

Open Access 01-12-2021 | Research

Comparative evaluation of osteogenic differentiation potential of stem cells derived from dental pulp and exfoliated deciduous teeth cultured over granular hydroxyapatite based scaffold

Authors: Manal Nabil Hagar, Farinawati Yazid, Nur Atmaliya Luchman, Shahrul Hisham Zainal Ariffin, Rohaya Megat Abdul Wahab

Published in: BMC Oral Health | Issue 1/2021

Login to get access

Abstract

Background

Mesenchymal stem cells isolated from the dental pulp of primary and permanent teeth can be differentiated into different cell types including osteoblasts. This study was conducted to compare the morphology and osteogenic potential of stem cells from exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSC) in granular hydroxyapatite scaffold (gHA). Preosteoblast cells (MC3T3-E1) were used as a control group.

Methodology

The expression of stemness markers for DPSC and SHED was evaluated using reverse transcriptase-polymerase chain reaction (RT-PCR). Alkaline phosphatase assay was used to compare the osteoblastic differentiation of these cells (2D culture). Then, cells were seeded on the scaffold and incubated for 21 days. Morphology assessment using field emission scanning electron microscopy (FESEM) was done while osteogenic differentiation was detected using ALP assay (3D culture).

Results

The morphology of cells was mononucleated, fibroblast-like shaped cells with extended cytoplasmic projection. In RT-PCR study, DPSC and SHED expressed GAPDH, CD73, CD105, and CD146 while negatively expressed CD11b, CD34 and CD45. FESEM results showed that by day 21, dental stem cells have a round like morphology which is the morphology of osteoblast as compared to day 7. The osteogenic potential using ALP assay was significantly increased (p < 0.01) in SHED as compared to DPSC and MC3T3-E1 in 2D and 3D cultures.

Conclusion

gHA scaffold is an optimal scaffold as it induced osteogenesis in vitro. Besides, SHED had the highest osteogenic potential making them a preferred candidate for tissue engineering in comparison with DPSC.
Literature
1.
go back to reference Gładysz D, Hozyasz KK. Stem cell regenerative therapy in alveolar cleft reconstruction. Arch Oral Biol. 2015;60(10):1517–32.CrossRef Gładysz D, Hozyasz KK. Stem cell regenerative therapy in alveolar cleft reconstruction. Arch Oral Biol. 2015;60(10):1517–32.CrossRef
2.
go back to reference Zhang D, Chu F, Yang Y, Xia L, Zeng D, Uludağ H, Zhang X, Qian Y, Jiang X. Orthodontic tooth movement in alveolar cleft repaired with a tissue engineering bone: an experimental study in dogs. Tissue Eng Part A. 2011;17(9–10):1313–25.CrossRef Zhang D, Chu F, Yang Y, Xia L, Zeng D, Uludağ H, Zhang X, Qian Y, Jiang X. Orthodontic tooth movement in alveolar cleft repaired with a tissue engineering bone: an experimental study in dogs. Tissue Eng Part A. 2011;17(9–10):1313–25.CrossRef
3.
go back to reference Ramamoorthi M, Bakkar M, Jordan J, Tran SD. Osteogenic potential of dental mesenchymal stem cells in preclinical studies: a systematic review using modified arrive and consort guidelines. Stem Cells Int. 2015;2015(1155):378368.PubMedPubMedCentral Ramamoorthi M, Bakkar M, Jordan J, Tran SD. Osteogenic potential of dental mesenchymal stem cells in preclinical studies: a systematic review using modified arrive and consort guidelines. Stem Cells Int. 2015;2015(1155):378368.PubMedPubMedCentral
4.
go back to reference Asutay F, Polat S, Gül M, Subaşı C, Kahraman SA, Karaöz E. The effects of dental pulp stem cells on bone regeneration in rat calvarial defect model: micro-computed tomography and histomorphometric analysis. Arch Oral Biol. 2015;60(12):1729–35.CrossRef Asutay F, Polat S, Gül M, Subaşı C, Kahraman SA, Karaöz E. The effects of dental pulp stem cells on bone regeneration in rat calvarial defect model: micro-computed tomography and histomorphometric analysis. Arch Oral Biol. 2015;60(12):1729–35.CrossRef
5.
go back to reference Khanna-Jain R, Mannerström B, Vuorinen A, Sándor GK, Suuronen R, Miettinen S. Osteogenic differentiation of human dental pulp stem cells on β-tricalcium phosphate/poly (l-lactic acid/caprolactone) three-dimensional scaffolds. J Tissue Eng. 2012;3(1):2041731412467998.CrossRef Khanna-Jain R, Mannerström B, Vuorinen A, Sándor GK, Suuronen R, Miettinen S. Osteogenic differentiation of human dental pulp stem cells on β-tricalcium phosphate/poly (l-lactic acid/caprolactone) three-dimensional scaffolds. J Tissue Eng. 2012;3(1):2041731412467998.CrossRef
6.
go back to reference Jiménez NT, Munévar JC, González JM, Infante C, Lara SJP. In vitro response of dental pulp stem cells in 3D scaffolds: a regenerative bone material. Heliyon. 2018;4(9):e00775.CrossRef Jiménez NT, Munévar JC, González JM, Infante C, Lara SJP. In vitro response of dental pulp stem cells in 3D scaffolds: a regenerative bone material. Heliyon. 2018;4(9):e00775.CrossRef
7.
go back to reference Jensen J, Tvedesøe C, Rölfing JHD, Foldager CB, Lysdahl H, Kraft DCE, Chen M, Baas J, Le DQS, Bünger CE. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model. Sicot-j. 2016;2:16.CrossRef Jensen J, Tvedesøe C, Rölfing JHD, Foldager CB, Lysdahl H, Kraft DCE, Chen M, Baas J, Le DQS, Bünger CE. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model. Sicot-j. 2016;2:16.CrossRef
8.
go back to reference Saranya N, Saravanan S, Moorthi A, Ramyakrishna B, Selvamurugan N. Enhanced osteoblast adhesion on polymeric nano-scaffolds for bone tissue engineering. J Biomed Nanotechnol. 2011;7(2):238–44.CrossRef Saranya N, Saravanan S, Moorthi A, Ramyakrishna B, Selvamurugan N. Enhanced osteoblast adhesion on polymeric nano-scaffolds for bone tissue engineering. J Biomed Nanotechnol. 2011;7(2):238–44.CrossRef
9.
go back to reference O’brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.CrossRef O’brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.CrossRef
10.
go back to reference Motamedian SR, Tabatabaei FS, Akhlaghi F, Torshabi M, Gholamin P, Khojasteh A. Response of dental pulp stem cells to synthetic, allograft, and xenograft bone scaffolds. Int J Periodontics Restor Dent. 2017;37(1):49–59. Motamedian SR, Tabatabaei FS, Akhlaghi F, Torshabi M, Gholamin P, Khojasteh A. Response of dental pulp stem cells to synthetic, allograft, and xenograft bone scaffolds. Int J Periodontics Restor Dent. 2017;37(1):49–59.
11.
go back to reference Jang SJ, Kim SE, Han TS, Son JS, Kang SS, Choi SH. Bone regeneration of hydroxyapatite with granular form or porous scaffold in canine alveolar sockets. In Vivo. 2017;31(3):335–41.CrossRef Jang SJ, Kim SE, Han TS, Son JS, Kang SS, Choi SH. Bone regeneration of hydroxyapatite with granular form or porous scaffold in canine alveolar sockets. In Vivo. 2017;31(3):335–41.CrossRef
12.
go back to reference Yazid FB, Gnanasegaran N, Kunasekaran W, Govindasamy V, Musa S. Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth. Clin Oral Invest. 2014;18(9):2103–12.CrossRef Yazid FB, Gnanasegaran N, Kunasekaran W, Govindasamy V, Musa S. Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth. Clin Oral Invest. 2014;18(9):2103–12.CrossRef
13.
go back to reference Kermani S, Wahab RMA, Abidin IZZ, Ariffin ZZ, Senafi S, Ariffin SHZ. Differentiation capacity of mouse dental pulp stem cells into osteoblasts and osteoclasts. Cell J (Yakhteh). 2014;16(1):31. Kermani S, Wahab RMA, Abidin IZZ, Ariffin ZZ, Senafi S, Ariffin SHZ. Differentiation capacity of mouse dental pulp stem cells into osteoblasts and osteoclasts. Cell J (Yakhteh). 2014;16(1):31.
14.
go back to reference Megat Abdul Wahab R, Abdullah N, Zainal Ariffin SH, Che Abdullah CA, Yazid F. Effects of the sintering process on nacre-derived hydroxyapatite scaffolds for bone engineering. Molecules. 2020;25(14):3129.CrossRef Megat Abdul Wahab R, Abdullah N, Zainal Ariffin SH, Che Abdullah CA, Yazid F. Effects of the sintering process on nacre-derived hydroxyapatite scaffolds for bone engineering. Molecules. 2020;25(14):3129.CrossRef
15.
go back to reference Ernst O, Zor T. Linearization of the bradford protein assay. JoVE (J Visual Exp). 2010;38:e1918. Ernst O, Zor T. Linearization of the bradford protein assay. JoVE (J Visual Exp). 2010;38:e1918.
16.
go back to reference Numasawa Y, Kimura T, Miyoshi S, Nishiyama N, Hida N, Tsuji H, Tsuruta H, Segawa K, Ogawa S, Umezawa A. Treatment of human mesenchymal stem cells with angiotensin receptor blocker improved efficiency of cardiomyogenic transdifferentiation and improved cardiac function via angiogenesis. Stem Cells. 2011;29(9):1405–14.PubMed Numasawa Y, Kimura T, Miyoshi S, Nishiyama N, Hida N, Tsuji H, Tsuruta H, Segawa K, Ogawa S, Umezawa A. Treatment of human mesenchymal stem cells with angiotensin receptor blocker improved efficiency of cardiomyogenic transdifferentiation and improved cardiac function via angiogenesis. Stem Cells. 2011;29(9):1405–14.PubMed
17.
go back to reference Vaculik C, Schuster C, Bauer W, Iram N, Pfisterer K, Kramer G, Reinisch A, Strunk D, Elbe-Bürger A. Human dermis harbors distinct mesenchymal stromal cell subsets. J Investig Dermatol. 2012;132(3):563–74.CrossRef Vaculik C, Schuster C, Bauer W, Iram N, Pfisterer K, Kramer G, Reinisch A, Strunk D, Elbe-Bürger A. Human dermis harbors distinct mesenchymal stromal cell subsets. J Investig Dermatol. 2012;132(3):563–74.CrossRef
18.
go back to reference Harvanová D, Tóthová T, Sarissky M, Amrichová J, Rosocha J. Isolation and characterization of synovial mesenchymal stem cells. Folia Biol (Praha). 2011;57(3):119–24. Harvanová D, Tóthová T, Sarissky M, Amrichová J, Rosocha J. Isolation and characterization of synovial mesenchymal stem cells. Folia Biol (Praha). 2011;57(3):119–24.
19.
go back to reference Pilz GA, Braun J, Ulrich C, Felka T, Warstat K, Ruh M, Schewe B, Abele H, Larbi A, Aicher WK. Human mesenchymal stromal cells express CD14 cross-reactive epitopes. Cytometry A. 2011;79(8):635–45.CrossRef Pilz GA, Braun J, Ulrich C, Felka T, Warstat K, Ruh M, Schewe B, Abele H, Larbi A, Aicher WK. Human mesenchymal stromal cells express CD14 cross-reactive epitopes. Cytometry A. 2011;79(8):635–45.CrossRef
20.
go back to reference Nareika A, Im Y-B, Game BA, Slate EH, Sanders JJ, London SD, Lopes-Virella MF, Huang Y. High glucose enhances lipopolysaccharide-stimulated CD14 expression in U937 mononuclear cells by increasing nuclear factor kB and AP-1 activities. J Endocrinol. 2008;196(1):45.CrossRef Nareika A, Im Y-B, Game BA, Slate EH, Sanders JJ, London SD, Lopes-Virella MF, Huang Y. High glucose enhances lipopolysaccharide-stimulated CD14 expression in U937 mononuclear cells by increasing nuclear factor kB and AP-1 activities. J Endocrinol. 2008;196(1):45.CrossRef
21.
go back to reference Lee Y-C, Chan Y-H, Hsieh S-C, Lew W-Z, Feng S-W. Comparing the osteogenic potentials and bone regeneration capacities of bone marrow and dental pulp mesenchymal stem cells in a rabbit calvarial bone defect model. Int J Mol Sci. 2019;20(20):5015.CrossRef Lee Y-C, Chan Y-H, Hsieh S-C, Lew W-Z, Feng S-W. Comparing the osteogenic potentials and bone regeneration capacities of bone marrow and dental pulp mesenchymal stem cells in a rabbit calvarial bone defect model. Int J Mol Sci. 2019;20(20):5015.CrossRef
22.
go back to reference Kunimatsu R, Nakajima K, Awada T, Tsuka Y, Abe T, Ando K, Hiraki T, Kimura A, Tanimoto K. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow–derived mesenchymal stem cells. Biochem Biophys Res Commun. 2018;501(1):193–8.CrossRef Kunimatsu R, Nakajima K, Awada T, Tsuka Y, Abe T, Ando K, Hiraki T, Kimura A, Tanimoto K. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow–derived mesenchymal stem cells. Biochem Biophys Res Commun. 2018;501(1):193–8.CrossRef
23.
go back to reference Aghajani F, Hooshmand T, Khanmohammadi M, Khanjani S, Edalatkhah H, Zarnani A-H, Kazemnejad S. Comparative immunophenotypic characteristics, proliferative features, and osteogenic differentiation of stem cells isolated from human permanent and deciduous teeth with bone marrow. Mol Biotechnol. 2016;58(6):415–27.CrossRef Aghajani F, Hooshmand T, Khanmohammadi M, Khanjani S, Edalatkhah H, Zarnani A-H, Kazemnejad S. Comparative immunophenotypic characteristics, proliferative features, and osteogenic differentiation of stem cells isolated from human permanent and deciduous teeth with bone marrow. Mol Biotechnol. 2016;58(6):415–27.CrossRef
24.
go back to reference Farinawati Y, Nur Atmaliya L, Rohaya MAW, Shahrul Hisham ZA, Shahidan S. Proliferation and osteoblast differentiation mice dental pulp stem cells between enzyme digestion and outgrowth method. Sains Malays. 2018;47(4):691–8.CrossRef Farinawati Y, Nur Atmaliya L, Rohaya MAW, Shahrul Hisham ZA, Shahidan S. Proliferation and osteoblast differentiation mice dental pulp stem cells between enzyme digestion and outgrowth method. Sains Malays. 2018;47(4):691–8.CrossRef
25.
go back to reference Wang H, Zhong Q, Yang T, Qi Y, Fu M, Yang X, Qiao L, Ling Q, Liu S, Zhao Y. Comparative characterization of SHED and DPSCs during extended cultivation in vitro. Mol Med Rep. 2018;17(5):6551–9.PubMedPubMedCentral Wang H, Zhong Q, Yang T, Qi Y, Fu M, Yang X, Qiao L, Ling Q, Liu S, Zhao Y. Comparative characterization of SHED and DPSCs during extended cultivation in vitro. Mol Med Rep. 2018;17(5):6551–9.PubMedPubMedCentral
26.
go back to reference Wahab RMA, Hagar MN, Luchman NA, Yazid F, Ariffin SHZ. 3D titanium scaffold properties and osteogenesis of stem cells. Sains Malays. 2020;49(4):809–16.CrossRef Wahab RMA, Hagar MN, Luchman NA, Yazid F, Ariffin SHZ. 3D titanium scaffold properties and osteogenesis of stem cells. Sains Malays. 2020;49(4):809–16.CrossRef
27.
go back to reference Guda T, Walker JA, Singleton B, Hernandez J, Oh DS, Appleford MR, Ong JL, Wenke JC. Hydroxyapatite scaffold pore architecture effects in large bone defects in vivo. J Biomater Appl. 2014;28(7):1016–27.CrossRef Guda T, Walker JA, Singleton B, Hernandez J, Oh DS, Appleford MR, Ong JL, Wenke JC. Hydroxyapatite scaffold pore architecture effects in large bone defects in vivo. J Biomater Appl. 2014;28(7):1016–27.CrossRef
28.
go back to reference Khojasteh A, Motamedian SR, Rad MR, Shahriari MH, Nadjmi N. Polymeric vs hydroxyapatite-based scaffolds on dental pulp stem cell proliferation and differentiation. World J Stem Cells. 2015;7(10):1215.CrossRef Khojasteh A, Motamedian SR, Rad MR, Shahriari MH, Nadjmi N. Polymeric vs hydroxyapatite-based scaffolds on dental pulp stem cell proliferation and differentiation. World J Stem Cells. 2015;7(10):1215.CrossRef
29.
go back to reference Karadzic I, Vucic V, Jokanovic V, Debeljak-Martacic J, Markovic D, Petrovic S, Glibetic M. Effects of novel hydroxyapatite-based 3D biomaterials on proliferation and osteoblastic differentiation of mesenchymal stem cells. J Biomed Mater Res Part A. 2015;103(1):350–7.CrossRef Karadzic I, Vucic V, Jokanovic V, Debeljak-Martacic J, Markovic D, Petrovic S, Glibetic M. Effects of novel hydroxyapatite-based 3D biomaterials on proliferation and osteoblastic differentiation of mesenchymal stem cells. J Biomed Mater Res Part A. 2015;103(1):350–7.CrossRef
30.
go back to reference Friedenstein A, Chailakhjan R, Lalykina K. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif. 1970;3(4):393–403.CrossRef Friedenstein A, Chailakhjan R, Lalykina K. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif. 1970;3(4):393–403.CrossRef
31.
go back to reference Hanna H, Mir LM, Andre FM. In vitro osteoblastic differentiation of mesenchymal stem cells generates cell layers with distinct properties. Stem Cell Res Ther. 2018;9(1):1–11.CrossRef Hanna H, Mir LM, Andre FM. In vitro osteoblastic differentiation of mesenchymal stem cells generates cell layers with distinct properties. Stem Cell Res Ther. 2018;9(1):1–11.CrossRef
32.
go back to reference Ammar M. The influence of peptide modifications of bioactive glass on human mesenchymal stem cell growth and function, 2011. Ammar M. The influence of peptide modifications of bioactive glass on human mesenchymal stem cell growth and function, 2011.
33.
go back to reference Shafiee A, Seyedjafari E, Soleimani M, Ahmadbeigi N, Dinarvand P, Ghaemi N. A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue. Biotech Lett. 2011;33(6):1257–64.CrossRef Shafiee A, Seyedjafari E, Soleimani M, Ahmadbeigi N, Dinarvand P, Ghaemi N. A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue. Biotech Lett. 2011;33(6):1257–64.CrossRef
34.
go back to reference Kuo Z-K, Lai P-L, Toh EK-W, Weng C-H, Tseng H-W, Chang P-Z, Chen C-C, Cheng C-M. Osteogenic differentiation of preosteoblasts on a hemostatic gelatin sponge. Sci Rep. 2016;6:32884.CrossRef Kuo Z-K, Lai P-L, Toh EK-W, Weng C-H, Tseng H-W, Chang P-Z, Chen C-C, Cheng C-M. Osteogenic differentiation of preosteoblasts on a hemostatic gelatin sponge. Sci Rep. 2016;6:32884.CrossRef
35.
go back to reference Yazid F, Luchman NA, Wahab RMA, Ariffin SHZ. Pencirian dan Pembezaan Osteogenik Sel Stem Pulpa Gigi Kekal dan Gigi Desiduos Manusia. Sains Malays. 2019;48(7):1483–90.CrossRef Yazid F, Luchman NA, Wahab RMA, Ariffin SHZ. Pencirian dan Pembezaan Osteogenik Sel Stem Pulpa Gigi Kekal dan Gigi Desiduos Manusia. Sains Malays. 2019;48(7):1483–90.CrossRef
36.
go back to reference Chen Y, Huang Z, Li X, Li S, Zhou Z, Zhang Y, Yu B. In vitro biocompatibility and osteoblast differentiation of an injectable chitosan/nano-hydroxyapatite/collagen scaffold. J Nanomater. 2012;2012(190):3. Chen Y, Huang Z, Li X, Li S, Zhou Z, Zhang Y, Yu B. In vitro biocompatibility and osteoblast differentiation of an injectable chitosan/nano-hydroxyapatite/collagen scaffold. J Nanomater. 2012;2012(190):3.
37.
go back to reference Pereira-Junior OCM, Rahal SC, Lima-Neto JF, Landim-Alvarenga FdC, Monteiro FOB. In vitro evaluation of three different biomaterials as scaffolds for canine mesenchymal stem cells. Acta Cir Bras. 2013;28(5):353–60.CrossRef Pereira-Junior OCM, Rahal SC, Lima-Neto JF, Landim-Alvarenga FdC, Monteiro FOB. In vitro evaluation of three different biomaterials as scaffolds for canine mesenchymal stem cells. Acta Cir Bras. 2013;28(5):353–60.CrossRef
Metadata
Title
Comparative evaluation of osteogenic differentiation potential of stem cells derived from dental pulp and exfoliated deciduous teeth cultured over granular hydroxyapatite based scaffold
Authors
Manal Nabil Hagar
Farinawati Yazid
Nur Atmaliya Luchman
Shahrul Hisham Zainal Ariffin
Rohaya Megat Abdul Wahab
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2021
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-021-01621-0

Other articles of this Issue 1/2021

BMC Oral Health 1/2021 Go to the issue