Skip to main content
Top
Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2020

Open Access 01-12-2020 | Computed Tomography | Original research

Clinical experience of whole-body computed tomography as the initial evaluation tool after extracorporeal cardiopulmonary resuscitation in patients of out-of-hospital cardiac arrest

Authors: Kelvin Jeason Yang, Chih-Hsien Wang, Yu-Cheng Huang, Li-Jung Tseng, Yih-Sharng Chen, Hsi-Yu Yu

Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | Issue 1/2020

Login to get access

Abstract

Background

The routine application of whole-body CT after extracorporeal cardiopulmonary resuscitation (ECPR) in out-of-hospital cardiac arrest (OHCA) has not been extensively investigated. We aimed to evaluate the benefit of CT in this context.

Methods

We retrospectively analyzed all OHCA patients who had received ECPR between January 2006 to May 2019. Electronic records were reviewed to filter out patients who had a whole-body CT as their first clinical evaluation after ECPR. CT findings and major hospital outcomes were evaluated.

Results

From January 2006 to May 2019, 700 patients had received ECPR in our institution. We identified 93 OHCA patients who received whole-body CT as the first clinical evaluation after ECPR. 22.6% of those had no acute findings detected on CT requiring immediate treatment. In the remaining 77.4%, CT had findings that might lead to alterations in clinical course. Most important findings were myocardial infarction (57.0%), hypoxic brain injury (29.0%), sternal/rib fractures (16.1%), aortic dissection (7.5%), pulmonary embolism (5.4%), and cardiac tamponade (5.4%). There were no significant differences in ICU/hospitalization days, time on ECMO support, survival and neurological outcomes between those with and without immediate CT. In our OHCA cohort, there were 27 patients with CT evidence of hypoxic brain injury, of whom 22.2% (n = 2) managed to wean from ECMO support, 14.8% (n = 4) survived to discharge, but only 3.7% (n = 1) survived with good neurological outcome. Hypoxic brain injury on CT has a 95% specificity in predicting poor neurological outcome, with a false positive rate of only 3.7%. Logistic regression suggested a potential correlation between CT findings of hypoxic brain injury and poor neurological outcome [Odds ratio (OR) = 12.53 (1.55 to 10.1), p = 0.02)].

Conclusions

Routine whole-body CT after ECPR in OHCA patients appears to have a limited role, as the majority is caused by ACS. However, it may be a useful tool when CPR-related injury or non-ACS causes of OHCA are suspected, as well as in cases where the cause of OHCA is unknown. On the contrary, routine brain CT may be a valuable tool in guiding anticoagulant therapy during ECMO and in aiding outcome prediction.
Appendix
Available only for authorised users
Literature
1.
go back to reference Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke Statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137:e67–e492.CrossRef Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke Statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137:e67–e492.CrossRef
2.
go back to reference Thiagarajan RR, Barbaro RP, Rycus PT, et al. Extracorporeal life support organization registry international report 2016. ASAIO J. 2017;63:60–7.CrossRef Thiagarajan RR, Barbaro RP, Rycus PT, et al. Extracorporeal life support organization registry international report 2016. ASAIO J. 2017;63:60–7.CrossRef
3.
go back to reference Chen YS, Lin JW, Yu HY, et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet. 2008;372:554–61.CrossRef Chen YS, Lin JW, Yu HY, et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet. 2008;372:554–61.CrossRef
4.
go back to reference Yu HY, Wang CH, Chi NH, et al. Effect of interplay between age and low-flow duration on neurologic outcomes of extracorporeal cardiopulmonary resuscitation. Intensive Care Med. 2019;45:44–54.CrossRef Yu HY, Wang CH, Chi NH, et al. Effect of interplay between age and low-flow duration on neurologic outcomes of extracorporeal cardiopulmonary resuscitation. Intensive Care Med. 2019;45:44–54.CrossRef
5.
go back to reference Chelly J, Mongardon N, Dumas F, et al. Benefit of an early and systematic imaging procedure after cardiac arrest: insights from the PROCAT (Parisian region out of hospital cardiac arrest) registry. Resuscitation. 2012;83:1444–50.CrossRef Chelly J, Mongardon N, Dumas F, et al. Benefit of an early and systematic imaging procedure after cardiac arrest: insights from the PROCAT (Parisian region out of hospital cardiac arrest) registry. Resuscitation. 2012;83:1444–50.CrossRef
6.
go back to reference Nolan JP, Soar J, Cariou A, et al. European resuscitation council and European Society of Intensive Care Medicine Guidelines for post-resuscitation care 2015: section 5 of the European resuscitation council guidelines for resuscitation 2015. Resuscitation. 2015;95:202–22.CrossRef Nolan JP, Soar J, Cariou A, et al. European resuscitation council and European Society of Intensive Care Medicine Guidelines for post-resuscitation care 2015: section 5 of the European resuscitation council guidelines for resuscitation 2015. Resuscitation. 2015;95:202–22.CrossRef
7.
go back to reference Wang CH, Chou NK, Becker LB, et al. Improved outcome of extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest--a comparison with that for extracorporeal rescue for in-hospital cardiac arrest. Resuscitation. 2014;85:1219–24.CrossRef Wang CH, Chou NK, Becker LB, et al. Improved outcome of extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest--a comparison with that for extracorporeal rescue for in-hospital cardiac arrest. Resuscitation. 2014;85:1219–24.CrossRef
8.
go back to reference Acharya J, Rajamohan AG, Skalski MR, Law M, Kim P, Gibbs W. CT angiography of the head in extracorporeal membrane oxygenation. AJNR Am J Neuroradiol. 2017;38:773–6.CrossRef Acharya J, Rajamohan AG, Skalski MR, Law M, Kim P, Gibbs W. CT angiography of the head in extracorporeal membrane oxygenation. AJNR Am J Neuroradiol. 2017;38:773–6.CrossRef
9.
go back to reference Lee S, Chaturvedi A. Imaging adults on extracorporeal membrane oxygenation (ECMO). Insights Imaging. 2014;5:731–42.CrossRef Lee S, Chaturvedi A. Imaging adults on extracorporeal membrane oxygenation (ECMO). Insights Imaging. 2014;5:731–42.CrossRef
10.
go back to reference Lidegran MK, Ringertz HG, Frenckner BP, Lindén VB. Chest and abdominal CT during extracorporeal membrane oxygenation: clinical benefits in diagnosis and treatment. Acad Radiol. 2005;12:276–85.CrossRef Lidegran MK, Ringertz HG, Frenckner BP, Lindén VB. Chest and abdominal CT during extracorporeal membrane oxygenation: clinical benefits in diagnosis and treatment. Acad Radiol. 2005;12:276–85.CrossRef
11.
go back to reference Liu KL, Wang YF, Chang YC, et al. Multislice CT scans in patients on extracorporeal membrane oxygenation: emphasis on hemodynamic changes and imaging pitfalls. Korean J Radiol. 2014;15:322–9.CrossRef Liu KL, Wang YF, Chang YC, et al. Multislice CT scans in patients on extracorporeal membrane oxygenation: emphasis on hemodynamic changes and imaging pitfalls. Korean J Radiol. 2014;15:322–9.CrossRef
12.
go back to reference Deakin CD, Morrison LJ, Morley PT, et al. Part 8: advanced life support: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation. 2010;81(Suppl 1):e93–e174.CrossRef Deakin CD, Morrison LJ, Morley PT, et al. Part 8: advanced life support: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation. 2010;81(Suppl 1):e93–e174.CrossRef
13.
go back to reference Kim YJ, Min SY, Lee DH, et al. The role of post-resuscitation electrocardiogram in patients with ST-segment changes in the immediate post-cardiac arrest period. JACC Cardiovasc Interv. 2017;10:451–9.CrossRef Kim YJ, Min SY, Lee DH, et al. The role of post-resuscitation electrocardiogram in patients with ST-segment changes in the immediate post-cardiac arrest period. JACC Cardiovasc Interv. 2017;10:451–9.CrossRef
14.
go back to reference Lidegran M, Palmer K, Jorulf H, Lindén V. CT in the evaluation of patients on ECMO due to acute respiratory failure. Pediatr Radiol. 2002;32:567–74.CrossRef Lidegran M, Palmer K, Jorulf H, Lindén V. CT in the evaluation of patients on ECMO due to acute respiratory failure. Pediatr Radiol. 2002;32:567–74.CrossRef
15.
go back to reference Lidegran MK, Mosskin M, Ringertz HG, Frenckner BP, Lindén VB. Cranial CT for diagnosis of intracranial complications in adult and pediatric patients during ECMO: clinical benefits in diagnosis and treatment. Acad Radiol. 2007;14:62–71.CrossRef Lidegran MK, Mosskin M, Ringertz HG, Frenckner BP, Lindén VB. Cranial CT for diagnosis of intracranial complications in adult and pediatric patients during ECMO: clinical benefits in diagnosis and treatment. Acad Radiol. 2007;14:62–71.CrossRef
16.
go back to reference Champigneulle B, Haruel PA, Pirracchio R, et al. Major traumatic complications after out-of-hospital cardiac arrest: insights from the Parisian registry. Resuscitation. 2018;128:70–5.CrossRef Champigneulle B, Haruel PA, Pirracchio R, et al. Major traumatic complications after out-of-hospital cardiac arrest: insights from the Parisian registry. Resuscitation. 2018;128:70–5.CrossRef
17.
go back to reference Zotzmann V, Rilinger J, Lang CN, et al. Early full-body computed tomography in patients after extracorporeal cardiopulmonary resuscitation (eCPR). Resuscitation. 2020;146:149–54.CrossRef Zotzmann V, Rilinger J, Lang CN, et al. Early full-body computed tomography in patients after extracorporeal cardiopulmonary resuscitation (eCPR). Resuscitation. 2020;146:149–54.CrossRef
18.
go back to reference Sampson MA, Colquhoun KB, Hennessy NL. Computed tomography whole body imaging in multi-trauma: 7 years experience. Clin Radiol. 2006;61:365–9.CrossRef Sampson MA, Colquhoun KB, Hennessy NL. Computed tomography whole body imaging in multi-trauma: 7 years experience. Clin Radiol. 2006;61:365–9.CrossRef
19.
go back to reference Lardi C, Egger C, Larribau R, Niquille M, Mangin P, Fracasso T. Traumatic injuries after mechanical cardiopulmonary resuscitation (LUCAS2): a forensic autopsy study. Int J Legal Med. 2015;129:1035–42.CrossRef Lardi C, Egger C, Larribau R, Niquille M, Mangin P, Fracasso T. Traumatic injuries after mechanical cardiopulmonary resuscitation (LUCAS2): a forensic autopsy study. Int J Legal Med. 2015;129:1035–42.CrossRef
20.
go back to reference Smekal D, Lindgren E, Sandler H, Johansson J, Rubertsson S. CPR-related injuries after manual or mechanical chest compressions with the LUCAS device: a multicentre study of victims after unsuccessful resuscitation. Resuscitation. 2014;85:1708–12.CrossRef Smekal D, Lindgren E, Sandler H, Johansson J, Rubertsson S. CPR-related injuries after manual or mechanical chest compressions with the LUCAS device: a multicentre study of victims after unsuccessful resuscitation. Resuscitation. 2014;85:1708–12.CrossRef
21.
go back to reference Buschmann CT, Tsokos M. Frequent and rare complications of resuscitation attempts. Intensive Care Med. 2009;35:397–404.CrossRef Buschmann CT, Tsokos M. Frequent and rare complications of resuscitation attempts. Intensive Care Med. 2009;35:397–404.CrossRef
22.
go back to reference Hoke RS, Chamberlain D. Skeletal chest injuries secondary to cardiopulmonary resuscitation. Resuscitation. 2004;63:327–38.CrossRef Hoke RS, Chamberlain D. Skeletal chest injuries secondary to cardiopulmonary resuscitation. Resuscitation. 2004;63:327–38.CrossRef
23.
go back to reference Bedinghaus J, Leshan L, Diehr S. Coronary artery disease prevention: what's different for women? Am Fam Physician. 2001;63:1393–400.PubMed Bedinghaus J, Leshan L, Diehr S. Coronary artery disease prevention: what's different for women? Am Fam Physician. 2001;63:1393–400.PubMed
24.
go back to reference Baba A, Okuyama Y, Yamazoe S, Mogami T. Acute myocardial infarction on contrast-enhanced computed tomography. Imaging J Clin Med Sciences. 2016;3:004–5.CrossRef Baba A, Okuyama Y, Yamazoe S, Mogami T. Acute myocardial infarction on contrast-enhanced computed tomography. Imaging J Clin Med Sciences. 2016;3:004–5.CrossRef
25.
go back to reference Hagdrup C, Ulriksen PS, Madsen PL. Acute anterior myocardial infarction seen on conventional iodine-contrast CT. Radiol Case Rep. 2017;12:635–7.CrossRef Hagdrup C, Ulriksen PS, Madsen PL. Acute anterior myocardial infarction seen on conventional iodine-contrast CT. Radiol Case Rep. 2017;12:635–7.CrossRef
26.
go back to reference Katinakis P, Knaapen P, Md G, ARJ G. Computed tomography to detect acute myocardial infarction. Neth J Crit Care. 2012;16:29–30. Katinakis P, Knaapen P, Md G, ARJ G. Computed tomography to detect acute myocardial infarction. Neth J Crit Care. 2012;16:29–30.
27.
go back to reference Warraich HJ, Benson CC, Khosa F, Leeman DE. Diagnosis of acute myocardial infarction on computed tomography angiogram. Circulation. 2014;129:272–3.CrossRef Warraich HJ, Benson CC, Khosa F, Leeman DE. Diagnosis of acute myocardial infarction on computed tomography angiogram. Circulation. 2014;129:272–3.CrossRef
28.
go back to reference Gosalia A, Haramati LB, Sheth MP, Spindola-Franco H. CT detection of acute myocardial infarction. AJR Am J Roentgenol. 2004;182:1563–6.CrossRef Gosalia A, Haramati LB, Sheth MP, Spindola-Franco H. CT detection of acute myocardial infarction. AJR Am J Roentgenol. 2004;182:1563–6.CrossRef
29.
go back to reference Inamasu J, Miyatake S, Nakatsukasa M, Koh H, Yagami T. Loss of gray-white matter discrimination as an early CT sign of brain ischemia/hypoxia in victims of asphyxial cardiac arrest. Emerg Radiol. 2011;18:295–8.CrossRef Inamasu J, Miyatake S, Nakatsukasa M, Koh H, Yagami T. Loss of gray-white matter discrimination as an early CT sign of brain ischemia/hypoxia in victims of asphyxial cardiac arrest. Emerg Radiol. 2011;18:295–8.CrossRef
30.
go back to reference Lee YH, Oh YT, Ahn HC, et al. The prognostic value of the grey-to-white matter ratio in cardiac arrest patients treated with extracorporeal membrane oxygenation. Resuscitation. 2016;99:50–5.CrossRef Lee YH, Oh YT, Ahn HC, et al. The prognostic value of the grey-to-white matter ratio in cardiac arrest patients treated with extracorporeal membrane oxygenation. Resuscitation. 2016;99:50–5.CrossRef
31.
go back to reference Ryu JA, Chung CR, Cho YH, et al. The association of findings on brain computed tomography with neurologic outcomes following extracorporeal cardiopulmonary resuscitation. Crit Care. 2017;21:15.CrossRef Ryu JA, Chung CR, Cho YH, et al. The association of findings on brain computed tomography with neurologic outcomes following extracorporeal cardiopulmonary resuscitation. Crit Care. 2017;21:15.CrossRef
32.
go back to reference Ryu JA, Lee YH, Chung CR, et al. Prognostic value of computed tomography score in patients after extracorporeal cardiopulmonary resuscitation. Crit Care. 2018;22:323.CrossRef Ryu JA, Lee YH, Chung CR, et al. Prognostic value of computed tomography score in patients after extracorporeal cardiopulmonary resuscitation. Crit Care. 2018;22:323.CrossRef
33.
go back to reference Callaway CW, Donnino MW, Fink EL, et al. Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S465–82.CrossRef Callaway CW, Donnino MW, Fink EL, et al. Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S465–82.CrossRef
34.
go back to reference Zingler VC, Krumm B, Bertsch T, et al. Early prediction of neurological outcome after cardiopulmonary resuscitation: a multimodal approach combining neurobiochemical and electrophysiological investigations may provide high prognostic certainty in patients after cardiac arrest. Eur Neurol. 2003;49:79–84.CrossRef Zingler VC, Krumm B, Bertsch T, et al. Early prediction of neurological outcome after cardiopulmonary resuscitation: a multimodal approach combining neurobiochemical and electrophysiological investigations may provide high prognostic certainty in patients after cardiac arrest. Eur Neurol. 2003;49:79–84.CrossRef
Metadata
Title
Clinical experience of whole-body computed tomography as the initial evaluation tool after extracorporeal cardiopulmonary resuscitation in patients of out-of-hospital cardiac arrest
Authors
Kelvin Jeason Yang
Chih-Hsien Wang
Yu-Cheng Huang
Li-Jung Tseng
Yih-Sharng Chen
Hsi-Yu Yu
Publication date
01-12-2020
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s13049-020-00746-5

Other articles of this Issue 1/2020

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2020 Go to the issue