Skip to main content
Top
Published in: Cancer Cell International 1/2024

Open Access 01-12-2024 | Colorectal Cancer | Research

Sparassis latifolia and exercise training as complementary medicine mitigated the 5-fluorouracil potent side effects in mice with colorectal cancer: bioinformatics approaches, novel monitoring pathological metrics, screening signatures, and innovative management tactic

Authors: Navid Abedpoor, Farzaneh Taghian, Khosro Jalali Dehkordi, Kamran Safavi

Published in: Cancer Cell International | Issue 1/2024

Login to get access

Abstract

Background

Prompt identification and assessment of the disease are essential for reducing the death rate associated with colorectal cancer (COL). Identifying specific causal or sensitive components, such as coding RNA (cRNA) and non-coding RNAs (ncRNAs), may greatly aid in the early detection of colorectal cancer.

Methods

For this purpose, we gave natural chemicals obtained from Sparassis latifolia (SLPs) either alone or in conjunction with chemotherapy (5-Fluorouracil to a mouse colorectal tumor model induced by AOM-DSS. The transcription profile of non-coding RNAs (ncRNAs) and their target hub genes was evaluated using qPCR Real-Time, and ELISA techniques.

Results

MSX2, MMP7, ITIH4, and COL1A2 were identified as factors in inflammation and oxidative stress, leading to the development of COL. The hub genes listed, upstream regulatory factors such as lncRNA PVT1, NEAT1, KCNQ1OT1, SNHG16, and miR-132-3p have been discovered as biomarkers for prognosis and diagnosis of COL. The SLPs and exercise, effectively decreased the size and quantity of tumors.

Conclusions

This effect may be attributed to the modulation of gene expression levels, including MSX2, MMP7, ITIH4, COL1A2, PVT1, NEAT1, KCNQ1OT1, SNHG16, and miR-132-3p. Ultimately, SLPs and exercise have the capacity to be regarded as complementing and enhancing chemotherapy treatments, owing to their efficacious components.
Literature
2.
go back to reference Rabeneck L, Chiu H-M, Senore C. International perspective on the burden of colorectal cancer and public health effects. Gastroenterology. 2020;158(2):447–52.PubMedCrossRef Rabeneck L, Chiu H-M, Senore C. International perspective on the burden of colorectal cancer and public health effects. Gastroenterology. 2020;158(2):447–52.PubMedCrossRef
3.
go back to reference Shahbaz SK, Koushki K, Ayati SH, Bland AR, Bezsonov EE, Sahebkar A. Inflammasomes and colorectal cancer. Cells. 2021;10:9. Shahbaz SK, Koushki K, Ayati SH, Bland AR, Bezsonov EE, Sahebkar A. Inflammasomes and colorectal cancer. Cells. 2021;10:9.
4.
go back to reference Hajibabaie F, Abedpoor N, Assareh N, Tabatabaiefar MA, Shariati L, Zarrabi A. The importance of SNPs at miRNA binding sites as biomarkers of gastric and colorectal cancers: a systematic review. J Person Med. 2022;12(3):456.CrossRef Hajibabaie F, Abedpoor N, Assareh N, Tabatabaiefar MA, Shariati L, Zarrabi A. The importance of SNPs at miRNA binding sites as biomarkers of gastric and colorectal cancers: a systematic review. J Person Med. 2022;12(3):456.CrossRef
5.
go back to reference Li J, Chen D, Shen M. Tumor microenvironment shapes colorectal cancer progression, metastasis, and treatment responses. Front Med. 2022;9: 869010.CrossRef Li J, Chen D, Shen M. Tumor microenvironment shapes colorectal cancer progression, metastasis, and treatment responses. Front Med. 2022;9: 869010.CrossRef
6.
go back to reference Kaviani E, Hajibabaie F, Abedpoor N, Safavi K, Ahmadi Z, Karimy A. System biology analysis to develop diagnostic biomarkers, monitoring pathological indexes, and novel therapeutic approaches for immune targeting based on maggot bioactive compounds and polyphenolic cocktails in mice with gastric cancer. Environ Res. 2023;238: 117168.PubMedCrossRef Kaviani E, Hajibabaie F, Abedpoor N, Safavi K, Ahmadi Z, Karimy A. System biology analysis to develop diagnostic biomarkers, monitoring pathological indexes, and novel therapeutic approaches for immune targeting based on maggot bioactive compounds and polyphenolic cocktails in mice with gastric cancer. Environ Res. 2023;238: 117168.PubMedCrossRef
7.
go back to reference Keller D, Windsor A, Cohen R, Chand M. Colorectal cancer in inflammatory bowel disease: review of the evidence. Tech Coloproctol. 2019;23:3–13.PubMedCrossRef Keller D, Windsor A, Cohen R, Chand M. Colorectal cancer in inflammatory bowel disease: review of the evidence. Tech Coloproctol. 2019;23:3–13.PubMedCrossRef
8.
go back to reference Duarte D, Vale N. Combining repurposed drugs to treat colorectal cancer. Drug Disc Today. 2022;27(1):165–84.CrossRef Duarte D, Vale N. Combining repurposed drugs to treat colorectal cancer. Drug Disc Today. 2022;27(1):165–84.CrossRef
9.
go back to reference Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007;7(8):573–84.PubMedCrossRef Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007;7(8):573–84.PubMedCrossRef
10.
go back to reference Huang X, Ke K, Jin W, Zhu Q, Zhu Q, Mei R, et al. Identification of genes related to 5-fluorouracil based chemotherapy for colorectal cancer. Front Immunol. 2022;13: 887048.PubMedPubMedCentralCrossRef Huang X, Ke K, Jin W, Zhu Q, Zhu Q, Mei R, et al. Identification of genes related to 5-fluorouracil based chemotherapy for colorectal cancer. Front Immunol. 2022;13: 887048.PubMedPubMedCentralCrossRef
11.
go back to reference Wilkinson NW, Yothers G, Lopa S, Costantino JP, Petrelli NJ, Wolmark N. Long-term survival results of surgery alone versus surgery plus 5-fluorouracil and leucovorin for stage II and stage III colon cancer: pooled analysis of NSABP C-01 through C-05. A baseline from which to compare modern adjuvant trials. Ann Surg Oncol. 2010;17:959–66.PubMedPubMedCentralCrossRef Wilkinson NW, Yothers G, Lopa S, Costantino JP, Petrelli NJ, Wolmark N. Long-term survival results of surgery alone versus surgery plus 5-fluorouracil and leucovorin for stage II and stage III colon cancer: pooled analysis of NSABP C-01 through C-05. A baseline from which to compare modern adjuvant trials. Ann Surg Oncol. 2010;17:959–66.PubMedPubMedCentralCrossRef
12.
go back to reference Sargent DJ, Patiyil S, Yothers G, Haller DG, Gray R, Benedetti J, et al. End points for colon cancer adjuvant trials: observations and recommendations based on individual patient data from 20,898 patients enrolled onto 18 randomized trials from the ACCENT Group. J Clin Oncol. 2007;25(29):4569–74.PubMedCrossRef Sargent DJ, Patiyil S, Yothers G, Haller DG, Gray R, Benedetti J, et al. End points for colon cancer adjuvant trials: observations and recommendations based on individual patient data from 20,898 patients enrolled onto 18 randomized trials from the ACCENT Group. J Clin Oncol. 2007;25(29):4569–74.PubMedCrossRef
13.
go back to reference Manfredi S, Bouvier A, Lepage C, Hatem C, Dancourt V, Faivre J. Incidence and patterns of recurrence after resection for cure of colonic cancer in a well defined population. J Br Surg. 2006;93(9):1115–22.CrossRef Manfredi S, Bouvier A, Lepage C, Hatem C, Dancourt V, Faivre J. Incidence and patterns of recurrence after resection for cure of colonic cancer in a well defined population. J Br Surg. 2006;93(9):1115–22.CrossRef
14.
go back to reference Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA. 2019;69(5):363–85.PubMed Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA. 2019;69(5):363–85.PubMed
15.
go back to reference Douillard J, Cunningham D, Roth A, Navarro M, James R, Karasek P, et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet. 2000;355(9209):1041–7.PubMedCrossRef Douillard J, Cunningham D, Roth A, Navarro M, James R, Karasek P, et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet. 2000;355(9209):1041–7.PubMedCrossRef
16.
go back to reference Giacchetti S, Perpoint B, Zidani R, Le Bail N, Faggiuolo R, Focan C, et al. Phase III multicenter randomized trial of oxaliplatin added to chronomodulated fluorouracil–leucovorin as first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2000;18(1):136.PubMedCrossRef Giacchetti S, Perpoint B, Zidani R, Le Bail N, Faggiuolo R, Focan C, et al. Phase III multicenter randomized trial of oxaliplatin added to chronomodulated fluorouracil–leucovorin as first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2000;18(1):136.PubMedCrossRef
17.
go back to reference Xie P, Mo J-L, Liu J-H, Li X, Tan L-M, Zhang W, et al. Pharmacogenomics of 5-fluorouracil in colorectal cancer: review and update. Cell Oncol. 2020;43:989–1001.CrossRef Xie P, Mo J-L, Liu J-H, Li X, Tan L-M, Zhang W, et al. Pharmacogenomics of 5-fluorouracil in colorectal cancer: review and update. Cell Oncol. 2020;43:989–1001.CrossRef
18.
go back to reference Ke MJ, Ji LD, Li YX. Explore prognostic marker of colorectal cancer based on ceRNA network. J Cell Biochem. 2019;120(12):19358–70.PubMedCrossRef Ke MJ, Ji LD, Li YX. Explore prognostic marker of colorectal cancer based on ceRNA network. J Cell Biochem. 2019;120(12):19358–70.PubMedCrossRef
19.
go back to reference Xiang J, Gao L, Jing HY, Liu YX, Wang HF, Chang ZW, et al. Construction of CeRNA regulatory network based on WGCNA reveals diagnosis biomarkers for colorectal cancer. BMC Cancer. 2022;22(1):1–16.CrossRef Xiang J, Gao L, Jing HY, Liu YX, Wang HF, Chang ZW, et al. Construction of CeRNA regulatory network based on WGCNA reveals diagnosis biomarkers for colorectal cancer. BMC Cancer. 2022;22(1):1–16.CrossRef
21.
go back to reference Seo CH, Kim J-R, Kim M-S, Cho K-H. Hub genes with positive feedbacks function as master switches in developmental gene regulatory networks. Bioinformatics. 2009;25(15):1898–904.PubMedCrossRef Seo CH, Kim J-R, Kim M-S, Cho K-H. Hub genes with positive feedbacks function as master switches in developmental gene regulatory networks. Bioinformatics. 2009;25(15):1898–904.PubMedCrossRef
22.
go back to reference Geng F, Wang Z, Yin H, Yu J, Cao B. Molecular targeted drugs and treatment of colorectal cancer: recent progress and future perspectives. Cancer Biother Radiopharm. 2017;32(5):149–60.PubMed Geng F, Wang Z, Yin H, Yu J, Cao B. Molecular targeted drugs and treatment of colorectal cancer: recent progress and future perspectives. Cancer Biother Radiopharm. 2017;32(5):149–60.PubMed
23.
go back to reference Tewari D, Patni P, Bishayee A, Sah AN, Bishayee A, editors. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: a novel therapeutic strategy. Seminars in cancer biology; 2022: Elsevier. Tewari D, Patni P, Bishayee A, Sah AN, Bishayee A, editors. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: a novel therapeutic strategy. Seminars in cancer biology; 2022: Elsevier.
24.
go back to reference Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018;27(1):10–21.PubMedCrossRef Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018;27(1):10–21.PubMedCrossRef
25.
go back to reference Berntsen S, Aaronson NK, Buffart L, Börjeson S, Demmelmaier I, Hellbom M, et al. Design of a randomized controlled trial of physical training and cancer (Phys-Can)–the impact of exercise intensity on cancer related fatigue, quality of life and disease outcome. BMC Cancer. 2017;17:1–12.CrossRef Berntsen S, Aaronson NK, Buffart L, Börjeson S, Demmelmaier I, Hellbom M, et al. Design of a randomized controlled trial of physical training and cancer (Phys-Can)–the impact of exercise intensity on cancer related fatigue, quality of life and disease outcome. BMC Cancer. 2017;17:1–12.CrossRef
26.
go back to reference Gerritsen JK, Vincent AJ. Exercise improves quality of life in patients with cancer: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2016;50(13):796–803.PubMedCrossRef Gerritsen JK, Vincent AJ. Exercise improves quality of life in patients with cancer: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2016;50(13):796–803.PubMedCrossRef
27.
go back to reference Rock CL, Thomson C, Gansler T, Gapstur SM, McCullough ML, Patel AV, et al. American Cancer Society guideline for diet and physical activity for cancer prevention. CA. 2020;70(4):245–71.PubMed Rock CL, Thomson C, Gansler T, Gapstur SM, McCullough ML, Patel AV, et al. American Cancer Society guideline for diet and physical activity for cancer prevention. CA. 2020;70(4):245–71.PubMed
28.
go back to reference Duan G-L, Yu X-B. Isolation, purification, characterization, and antioxidant activity of low-molecular-weight polysaccharides from Sparassis latifolia. Int J Biol Macromol. 2019;137:1112–20.PubMedCrossRef Duan G-L, Yu X-B. Isolation, purification, characterization, and antioxidant activity of low-molecular-weight polysaccharides from Sparassis latifolia. Int J Biol Macromol. 2019;137:1112–20.PubMedCrossRef
29.
go back to reference Liu J, Zhang X, Zhang J, Yan M, Li D, Zhou S, et al. Research on extraction, structure characterization and immunostimulatory activity of cell wall polysaccharides from Sparassis latifolia. Polymers. 2022;14(3):549.PubMedPubMedCentralCrossRef Liu J, Zhang X, Zhang J, Yan M, Li D, Zhou S, et al. Research on extraction, structure characterization and immunostimulatory activity of cell wall polysaccharides from Sparassis latifolia. Polymers. 2022;14(3):549.PubMedPubMedCentralCrossRef
30.
go back to reference Wei X, Cheng F, Liu J, Cheng Y, Yun S, Meng J, et al. Sparassis latifolia polysaccharides inhibit colon cancer in mice by modulating gut microbiota and metabolism. Int J Biol Macromol. 2023;232: 123299.PubMedCrossRef Wei X, Cheng F, Liu J, Cheng Y, Yun S, Meng J, et al. Sparassis latifolia polysaccharides inhibit colon cancer in mice by modulating gut microbiota and metabolism. Int J Biol Macromol. 2023;232: 123299.PubMedCrossRef
31.
go back to reference Jayaraman P, Rodrik-Outmezguine V, Millholland J, O’Brien N, Wong C, Diwanji R, et al. Targeting tumor-promoting inflammation (TPI) via the IL-1βpathway for cancer immunotherapy. Cancer Res. 2020;80(16):5640.CrossRef Jayaraman P, Rodrik-Outmezguine V, Millholland J, O’Brien N, Wong C, Diwanji R, et al. Targeting tumor-promoting inflammation (TPI) via the IL-1βpathway for cancer immunotherapy. Cancer Res. 2020;80(16):5640.CrossRef
32.
go back to reference Peng L, Bian XW, Li DK, Xu C, Wang GM, Xia QY, et al. Large-scale RNA-Seq transcriptome analysis of 4043 cancers and 548 normal tissue controls across 12 TCGA cancer types. Sci Rep. 2015;5(1):13413.PubMedPubMedCentralCrossRef Peng L, Bian XW, Li DK, Xu C, Wang GM, Xia QY, et al. Large-scale RNA-Seq transcriptome analysis of 4043 cancers and 548 normal tissue controls across 12 TCGA cancer types. Sci Rep. 2015;5(1):13413.PubMedPubMedCentralCrossRef
34.
go back to reference Mocellin S. Microarray technology and cancer gene profiling: Springer Science & Business Media; 2007. Mocellin S. Microarray technology and cancer gene profiling: Springer Science & Business Media; 2007.
35.
go back to reference Eilertsen IA, Moosavi SH, Strømme JM, Nesbakken A, Johannessen B, Lothe RA, et al. Technical differences between sequencing and microarray platforms impact transcriptomic subtyping of colorectal cancer. Cancer Lett. 2020;469:246–55.PubMedCrossRef Eilertsen IA, Moosavi SH, Strømme JM, Nesbakken A, Johannessen B, Lothe RA, et al. Technical differences between sequencing and microarray platforms impact transcriptomic subtyping of colorectal cancer. Cancer Lett. 2020;469:246–55.PubMedCrossRef
36.
go back to reference Canales RD, Luo Y, Willey JC, Austermiller B, Barbacioru CC, Boysen C, et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol. 2006;24(9):1115–22.PubMedCrossRef Canales RD, Luo Y, Willey JC, Austermiller B, Barbacioru CC, Boysen C, et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol. 2006;24(9):1115–22.PubMedCrossRef
37.
go back to reference Alameer A, Chicco D. geoCancerPrognosticDatasetsRetriever: a bioinformatics tool to easily identify cancer prognostic datasets on Gene Expression Omnibus (GEO). Bioinformatics. 2022;38(6):1761–3.PubMedCrossRef Alameer A, Chicco D. geoCancerPrognosticDatasetsRetriever: a bioinformatics tool to easily identify cancer prognostic datasets on Gene Expression Omnibus (GEO). Bioinformatics. 2022;38(6):1761–3.PubMedCrossRef
38.
go back to reference Liu DD, Zhang L. Trends in the characteristics of human functional genomic data on the gene expression omnibus, 2001–2017. Lab Invest. 2019;99(1):118–27.PubMedCrossRef Liu DD, Zhang L. Trends in the characteristics of human functional genomic data on the gene expression omnibus, 2001–2017. Lab Invest. 2019;99(1):118–27.PubMedCrossRef
39.
go back to reference Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44(8):e71.PubMedCrossRef Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44(8):e71.PubMedCrossRef
40.
go back to reference Pereira MB, Wallroth M, Jonsson V, Kristiansson E. Comparison of normalization methods for the analysis of metagenomic gene abundance data. BMC Genomics. 2018;19:1–17.CrossRef Pereira MB, Wallroth M, Jonsson V, Kristiansson E. Comparison of normalization methods for the analysis of metagenomic gene abundance data. BMC Genomics. 2018;19:1–17.CrossRef
41.
go back to reference Chen Y, McCarthy D, Robinson M, Smyth GK. edgeR: differential expression analysis of digital gene expression data User's Guide. Bioconductor User's Guide. 2014. Chen Y, McCarthy D, Robinson M, Smyth GK. edgeR: differential expression analysis of digital gene expression data User's Guide. Bioconductor User's Guide. 2014.
42.
go back to reference Vlachavas EI, Pilalis E, Papadodima O, Koczan D, Willis S, Klippel S, et al. Radiogenomic analysis of F-18-fluorodeoxyglucose positron emission tomography and gene expression data elucidates the epidemiological complexity of colorectal cancer landscape. Comput Struct Biotechnol J. 2019;17:177–85.PubMedPubMedCentralCrossRef Vlachavas EI, Pilalis E, Papadodima O, Koczan D, Willis S, Klippel S, et al. Radiogenomic analysis of F-18-fluorodeoxyglucose positron emission tomography and gene expression data elucidates the epidemiological complexity of colorectal cancer landscape. Comput Struct Biotechnol J. 2019;17:177–85.PubMedPubMedCentralCrossRef
43.
go back to reference Coussement L, Van Criekinge W, De Meyer T. Quantitative transcriptomic and epigenomic data analysis: a primer. Bioinform Adv. 2024;1:vbae019.CrossRef Coussement L, Van Criekinge W, De Meyer T. Quantitative transcriptomic and epigenomic data analysis: a primer. Bioinform Adv. 2024;1:vbae019.CrossRef
44.
go back to reference Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–46.PubMedCrossRef Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–46.PubMedCrossRef
45.
go back to reference Otasek D, Morris JH, Bouças J, Pico AR, Demchak B. Cytoscape automation: empowering workflow-based network analysis. Genome Biol. 2019;20:1–15.CrossRef Otasek D, Morris JH, Bouças J, Pico AR, Demchak B. Cytoscape automation: empowering workflow-based network analysis. Genome Biol. 2019;20:1–15.CrossRef
46.
go back to reference Majeed A, Mukhtar S. Protein–Protein Interaction Network Exploration Using Cytoscape. Protein-Protein Interactions: Methods and Protocols: Springer; 2023. p. 419–27. Majeed A, Mukhtar S. Protein–Protein Interaction Network Exploration Using Cytoscape. Protein-Protein Interactions: Methods and Protocols: Springer; 2023. p. 419–27.
47.
go back to reference Bastian M, Heymann S, Jacomy M, editors. Gephi: an open source software for exploring and manipulating networks. Proceedings of the international AAAI conference on web and social media; 2009. Bastian M, Heymann S, Jacomy M, editors. Gephi: an open source software for exploring and manipulating networks. Proceedings of the international AAAI conference on web and social media; 2009.
48.
go back to reference Majeed S, Uzair M, Qamar U, Farooq A, editors. Social Network Analysis Visualization Tools: A Comparative Review. 2020 IEEE 23rd International Multitopic Conference (INMIC); 2020: IEEE. Majeed S, Uzair M, Qamar U, Farooq A, editors. Social Network Analysis Visualization Tools: A Comparative Review. 2020 IEEE 23rd International Multitopic Conference (INMIC); 2020: IEEE.
49.
go back to reference Evangelista JE, Xie Z, Marino GB, Nguyen N, Clarke DJ, Ma’ayan A. Enrichr-KG: bridging enrichment analysis across multiple libraries. Nucleic Acids Res. 2023;51(W1):W168–79.PubMedPubMedCentralCrossRef Evangelista JE, Xie Z, Marino GB, Nguyen N, Clarke DJ, Ma’ayan A. Enrichr-KG: bridging enrichment analysis across multiple libraries. Nucleic Acids Res. 2023;51(W1):W168–79.PubMedPubMedCentralCrossRef
51.
go back to reference Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res. 2018;18(2):623–32.PubMedPubMedCentralCrossRef Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res. 2018;18(2):623–32.PubMedPubMedCentralCrossRef
52.
go back to reference Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–102.PubMedPubMedCentralCrossRef Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–102.PubMedPubMedCentralCrossRef
53.
go back to reference Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2. 0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509-W14. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2. 0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509-W14.
54.
go back to reference Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 2012;41(D1):D983–6.PubMedPubMedCentralCrossRef Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 2012;41(D1):D983–6.PubMedPubMedCentralCrossRef
55.
go back to reference Zhao H, Yin X, Xu H, Liu K, Liu W, Wang L, et al. LncTarD 20: an updated comprehensive database for experimentally-supported functional lncRNA–target regulations in human diseases. Nucleic Acids Res. 2023;51(D1):D199–207.PubMedCrossRef Zhao H, Yin X, Xu H, Liu K, Liu W, Wang L, et al. LncTarD 20: an updated comprehensive database for experimentally-supported functional lncRNA–target regulations in human diseases. Nucleic Acids Res. 2023;51(D1):D199–207.PubMedCrossRef
56.
go back to reference Marino GB, Wojciechowicz ML, Clarke DJ, Kuleshov MV, Xie Z, Jeon M, et al. lncHUB2: aggregated and inferred knowledge about human and mouse lncRNAs. Database. 2023;2023(1):baad009.PubMedPubMedCentralCrossRef Marino GB, Wojciechowicz ML, Clarke DJ, Kuleshov MV, Xie Z, Jeon M, et al. lncHUB2: aggregated and inferred knowledge about human and mouse lncRNAs. Database. 2023;2023(1):baad009.PubMedPubMedCentralCrossRef
57.
go back to reference Ning L, Cui T, Zheng B, Wang N, Luo J, Yang B, et al. MNDR v3. 0: mammal ncRNA–disease repository with increased coverage and annotation. Nucleic Acids Res. 2021;49(D1):D160-D4. Ning L, Cui T, Zheng B, Wang N, Luo J, Yang B, et al. MNDR v3. 0: mammal ncRNA–disease repository with increased coverage and annotation. Nucleic Acids Res. 2021;49(D1):D160-D4.
58.
go back to reference Chen J, Zhang J, Gao Y, Li Y, Feng C, Song C, et al. LncSEA: a platform for long non-coding RNA related sets and enrichment analysis. Nucleic Acids Res. 2021;49(D1):D969–80.PubMedCrossRef Chen J, Zhang J, Gao Y, Li Y, Feng C, Song C, et al. LncSEA: a platform for long non-coding RNA related sets and enrichment analysis. Nucleic Acids Res. 2021;49(D1):D969–80.PubMedCrossRef
59.
go back to reference Kang J, Tang Q, He J, Li L, Yang N, Yu S, et al. RNAInter v4. 0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucleic acids research. 2022;50(D1):D326-D32. Kang J, Tang Q, He J, Li L, Yang N, Yu S, et al. RNAInter v4. 0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucleic acids research. 2022;50(D1):D326-D32.
60.
go back to reference Li Z, Liu L, Feng C, Qin Y, Xiao J, Zhang Z, et al. LncBook 20: integrating human long non-coding RNAs with multi-omics annotations. Nucleic Acids Res. 2023;51(D1):D186–91.PubMedCrossRef Li Z, Liu L, Feng C, Qin Y, Xiao J, Zhang Z, et al. LncBook 20: integrating human long non-coding RNAs with multi-omics annotations. Nucleic Acids Res. 2023;51(D1):D186–91.PubMedCrossRef
61.
go back to reference Chang L, Xia J. MicroRNA regulatory network analysis using miRNet 2.0. Transcription Factor Regulatory Networks: Springer; 2022. p. 185–204. Chang L, Xia J. MicroRNA regulatory network analysis using miRNet 2.0. Transcription Factor Regulatory Networks: Springer; 2022. p. 185–204.
62.
go back to reference Chang L, Zhou G, Soufan O, Xia J. miRNet 20: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 2020;48(W1):W244–51.PubMedPubMedCentralCrossRef Chang L, Zhou G, Soufan O, Xia J. miRNet 20: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 2020;48(W1):W244–51.PubMedPubMedCentralCrossRef
63.
go back to reference D’Arrigo G, Leonardis D, Abd ElHafeez S, Fusaro M, Tripepi G, Roumeliotis S. Methods to analyse time-to-event data: the Kaplan-Meier survival curve. Oxid Medi Cell Long. 2021;2021. D’Arrigo G, Leonardis D, Abd ElHafeez S, Fusaro M, Tripepi G, Roumeliotis S. Methods to analyse time-to-event data: the Kaplan-Meier survival curve. Oxid Medi Cell Long. 2021;2021.
64.
go back to reference Freshour SL, Kiwala S, Cotto KC, Coffman AC, McMichael JF, Song JJ, et al. Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic acids research. 2021;49(D1):D1144-D51. Freshour SL, Kiwala S, Cotto KC, Coffman AC, McMichael JF, Song JJ, et al. Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic acids research. 2021;49(D1):D1144-D51.
65.
go back to reference Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J. BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 2016;44(D1):D1045–53.PubMedCrossRef Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J. BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 2016;44(D1):D1045–53.PubMedCrossRef
66.
go back to reference Burley SK, Bhikadiya C, Bi C, Bittrich S, Chao H, Chen L, et al. RCSB Protein Data Bank (RCSB. org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023;51(D1):D488-D508. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chao H, Chen L, et al. RCSB Protein Data Bank (RCSB. org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023;51(D1):D488-D508.
67.
go back to reference Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2023 update. Nucleic Acids Res. 2023;51(D1):D1373–80.PubMedCrossRef Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2023 update. Nucleic Acids Res. 2023;51(D1):D1373–80.PubMedCrossRef
68.
go back to reference O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: an open chemical toolbox. J Cheminform. 2011;3(1):1–14.CrossRef O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: an open chemical toolbox. J Cheminform. 2011;3(1):1–14.CrossRef
69.
go back to reference Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.PubMedCrossRef Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.PubMedCrossRef
70.
go back to reference Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Chemical biology: methods and protocols. 2015:243–50. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Chemical biology: methods and protocols. 2015:243–50.
71.
go back to reference Yuan S, Chan HS, Hu Z. Using PyMOL as a platform for computational drug design. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2017;7(2): e1298. Yuan S, Chan HS, Hu Z. Using PyMOL as a platform for computational drug design. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2017;7(2): e1298.
72.
go back to reference Bhachoo J, Beuming T. Investigating protein–peptide interactions using the Schrödinger computational suite. Modeling peptide-protein interactions. 2017:235–54. Bhachoo J, Beuming T. Investigating protein–peptide interactions using the Schrödinger computational suite. Modeling peptide-protein interactions. 2017:235–54.
73.
go back to reference Jeon H-J, Yeom Y, Kim Y-S, Kim E, Shin J-H, Seok PR, et al. Effect of vitamin C on azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated early colon cancer in mice. Nurs Res Pract. 2018;12(2):101–9. Jeon H-J, Yeom Y, Kim Y-S, Kim E, Shin J-H, Seok PR, et al. Effect of vitamin C on azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated early colon cancer in mice. Nurs Res Pract. 2018;12(2):101–9.
74.
go back to reference Kim MJ, Han Q, Bouvet M, Hoffman RM, Park JH. Recombinant oral methioninase (o-rMETase) combined with oxaliplatinum plus 5-fluorouracil improves survival of mice with massive colon-cancer peritoneal carcinomatosis. Anticancer Res. 2023;43(1):19–24.PubMedCrossRef Kim MJ, Han Q, Bouvet M, Hoffman RM, Park JH. Recombinant oral methioninase (o-rMETase) combined with oxaliplatinum plus 5-fluorouracil improves survival of mice with massive colon-cancer peritoneal carcinomatosis. Anticancer Res. 2023;43(1):19–24.PubMedCrossRef
75.
go back to reference Nitschke J, Modick H, Busch E, Von Rekowski RW, Altenbach H-J, Mölleken H. A new colorimetric method to quantify β-1, 3–1, 6-glucans in comparison with total β-1, 3-glucans in edible mushrooms. Food Chem. 2011;127(2):791–6.PubMedCrossRef Nitschke J, Modick H, Busch E, Von Rekowski RW, Altenbach H-J, Mölleken H. A new colorimetric method to quantify β-1, 3–1, 6-glucans in comparison with total β-1, 3-glucans in edible mushrooms. Food Chem. 2011;127(2):791–6.PubMedCrossRef
76.
go back to reference Yang C, Song J, Hwang S, Choi J, Song G, Lim W. Apigenin enhances apoptosis induction by 5-fluorouracil through regulation of thymidylate synthase in colorectal cancer cells. Redox Biol. 2021;47: 102144.PubMedPubMedCentralCrossRef Yang C, Song J, Hwang S, Choi J, Song G, Lim W. Apigenin enhances apoptosis induction by 5-fluorouracil through regulation of thymidylate synthase in colorectal cancer cells. Redox Biol. 2021;47: 102144.PubMedPubMedCentralCrossRef
77.
go back to reference Blondy S, David V, Verdier M, Mathonnet M, Perraud A, Christou N. 5-Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes. Cancer Sci. 2020;111(9):3142–54.PubMedPubMedCentralCrossRef Blondy S, David V, Verdier M, Mathonnet M, Perraud A, Christou N. 5-Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes. Cancer Sci. 2020;111(9):3142–54.PubMedPubMedCentralCrossRef
78.
go back to reference Kanduri J, More LA, Godishala A, Asnani A. Fluoropyrimidine-associated cardiotoxicity. Cardiol Clin. 2019;37(4):399–405.PubMedCrossRef Kanduri J, More LA, Godishala A, Asnani A. Fluoropyrimidine-associated cardiotoxicity. Cardiol Clin. 2019;37(4):399–405.PubMedCrossRef
79.
go back to reference Rtibi K, Marzouki L, Sebai H. Oxidative stress due to 5-fluorouracil and dietary antioxidants. Toxicology: Elsevier; 2021. p. 291–5. Rtibi K, Marzouki L, Sebai H. Oxidative stress due to 5-fluorouracil and dietary antioxidants. Toxicology: Elsevier; 2021. p. 291–5.
80.
go back to reference Abedpoor N, Taghian F, Hajibabaie F. Physical activity ameliorates the function of organs via adipose tissue in metabolic diseases. Acta Histochem. 2022;124(2): 151844.PubMedCrossRef Abedpoor N, Taghian F, Hajibabaie F. Physical activity ameliorates the function of organs via adipose tissue in metabolic diseases. Acta Histochem. 2022;124(2): 151844.PubMedCrossRef
81.
go back to reference Hajibabaie F, Abedpoor N, Taghian F, Safavi K. A cocktail of polyherbal bioactive compounds and regular mobility training as senolytic approaches in age-dependent alzheimer’s: the in silico analysis, lifestyle intervention in old age. J Mol Neurosci. 2023;73(2–3):171–84.PubMedCrossRef Hajibabaie F, Abedpoor N, Taghian F, Safavi K. A cocktail of polyherbal bioactive compounds and regular mobility training as senolytic approaches in age-dependent alzheimer’s: the in silico analysis, lifestyle intervention in old age. J Mol Neurosci. 2023;73(2–3):171–84.PubMedCrossRef
82.
go back to reference Wang T, Zhang Y, Taaffe DR, Kim J-S, Luo H, Yang L, et al. Protective effects of physical activity in colon cancer and underlying mechanisms: a review of epidemiological and biological evidence. Crit Rev Oncol Hematol. 2022;170: 103578.PubMedCrossRef Wang T, Zhang Y, Taaffe DR, Kim J-S, Luo H, Yang L, et al. Protective effects of physical activity in colon cancer and underlying mechanisms: a review of epidemiological and biological evidence. Crit Rev Oncol Hematol. 2022;170: 103578.PubMedCrossRef
83.
go back to reference Uchida M, Horii N, Hasegawa N, Oyanagi E, Yano H, Iemitsu M. Sparassis crispa intake improves the reduced lipopolysaccharide-induced TNF-α production that occurs upon exhaustive exercise in mice. Nutrients. 2019;11(9):2049.PubMedPubMedCentralCrossRef Uchida M, Horii N, Hasegawa N, Oyanagi E, Yano H, Iemitsu M. Sparassis crispa intake improves the reduced lipopolysaccharide-induced TNF-α production that occurs upon exhaustive exercise in mice. Nutrients. 2019;11(9):2049.PubMedPubMedCentralCrossRef
84.
go back to reference Nowacka-Jechalke N, Nowak R, Lemieszek MK, Rzeski W, Gawlik-Dziki U, Szpakowska N, et al. Promising potential of crude polysaccharides from Sparassis crispa against colon cancer: An in vitro study. Nutrients. 2021;13(1):161.PubMedPubMedCentralCrossRef Nowacka-Jechalke N, Nowak R, Lemieszek MK, Rzeski W, Gawlik-Dziki U, Szpakowska N, et al. Promising potential of crude polysaccharides from Sparassis crispa against colon cancer: An in vitro study. Nutrients. 2021;13(1):161.PubMedPubMedCentralCrossRef
85.
go back to reference Bennardi M, Diviani N, Gamondi C, Stüssi G, Saletti P, Cinesi I, et al. Palliative care utilization in oncology and hemato-oncology: a systematic review of cognitive barriers and facilitators from the perspective of healthcare professionals, adult patients, and their families. BMC Palliat Care. 2020;19:1–17.CrossRef Bennardi M, Diviani N, Gamondi C, Stüssi G, Saletti P, Cinesi I, et al. Palliative care utilization in oncology and hemato-oncology: a systematic review of cognitive barriers and facilitators from the perspective of healthcare professionals, adult patients, and their families. BMC Palliat Care. 2020;19:1–17.CrossRef
86.
go back to reference Wu A, Colón GR, Lim M. Quality of life and role of palliative and supportive care for patients with brain metastases and caregivers: a review. Front Neurol. 2022;13: 806344.PubMedPubMedCentralCrossRef Wu A, Colón GR, Lim M. Quality of life and role of palliative and supportive care for patients with brain metastases and caregivers: a review. Front Neurol. 2022;13: 806344.PubMedPubMedCentralCrossRef
87.
go back to reference Mastrogamvraki N, Zaravinos A. Signatures of co-deregulated genes and their transcriptional regulators in colorectal cancer. NPJ Syst Biol Appl. 2020;6(1):23.PubMedPubMedCentralCrossRef Mastrogamvraki N, Zaravinos A. Signatures of co-deregulated genes and their transcriptional regulators in colorectal cancer. NPJ Syst Biol Appl. 2020;6(1):23.PubMedPubMedCentralCrossRef
88.
go back to reference Hajibabaie F, Kouhpayeh S, Mirian M, Rahimmanesh I, Boshtam M, Sadeghian L, et al. MicroRNAs as the actors in the atherosclerosis scenario. J Physiol Biochem. 2020;76:1–12.PubMedCrossRef Hajibabaie F, Kouhpayeh S, Mirian M, Rahimmanesh I, Boshtam M, Sadeghian L, et al. MicroRNAs as the actors in the atherosclerosis scenario. J Physiol Biochem. 2020;76:1–12.PubMedCrossRef
89.
go back to reference Rafat M, Moraghebi M, Afsa M, Malekzadeh K. The outstanding role of miR-132-3p in carcinogenesis of solid tumors. Hum Cell. 2021;34(4):1051–65.PubMedCrossRef Rafat M, Moraghebi M, Afsa M, Malekzadeh K. The outstanding role of miR-132-3p in carcinogenesis of solid tumors. Hum Cell. 2021;34(4):1051–65.PubMedCrossRef
90.
go back to reference Wu HY, Xia S, Liu AG, Wei MD, Chen ZB, Li YX, et al. Upregulation of miR-132-3p in cholangiocarcinoma tissues: A study based on RT-qPCR, The Cancer Genome Atlas miRNA sequencing, Gene Expression Omnibus microarray data and bioinformatics analyses. Mol Med Rep. 2019;20(6):5002–20.PubMedPubMedCentral Wu HY, Xia S, Liu AG, Wei MD, Chen ZB, Li YX, et al. Upregulation of miR-132-3p in cholangiocarcinoma tissues: A study based on RT-qPCR, The Cancer Genome Atlas miRNA sequencing, Gene Expression Omnibus microarray data and bioinformatics analyses. Mol Med Rep. 2019;20(6):5002–20.PubMedPubMedCentral
91.
go back to reference Huang J, Lu D, Xiang T, Wu X, Ge S, Wang Y, et al. MicroRNA-132-3p regulates cell proliferation, apoptosis, migration and invasion of liver cancer by targeting Sox4. Oncol Lett. 2020;19(4):3173–80.PubMedPubMedCentral Huang J, Lu D, Xiang T, Wu X, Ge S, Wang Y, et al. MicroRNA-132-3p regulates cell proliferation, apoptosis, migration and invasion of liver cancer by targeting Sox4. Oncol Lett. 2020;19(4):3173–80.PubMedPubMedCentral
92.
go back to reference Niespolo C, Johnston JM, Deshmukh SR, Satam S, Shologu Z, Villacanas O, et al. Tribbles-1 expression and its function to control inflammatory cytokines, including interleukin-8 levels are regulated by miRNAs in macrophages and prostate cancer cells. Front Immunol. 2020;11: 574046.PubMedPubMedCentralCrossRef Niespolo C, Johnston JM, Deshmukh SR, Satam S, Shologu Z, Villacanas O, et al. Tribbles-1 expression and its function to control inflammatory cytokines, including interleukin-8 levels are regulated by miRNAs in macrophages and prostate cancer cells. Front Immunol. 2020;11: 574046.PubMedPubMedCentralCrossRef
93.
go back to reference Su Y, Shetty A, Jiang F. Integrated analysis of miRNAs and DNA methylation identifies miR-132-3p as a tumor suppressor in lung adenocarcinoma. Thoracic Cancer. 2020;11(8):2112–24.PubMedPubMedCentralCrossRef Su Y, Shetty A, Jiang F. Integrated analysis of miRNAs and DNA methylation identifies miR-132-3p as a tumor suppressor in lung adenocarcinoma. Thoracic Cancer. 2020;11(8):2112–24.PubMedPubMedCentralCrossRef
94.
go back to reference Li S, Xu JJ, Zhang QY. MicroRNA-132-3p inhibits tumor malignant progression by regulating lysosomal-associated protein transmembrane 4 beta in breast cancer. Cancer Sci. 2019;110(10):3098–109.PubMedPubMedCentralCrossRef Li S, Xu JJ, Zhang QY. MicroRNA-132-3p inhibits tumor malignant progression by regulating lysosomal-associated protein transmembrane 4 beta in breast cancer. Cancer Sci. 2019;110(10):3098–109.PubMedPubMedCentralCrossRef
95.
go back to reference Han S, Lin F, Ruan Y, Zhao S, Yuan R, Ning J, et al. miR-132-3p promotes the cisplatin-induced apoptosis and inflammatory response of renal tubular epithelial cells by targeting SIRT1 via the NF-κB pathway. Int Immunopharmacol. 2021;99: 108022.PubMedCrossRef Han S, Lin F, Ruan Y, Zhao S, Yuan R, Ning J, et al. miR-132-3p promotes the cisplatin-induced apoptosis and inflammatory response of renal tubular epithelial cells by targeting SIRT1 via the NF-κB pathway. Int Immunopharmacol. 2021;99: 108022.PubMedCrossRef
96.
go back to reference Li C, Lu K, Lang C, Min L, Yang C. Research on the mechanism of miR-132–3p in inhibiting the proliferation, invasion and metastasis of colon cancer by targeted regulation of PDGF. 2023. Li C, Lu K, Lang C, Min L, Yang C. Research on the mechanism of miR-132–3p in inhibiting the proliferation, invasion and metastasis of colon cancer by targeted regulation of PDGF. 2023.
97.
go back to reference Huang R, Xiang G, Duan X, Wang H, He K, Xiao J. MiR-132-3p inhibits proliferation, invasion and migration of colorectal cancer cells via down-regulating FOXP2 expression. Acta Biochim Pol. 2022;69(2):371–7.PubMed Huang R, Xiang G, Duan X, Wang H, He K, Xiao J. MiR-132-3p inhibits proliferation, invasion and migration of colorectal cancer cells via down-regulating FOXP2 expression. Acta Biochim Pol. 2022;69(2):371–7.PubMed
98.
go back to reference Zhang M, Li Y, Wang H, Yu W, Lin S, Guo J. LncRNA SNHG5 affects cell proliferation, metastasis and migration of colorectal cancer through regulating miR-132-3p/CREB5. Cancer Biol Ther. 2019;20(4):524–36.PubMedCrossRef Zhang M, Li Y, Wang H, Yu W, Lin S, Guo J. LncRNA SNHG5 affects cell proliferation, metastasis and migration of colorectal cancer through regulating miR-132-3p/CREB5. Cancer Biol Ther. 2019;20(4):524–36.PubMedCrossRef
99.
go back to reference Shaath H, Toor SM, Nada MA, Elkord E, Alajez NM. Integrated whole transcriptome and small RNA analysis revealed multiple regulatory networks in colorectal cancer. Sci Rep. 2021;11(1):14456.PubMedPubMedCentralCrossRef Shaath H, Toor SM, Nada MA, Elkord E, Alajez NM. Integrated whole transcriptome and small RNA analysis revealed multiple regulatory networks in colorectal cancer. Sci Rep. 2021;11(1):14456.PubMedPubMedCentralCrossRef
Metadata
Title
Sparassis latifolia and exercise training as complementary medicine mitigated the 5-fluorouracil potent side effects in mice with colorectal cancer: bioinformatics approaches, novel monitoring pathological metrics, screening signatures, and innovative management tactic
Authors
Navid Abedpoor
Farzaneh Taghian
Khosro Jalali Dehkordi
Kamran Safavi
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2024
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-024-03328-y

Other articles of this Issue 1/2024

Cancer Cell International 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine