Skip to main content
Top
Published in: Cancer Cell International 1/2024

Open Access 01-12-2024 | Colorectal Cancer | Research

Forkhead box E1, frequently downregulted by promoter methylation, inhibits colorectal cancer cell growth and migration

Authors: Qinlan Shi, Zhongting Huang, Yeye Kuang, Chan Wang, Xiao Fang, Xiaotong Hu

Published in: Cancer Cell International | Issue 1/2024

Login to get access

Abstract

Forkhead box E1 (FOXE1), also known as thyroid transcription factor 2 (TTF-2), belongs to a large family of forkhead transcription factors. It plays important roles in embryogenesis, cell growth, and differentiation. Cancer-specific FOXE1 hypermethylation events have been identified in several cancers. However, the expression and function of FOXE1 in the tumorigenesis of colorectal cancer remain still unknown. In this study, we examined FOXE1 expression and methylation in normal colon mucosa, colorectal cancer (CRC) cell lines, and primary tumors by immunohistochemistry, semi-quantitative RT-PCR, methylation-specific PCR, and bisulfite genomic sequencing. We found that FOXE1 was frequently methylated and silenced in CRC cell lines and was downregulated in CRC tissues compared with paired adjacent non-tumor tissues. Meanwhile, low FOXE1 expression was significantly correlated with lymph node metastasis and advanced TNM stages, indicating its potential as a tumor marker. Subsequently, we established colon cancer cell lines with stable FOXE1 expression to observe the biological effect on colorectal cancer, including cell growth, migration, actin cytoskeleton, and growth of human colorectal xenografts in nude mice. Ectopic expression of FOXE1 could suppress tumor cell growth and migration and affect the organization of the actin cytoskeleton together with suppressing tumorigenicity in vivo. FOXE1 methylation was frequently seen in association with a complete absence of or downregulated gene expression, and FOXE1 plays a suppressive role in the development and progression of colorectal cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Center MM, Jemal A, Ward E. International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomarkers Prev. 2009;18(6):1688–94.CrossRefPubMed Center MM, Jemal A, Ward E. International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomarkers Prev. 2009;18(6):1688–94.CrossRefPubMed
2.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRefPubMed
3.
go back to reference Sung J, Lau J, Kl Goh, Leung WK. Asia pacific working group on colorectal cancer. increasing incidence of colorectal cancer in asia: implications for screening. Lancet Oncol. 2005;6(11):871–6.CrossRefPubMed Sung J, Lau J, Kl Goh, Leung WK. Asia pacific working group on colorectal cancer. increasing incidence of colorectal cancer in asia: implications for screening. Lancet Oncol. 2005;6(11):871–6.CrossRefPubMed
4.
go back to reference Wolpin BM, Mayer RJ. Systemic treatment of colorectal cancer. Gastroenterology. 2008;134(5):1296–310.CrossRefPubMed Wolpin BM, Mayer RJ. Systemic treatment of colorectal cancer. Gastroenterology. 2008;134(5):1296–310.CrossRefPubMed
5.
go back to reference Sava S, Younghusband HB. dbCPCO: a database of genetic markers tested for their predictive and prognostic value in colorectal cancer. Hum Mutat. 2010;31(8):901–7.CrossRef Sava S, Younghusband HB. dbCPCO: a database of genetic markers tested for their predictive and prognostic value in colorectal cancer. Hum Mutat. 2010;31(8):901–7.CrossRef
8.
go back to reference Karpiński P, Sasiadek MM, Blin N. Aberrant epigenetic patterns in the etiology of gastrointestinal cancers. J Appl Genet. 2008;49(1):1–10.CrossRefPubMed Karpiński P, Sasiadek MM, Blin N. Aberrant epigenetic patterns in the etiology of gastrointestinal cancers. J Appl Genet. 2008;49(1):1–10.CrossRefPubMed
9.
go back to reference Link A, Balaguer F, Shen Y, Lozano JJ, Leung HC, Boland CR, Goel A. Curcumin modulates DNA methylation in colorectal cancer cells. PLoS ONE. 2013;8(2):27.CrossRef Link A, Balaguer F, Shen Y, Lozano JJ, Leung HC, Boland CR, Goel A. Curcumin modulates DNA methylation in colorectal cancer cells. PLoS ONE. 2013;8(2):27.CrossRef
10.
12.
go back to reference Wong JJL, Hawkins NJ, Ward RL. Colorectal cancer: a model for epigenetic tumorigenesis. Gut. 2007;56(1):140–8.CrossRefPubMed Wong JJL, Hawkins NJ, Ward RL. Colorectal cancer: a model for epigenetic tumorigenesis. Gut. 2007;56(1):140–8.CrossRefPubMed
13.
go back to reference Qureshi SA, Bashir MU, Yaqinuddin A. Utility of DNA methylation markers for diagnosing cancer. Int J Surg. 2010;8(3):194–8.CrossRefPubMed Qureshi SA, Bashir MU, Yaqinuddin A. Utility of DNA methylation markers for diagnosing cancer. Int J Surg. 2010;8(3):194–8.CrossRefPubMed
14.
go back to reference Katoh M. Human FOX gene family (Review). Int J Oncol. 2004;25(5):1495–500.PubMed Katoh M. Human FOX gene family (Review). Int J Oncol. 2004;25(5):1495–500.PubMed
15.
go back to reference Chadwick BP, Obermayr F, Frischauf AM. FKHL15, a New human member of the Forkhead gene family located on chromosome 9q22. Genomics. 1997;41(3):390–6.CrossRefPubMed Chadwick BP, Obermayr F, Frischauf AM. FKHL15, a New human member of the Forkhead gene family located on chromosome 9q22. Genomics. 1997;41(3):390–6.CrossRefPubMed
16.
go back to reference Hishinuma A, Ohyama Y, Kuribayashi T, Nagakubo N, Namatame T, Shibayama K, Arisaka O, Matsuura N, Ieiri T. Polymorphism of the polyalanine tract of thyroid transcription factor-2 gene in patients with thyroid dysgenesis. Eur J Endocrinol. 2001;145(4):385–9.CrossRefPubMed Hishinuma A, Ohyama Y, Kuribayashi T, Nagakubo N, Namatame T, Shibayama K, Arisaka O, Matsuura N, Ieiri T. Polymorphism of the polyalanine tract of thyroid transcription factor-2 gene in patients with thyroid dysgenesis. Eur J Endocrinol. 2001;145(4):385–9.CrossRefPubMed
17.
go back to reference Venza M, Visalli M, Venza I, Torino C, Saladino R, Teti D. FOXE1 gene mutation screening by multiplex PCR/DHPLC in CHARGE syndrome and syndromic and non-syndromic cleft palate. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;836(1–2):39–46.CrossRefPubMed Venza M, Visalli M, Venza I, Torino C, Saladino R, Teti D. FOXE1 gene mutation screening by multiplex PCR/DHPLC in CHARGE syndrome and syndromic and non-syndromic cleft palate. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;836(1–2):39–46.CrossRefPubMed
18.
go back to reference Carré A, Castanet M, Sura-Trueba S, Szinnai G, Van Vliet G, Trochet D, Amiel J, Léger J, Czernichow P, Scotet V, Polak M. Polymorphic length of FOXE1 alanine stretch: evidence for genetic susceptibility to thyroid dysgenesis. Hum Genet. 2007;122(5):467–76.CrossRefPubMed Carré A, Castanet M, Sura-Trueba S, Szinnai G, Van Vliet G, Trochet D, Amiel J, Léger J, Czernichow P, Scotet V, Polak M. Polymorphic length of FOXE1 alanine stretch: evidence for genetic susceptibility to thyroid dysgenesis. Hum Genet. 2007;122(5):467–76.CrossRefPubMed
19.
go back to reference Penna-Martinez M, Epp F, Kahles H, Ramos-Lopez E, Hinsch N, Hansmann ML, Selkinski I, Grünwald F, Holzer K, Bechstein WO, Zeuzem S, Vorländer C, Badenhoop K. FOXE1 association with differentiated thyroid cancer and its progression. Thyroid. 2013;10:10. Penna-Martinez M, Epp F, Kahles H, Ramos-Lopez E, Hinsch N, Hansmann ML, Selkinski I, Grünwald F, Holzer K, Bechstein WO, Zeuzem S, Vorländer C, Badenhoop K. FOXE1 association with differentiated thyroid cancer and its progression. Thyroid. 2013;10:10.
20.
go back to reference Matsuse M, Takahashi M, Mitsutake N, Nishihara E, Hirokawa M, Kawaguchi T, Rogounovitch T, Saenko V, Bychkov A, Suzuki K, Matsuo K, Tajima K, Miyauchi A, Yamada R, Matsuda F, Yamashita S. The FOXE1 and NKX2-1 loci are associated with susceptibility to papillary thyroid carcinoma in the Japanese population. J Med Genet. 2011;48(9):645–8.CrossRefPubMed Matsuse M, Takahashi M, Mitsutake N, Nishihara E, Hirokawa M, Kawaguchi T, Rogounovitch T, Saenko V, Bychkov A, Suzuki K, Matsuo K, Tajima K, Miyauchi A, Yamada R, Matsuda F, Yamashita S. The FOXE1 and NKX2-1 loci are associated with susceptibility to papillary thyroid carcinoma in the Japanese population. J Med Genet. 2011;48(9):645–8.CrossRefPubMed
21.
go back to reference Matsubayashi H, Canto M, Sato N, Klein A, Abe T, Yamashita K, Yeo CJ, Kalloo A, Hruban R, Goggins M. DNA methylation alterations in the pancreatic juice of patients with suspected pancreatic disease. Cancer Res. 2006;66(2):1208–17.CrossRefPubMed Matsubayashi H, Canto M, Sato N, Klein A, Abe T, Yamashita K, Yeo CJ, Kalloo A, Hruban R, Goggins M. DNA methylation alterations in the pancreatic juice of patients with suspected pancreatic disease. Cancer Res. 2006;66(2):1208–17.CrossRefPubMed
22.
go back to reference Venza I, Visalli M, Tripodo B, Lentini M, Teti D, Venza M. Investigation into FOXE1 genetic variations in cutaneous squamous cell carcinoma. Br J Dermatol. 2010;162(3):681–3.CrossRefPubMed Venza I, Visalli M, Tripodo B, Lentini M, Teti D, Venza M. Investigation into FOXE1 genetic variations in cutaneous squamous cell carcinoma. Br J Dermatol. 2010;162(3):681–3.CrossRefPubMed
23.
go back to reference Weisenberger DJ, Trinh BN, Campan M, Sharma S, Long TI, Ananthnarayan S, Liang G, Esteva FJ, Hortobagyi GN, McCormick F, Jones PA, Laird PW. DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res. 2008;36(14):4689–98.CrossRefPubMedPubMedCentral Weisenberger DJ, Trinh BN, Campan M, Sharma S, Long TI, Ananthnarayan S, Liang G, Esteva FJ, Hortobagyi GN, McCormick F, Jones PA, Laird PW. DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res. 2008;36(14):4689–98.CrossRefPubMedPubMedCentral
24.
go back to reference Venza I, Visalli M, Tripodo B, De Grazia G, Loddo S, Teti D, Venza M. FOXE1 is a target for aberrant methylation in cutaneous squamous cell carcinoma. Br J Dermatol. 2010;162(5):1093–7.CrossRefPubMed Venza I, Visalli M, Tripodo B, De Grazia G, Loddo S, Teti D, Venza M. FOXE1 is a target for aberrant methylation in cutaneous squamous cell carcinoma. Br J Dermatol. 2010;162(5):1093–7.CrossRefPubMed
25.
go back to reference Wang J, Xia Y, Li L, Gong D, Yao Y, Luo H, Lu H, Yi N, Wu H, Zhang X, Tao Q, Gao F. Double restriction-enzyme digestion improves the coverage and accuracy of genome-wide CpG methylation profiling by reduced representation bisulfite sequencing. BMC Genomics. 2013;14:11.CrossRefPubMedPubMedCentral Wang J, Xia Y, Li L, Gong D, Yao Y, Luo H, Lu H, Yi N, Wu H, Zhang X, Tao Q, Gao F. Double restriction-enzyme digestion improves the coverage and accuracy of genome-wide CpG methylation profiling by reduced representation bisulfite sequencing. BMC Genomics. 2013;14:11.CrossRefPubMedPubMedCentral
26.
go back to reference Li L, Zhang Y, Fan Y, Sun K, Su X, Du Z, Tsao SW, Loh TKS, Sun H, Chan ATC, Zeng Y, Chan W, Chan FK, Tao Q. Characterization of the nasopharyngeal carcinoma methylome identifies aberrant disruption of key signaling pathways and methylated tumor suppressor genes. Epigenomics. 2015;7(2):155–73.CrossRefPubMed Li L, Zhang Y, Fan Y, Sun K, Su X, Du Z, Tsao SW, Loh TKS, Sun H, Chan ATC, Zeng Y, Chan W, Chan FK, Tao Q. Characterization of the nasopharyngeal carcinoma methylome identifies aberrant disruption of key signaling pathways and methylated tumor suppressor genes. Epigenomics. 2015;7(2):155–73.CrossRefPubMed
27.
go back to reference Ying J, Li H, Seng TJ, Langford C, Srivastava G, Tsao SW, Putti T, Murray P, Chan AT, Tao Q. Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene. 2006;25:1070–80.CrossRefPubMed Ying J, Li H, Seng TJ, Langford C, Srivastava G, Tsao SW, Putti T, Murray P, Chan AT, Tao Q. Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene. 2006;25:1070–80.CrossRefPubMed
28.
go back to reference Kimura S. Thyroid-specific transcription factors and their roles in thyroid cancer. J Thyroid Res. 2011;710213(10):28. Kimura S. Thyroid-specific transcription factors and their roles in thyroid cancer. J Thyroid Res. 2011;710213(10):28.
29.
go back to reference Melotte V, Yi JM, Lentjes MH, Smits KM, Van Neste L, Niessen HE, Wouters KA, Louwagie J, Schuebel KE, Herman JG, Baylin SB, van Criekinge W, Meijer GA, Ahuja N, van Engeland M. Spectrin repeat containing nuclear envelope 1 and forkhead box protein E1 are promising markers for the detection of colorectal cancer in blood. Cancer Prev Res (Phila). 2015;8(2):157–64.CrossRefPubMed Melotte V, Yi JM, Lentjes MH, Smits KM, Van Neste L, Niessen HE, Wouters KA, Louwagie J, Schuebel KE, Herman JG, Baylin SB, van Criekinge W, Meijer GA, Ahuja N, van Engeland M. Spectrin repeat containing nuclear envelope 1 and forkhead box protein E1 are promising markers for the detection of colorectal cancer in blood. Cancer Prev Res (Phila). 2015;8(2):157–64.CrossRefPubMed
30.
go back to reference Tine J, Edward VL Jr, Fernando SV, Harmsen WS, Zinsmeister AR, Smyrk TC, Tremaine WJ, Melton LJ 3rd, Munkholm P, Sandborn WJ. Incidence and prognosis of colorectal dysplasia in inflammatory bowel disease: a population based study from Olmsted County. Minnesota Inflamm Bowel Dis. 2006;12:669–76.CrossRef Tine J, Edward VL Jr, Fernando SV, Harmsen WS, Zinsmeister AR, Smyrk TC, Tremaine WJ, Melton LJ 3rd, Munkholm P, Sandborn WJ. Incidence and prognosis of colorectal dysplasia in inflammatory bowel disease: a population based study from Olmsted County. Minnesota Inflamm Bowel Dis. 2006;12:669–76.CrossRef
31.
go back to reference Cinzia P, Joost L, Paolo DR, Grooteclaes M, Coruzzi A, Montana C, Novelli M, Bordi C, de Angelis GL, Bassett P, Bigley J, Warren B, Atkin W, Forbes A. FOXE1 and SYNE1 genes hypermethylation panel as promising biomarker in colitis-associated colorectal neoplasia. Inflamm Bowel Dis. 2014;20:271–7.CrossRef Cinzia P, Joost L, Paolo DR, Grooteclaes M, Coruzzi A, Montana C, Novelli M, Bordi C, de Angelis GL, Bassett P, Bigley J, Warren B, Atkin W, Forbes A. FOXE1 and SYNE1 genes hypermethylation panel as promising biomarker in colitis-associated colorectal neoplasia. Inflamm Bowel Dis. 2014;20:271–7.CrossRef
32.
go back to reference Hurlstone DP, George R, Brown S. Novel clinical in vivo roles for indigo carmine: high-magnification chromoscopic colonoscopy. Biotech Histochem. 2007;82(2):57–71.CrossRefPubMed Hurlstone DP, George R, Brown S. Novel clinical in vivo roles for indigo carmine: high-magnification chromoscopic colonoscopy. Biotech Histochem. 2007;82(2):57–71.CrossRefPubMed
33.
go back to reference Arends MJ. Pathways of colorectal carcinogenesis. Appl Immunohistochem Mol Morphol. 2013;21(2):97–102.CrossRefPubMed Arends MJ. Pathways of colorectal carcinogenesis. Appl Immunohistochem Mol Morphol. 2013;21(2):97–102.CrossRefPubMed
34.
go back to reference Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112(4):453–65.CrossRefPubMed Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112(4):453–65.CrossRefPubMed
Metadata
Title
Forkhead box E1, frequently downregulted by promoter methylation, inhibits colorectal cancer cell growth and migration
Authors
Qinlan Shi
Zhongting Huang
Yeye Kuang
Chan Wang
Xiao Fang
Xiaotong Hu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2024
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-024-03352-y

Other articles of this Issue 1/2024

Cancer Cell International 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine