Skip to main content
Top
Published in: NeuroMolecular Medicine 3/2015

Open Access 01-09-2015 | Original Paper

Clinical, Molecular, and Functional Characterization of CLCN1 Mutations in Three Families with Recessive Myotonia Congenita

Authors: Simona Portaro, Concetta Altamura, Norma Licata, Giulia M. Camerino, Paola Imbrici, Olimpia Musumeci, Carmelo Rodolico, Diana Conte Camerino, Antonio Toscano, Jean-François Desaphy

Published in: NeuroMolecular Medicine | Issue 3/2015

Login to get access

Abstract

Myotonia congenita (MC) is an inherited muscle disease characterized by impaired muscle relaxation after contraction, resulting in muscle stiffness. Both recessive (Becker’s disease) or dominant (Thomsen’s disease) MC are caused by mutations in the CLCN1 gene encoding the voltage-dependent chloride ClC-1 channel, which is quite exclusively expressed in skeletal muscle. More than 200 CLCN1 mutations have been associated with MC. We provide herein a detailed clinical, molecular, and functional evaluation of four patients with recessive MC belonging to three different families. Four CLCN1 variants were identified, three of which have never been characterized. The c.244A>G (p.T82A) and c.1357C>T (p.R453W) variants were each associated in compound heterozygosity with c.568GG>TC (p.G190S), for which pathogenicity is already known. The new c.809G>T (p.G270V) variant was found in the homozygous state. Patch-clamp studies of ClC-1 mutants expressed in tsA201 cells confirmed the pathogenicity of p.G270V, which greatly shifts the voltage dependence of channel activation toward positive potentials. Conversely, the mechanisms by which p.T82A and p.R453W cause the disease remained elusive, as the mutated channels behave similarly to WT. The results also suggest that p.G190S does not exert dominant-negative effects on other mutated ClC-1 subunits. Moreover, we performed a RT-PCR quantification of selected ion channels transcripts in muscle biopsies of two patients. The results suggest gene expression alteration of sodium and potassium channel subunits in myotonic muscles; if confirmed, such analysis may pave the way toward a better understanding of disease phenotype and a possible identification of new therapeutic options.
Appendix
Available only for authorised users
Literature
go back to reference Abbott, G. W., Butler, M. H., Bendahhou, S., Dalakas, M. C., Ptacek, L. J., & Goldstein, S. A. N. (2001). MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell, 104, 217–231.CrossRefPubMed Abbott, G. W., Butler, M. H., Bendahhou, S., Dalakas, M. C., Ptacek, L. J., & Goldstein, S. A. N. (2001). MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell, 104, 217–231.CrossRefPubMed
go back to reference Brugnoni, R., Kapetis, D., Imbrici, P., Pessia, M., Canioni, E., Colleoni, L., et al. (2013). A large cohort of myotonia congenita probands: novel mutations and a high-frequency mutation region in exons 4 and 5 of the CLCN1 gene. Journal of Human Genetics, 58(9), 581–587.CrossRefPubMed Brugnoni, R., Kapetis, D., Imbrici, P., Pessia, M., Canioni, E., Colleoni, L., et al. (2013). A large cohort of myotonia congenita probands: novel mutations and a high-frequency mutation region in exons 4 and 5 of the CLCN1 gene. Journal of Human Genetics, 58(9), 581–587.CrossRefPubMed
go back to reference Bryant, S. H. (1969). Cable properties of external intercostal muscle fibres from myotonic and nonmyotonic goats. Muscle membrane of normal and myotonic goats in normal and low external chloride. The Journal of Physiology, 204, 539–550.PubMedCentralCrossRefPubMed Bryant, S. H. (1969). Cable properties of external intercostal muscle fibres from myotonic and nonmyotonic goats. Muscle membrane of normal and myotonic goats in normal and low external chloride. The Journal of Physiology, 204, 539–550.PubMedCentralCrossRefPubMed
go back to reference Bryant, S. H., & Morales-Aguilera, A. (1971). Chloride conductance in normal and myotonic muscle fibres and the action of monocarboxylic aromatic acids. The Journal of Physiology, 219(2), 367–383.PubMedCentralCrossRefPubMed Bryant, S. H., & Morales-Aguilera, A. (1971). Chloride conductance in normal and myotonic muscle fibres and the action of monocarboxylic aromatic acids. The Journal of Physiology, 219(2), 367–383.PubMedCentralCrossRefPubMed
go back to reference Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., et al. (2009). The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55(4), 611–622.CrossRefPubMed Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., et al. (2009). The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55(4), 611–622.CrossRefPubMed
go back to reference Desaphy, J.-F., Gramegna, G., Altamura, C., Dinardo, M. M., Imbrici, P., George, A. L., Jr., et al. (2013). Functional characterization of ClC-1 mutations from patients affected by recessive myotonia congenita presenting with different clinical phenotypes. Experimental Neurology, 248, 530–540.PubMedCentralCrossRefPubMed Desaphy, J.-F., Gramegna, G., Altamura, C., Dinardo, M. M., Imbrici, P., George, A. L., Jr., et al. (2013). Functional characterization of ClC-1 mutations from patients affected by recessive myotonia congenita presenting with different clinical phenotypes. Experimental Neurology, 248, 530–540.PubMedCentralCrossRefPubMed
go back to reference Desaphy, J.-F., Pierno, S., Léoty, C., George, A. L, Jr, De Luca, A., & Conte Camerino, D. (2001). Skeletal muscle disuse induces fibre type-dependent enhancement of Na+ channel expression. Brain, 124, 1100–1113.CrossRefPubMed Desaphy, J.-F., Pierno, S., Léoty, C., George, A. L, Jr, De Luca, A., & Conte Camerino, D. (2001). Skeletal muscle disuse induces fibre type-dependent enhancement of Na+ channel expression. Brain, 124, 1100–1113.CrossRefPubMed
go back to reference Duno, M., Colding-Jorgensen, E., Grunnet, M., Jespersen, T., Vissing, J., & Schwartz, M. (2004). Difference in allelic expression of the CLCN1 gene and the possible influence on the myotonia congenita phenotype. European Journal of Human Genetics, 12, 738–743.CrossRefPubMed Duno, M., Colding-Jorgensen, E., Grunnet, M., Jespersen, T., Vissing, J., & Schwartz, M. (2004). Difference in allelic expression of the CLCN1 gene and the possible influence on the myotonia congenita phenotype. European Journal of Human Genetics, 12, 738–743.CrossRefPubMed
go back to reference Dutzler, R. (2006). The ClC family of chloride channels and transporters. Current Opinion in Structural Biology, 16, 439–446.CrossRefPubMed Dutzler, R. (2006). The ClC family of chloride channels and transporters. Current Opinion in Structural Biology, 16, 439–446.CrossRefPubMed
go back to reference Fahlke, C., Desai, R. R., Gillani, N., & George, A. L, Jr. (2001). Residues lining the inner pore vestibule of human muscle chloride channels. The Journal of biological chemistry, 276, 1759–1765.CrossRefPubMed Fahlke, C., Desai, R. R., Gillani, N., & George, A. L, Jr. (2001). Residues lining the inner pore vestibule of human muscle chloride channels. The Journal of biological chemistry, 276, 1759–1765.CrossRefPubMed
go back to reference Fialho, D., Schorge, S., Pucovska, U., Davies, N. P., Labrum, R., Haworth, A., et al. (2007). Chloride channel myotonia: Exon 8 hot-spot for dominant–negative interactions. Brain, 130, 3265–3274.CrossRefPubMed Fialho, D., Schorge, S., Pucovska, U., Davies, N. P., Labrum, R., Haworth, A., et al. (2007). Chloride channel myotonia: Exon 8 hot-spot for dominant–negative interactions. Brain, 130, 3265–3274.CrossRefPubMed
go back to reference Flagg, T. P., Enkvetchakul, D., Koster, J. C., & Nichols, C. G. (2010). Muscle KATP channels: Recent insights to energy sensing an myoprotection. Physiological Reviews, 90, 799–829.PubMedCentralCrossRefPubMed Flagg, T. P., Enkvetchakul, D., Koster, J. C., & Nichols, C. G. (2010). Muscle KATP channels: Recent insights to energy sensing an myoprotection. Physiological Reviews, 90, 799–829.PubMedCentralCrossRefPubMed
go back to reference Fournier, E., Arzel, M., Sternberg, D., Vicart, S., Laforet, P., Eymard, B., et al. (2004). Electromyography guides toward subgroups of mutations in muscle channelopathies. Annals of Neurology, 56, 650–661.CrossRefPubMed Fournier, E., Arzel, M., Sternberg, D., Vicart, S., Laforet, P., Eymard, B., et al. (2004). Electromyography guides toward subgroups of mutations in muscle channelopathies. Annals of Neurology, 56, 650–661.CrossRefPubMed
go back to reference George, A. L., Jr., Crackower, M. A., Abdalla, J. A., Hudson, A. J., & Ebers, G. C. (1993). Molecular basis of Thomsen’s disease (autosomal dominant myotonia congenita). Nature Genetics, 3, 305–310.CrossRefPubMed George, A. L., Jr., Crackower, M. A., Abdalla, J. A., Hudson, A. J., & Ebers, G. C. (1993). Molecular basis of Thomsen’s disease (autosomal dominant myotonia congenita). Nature Genetics, 3, 305–310.CrossRefPubMed
go back to reference Heatwole, C. R., Statland, J. M., & Logigian, E. L. (2013). The diagnosis and treatment of myotonic disorders. Muscle and Nerve, 47(5), 632–648.CrossRefPubMed Heatwole, C. R., Statland, J. M., & Logigian, E. L. (2013). The diagnosis and treatment of myotonic disorders. Muscle and Nerve, 47(5), 632–648.CrossRefPubMed
go back to reference Imbrici, P., Altamura, C., Pessia, M., Mantegazza, R., Desaphy, J.-F., & Conte Camerino, D. (2015). ClC-1 chloride channels: State-of-the-art research and future challenges. Frontiers in Cellular Neuroscience, 9, 156.PubMedCentralCrossRefPubMed Imbrici, P., Altamura, C., Pessia, M., Mantegazza, R., Desaphy, J.-F., & Conte Camerino, D. (2015). ClC-1 chloride channels: State-of-the-art research and future challenges. Frontiers in Cellular Neuroscience, 9, 156.PubMedCentralCrossRefPubMed
go back to reference Koch, M. C., Steinmeyer, K., Lorenz, C., Ricker, K., Wolf, F., Otto, M., et al. (1992). The skeletal muscle chloride channel in dominant and recessive human myotonia. Science, 257, 797–800.CrossRefPubMed Koch, M. C., Steinmeyer, K., Lorenz, C., Ricker, K., Wolf, F., Otto, M., et al. (1992). The skeletal muscle chloride channel in dominant and recessive human myotonia. Science, 257, 797–800.CrossRefPubMed
go back to reference Lossin, C., & George, A. L, Jr. (2008). Myotonia congenita. Advances in Medicine, 63, 25–55. Lossin, C., & George, A. L, Jr. (2008). Myotonia congenita. Advances in Medicine, 63, 25–55.
go back to reference Marionneau, C., Carrasquillo, Y., Norris, A. J., Towsend, R. R., Isom, L. L., Link, A. J., & Nerbonne, J. M. (2012). The sodium channel accessory subunit Navb1 regulates neuronal excitability through modulation of repolarizing voltage gated K+ channels. The Journal of Neuroscience, 32, 5716–5727.PubMedCentralCrossRefPubMed Marionneau, C., Carrasquillo, Y., Norris, A. J., Towsend, R. R., Isom, L. L., Link, A. J., & Nerbonne, J. M. (2012). The sodium channel accessory subunit Navb1 regulates neuronal excitability through modulation of repolarizing voltage gated K+ channels. The Journal of Neuroscience, 32, 5716–5727.PubMedCentralCrossRefPubMed
go back to reference Mazón, M. J., Barros, F., De la Peña, P., Quesada, J. F., Escudero, A., Cobo, A. M., et al. (2012). Screening for mutations in Spanish families with myotonia. Functional analysis of novel mutations in CLCN1 gene. Neuromuscular Disorders, 22(3), 231–243.CrossRefPubMed Mazón, M. J., Barros, F., De la Peña, P., Quesada, J. F., Escudero, A., Cobo, A. M., et al. (2012). Screening for mutations in Spanish families with myotonia. Functional analysis of novel mutations in CLCN1 gene. Neuromuscular Disorders, 22(3), 231–243.CrossRefPubMed
go back to reference Plassart-Schiess, E., Gervais, A., Eymard, B., Lagueny, A., Pouget, J., Warter, J. M., et al. (1998). Novel muscle chloride channel (CLCN1) mutations in myotonia congenita with various modes of inheritance including incomplete dominance and penetrance. Neurology, 50(4), 1176–1179.CrossRefPubMed Plassart-Schiess, E., Gervais, A., Eymard, B., Lagueny, A., Pouget, J., Warter, J. M., et al. (1998). Novel muscle chloride channel (CLCN1) mutations in myotonia congenita with various modes of inheritance including incomplete dominance and penetrance. Neurology, 50(4), 1176–1179.CrossRefPubMed
go back to reference Pusch, M., Steimeyer, K., Koch, M. C., & Jentsch, T. J. (1995). Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the ClC-1 chloride channel. Neuron, 15, 1455–1463.CrossRefPubMed Pusch, M., Steimeyer, K., Koch, M. C., & Jentsch, T. J. (1995). Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the ClC-1 chloride channel. Neuron, 15, 1455–1463.CrossRefPubMed
go back to reference Raja Rayan, D. L., Haworth, A., Sud, R., Matthews, E., Fialho, D., Burge, J., et al. (2012). A new explanation for recessive myotonia congenita: Exon deletions and duplications in CLCN1. Neurology, 78(24), 1953–1958.PubMedCentralCrossRefPubMed Raja Rayan, D. L., Haworth, A., Sud, R., Matthews, E., Fialho, D., Burge, J., et al. (2012). A new explanation for recessive myotonia congenita: Exon deletions and duplications in CLCN1. Neurology, 78(24), 1953–1958.PubMedCentralCrossRefPubMed
go back to reference Richardson, R. C., Tarleton, J. C., Bird, T. D., & Gospe, S. M., Jr. (2014). Truncating CLCN1 mutations in myotonia congenita: Variable patterns of inheritance. Muscle and Nerve, 49(4), 593–600.CrossRefPubMed Richardson, R. C., Tarleton, J. C., Bird, T. D., & Gospe, S. M., Jr. (2014). Truncating CLCN1 mutations in myotonia congenita: Variable patterns of inheritance. Muscle and Nerve, 49(4), 593–600.CrossRefPubMed
go back to reference Sandonà, D., Desaphy, J.-F., Camerino, G. M., Bianchini, E., Ciciliot, S., Danieli-Betto, D., et al. (2012). Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission. PLoS ONE, 7(3), e33232.PubMedCentralCrossRefPubMed Sandonà, D., Desaphy, J.-F., Camerino, G. M., Bianchini, E., Ciciliot, S., Danieli-Betto, D., et al. (2012). Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission. PLoS ONE, 7(3), e33232.PubMedCentralCrossRefPubMed
go back to reference Saviane, C., Conti, F., & Pusch, M. (1999). The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia. The Journal of General Physiology, 113, 457–468.PubMedCentralCrossRefPubMed Saviane, C., Conti, F., & Pusch, M. (1999). The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia. The Journal of General Physiology, 113, 457–468.PubMedCentralCrossRefPubMed
go back to reference Shalata, A., Furman, H., Adir, V., Adir, N., Hujeirat, Y., Shalev, S. A., & Borochowitz, Z. U. (2010). Myotonia congenita in a large consanguineous Arab family: insight into the clinical spectrum of carriers and double heterozygotes of a novel mutation in the chloride channel CLCN1 gene. Muscle and Nerve, 41(4), 464–469.CrossRefPubMed Shalata, A., Furman, H., Adir, V., Adir, N., Hujeirat, Y., Shalev, S. A., & Borochowitz, Z. U. (2010). Myotonia congenita in a large consanguineous Arab family: insight into the clinical spectrum of carriers and double heterozygotes of a novel mutation in the chloride channel CLCN1 gene. Muscle and Nerve, 41(4), 464–469.CrossRefPubMed
go back to reference Tang, C. Y., & Chen, T. Y. (2011). Physiology and pathophysiology of CLC-1: Mechanisms of a chloride channel disease, myotonia. Journal of Biomedicine and Biotechnology, 2011, 685328.PubMedCentralPubMed Tang, C. Y., & Chen, T. Y. (2011). Physiology and pathophysiology of CLC-1: Mechanisms of a chloride channel disease, myotonia. Journal of Biomedicine and Biotechnology, 2011, 685328.PubMedCentralPubMed
go back to reference Tricarico, D., Mele, A., Lundquist, A. L., Desai, R. R., George, A. L., Jr., & Conte Camerino, D. (2006). Hybrid assemblies of ATP-sensitive K+ channels determine their muscle-type-dependent biophysical and pharmacological properties. Proceedings of the National Academy of Sciences of the United States of America, 103, 1118–1123.PubMedCentralCrossRefPubMed Tricarico, D., Mele, A., Lundquist, A. L., Desai, R. R., George, A. L., Jr., & Conte Camerino, D. (2006). Hybrid assemblies of ATP-sensitive K+ channels determine their muscle-type-dependent biophysical and pharmacological properties. Proceedings of the National Academy of Sciences of the United States of America, 103, 1118–1123.PubMedCentralCrossRefPubMed
go back to reference Ulzi, G., Lecchi, M., Sansone, V., Redaelli, E., Corti, E., Saccomanno, D., et al. (2012). Myotonia congenita: Novel mutations in CLCN1 gene and functional characterizations in Italian patients. Journal of the Neurological Sciences, 318(1–2), 65–71.CrossRefPubMed Ulzi, G., Lecchi, M., Sansone, V., Redaelli, E., Corti, E., Saccomanno, D., et al. (2012). Myotonia congenita: Novel mutations in CLCN1 gene and functional characterizations in Italian patients. Journal of the Neurological Sciences, 318(1–2), 65–71.CrossRefPubMed
go back to reference Ulzi, G., Sansone, V. A., Magri, F., Corti, S., Bresolin, N., Comi, G. P., & Lucchiari, S. (2014). In vitro analysis of splice site mutations in the CLCN1 gene using the minigene assay. Molecular Biology Reports, 41(5), 2865–2874.CrossRefPubMed Ulzi, G., Sansone, V. A., Magri, F., Corti, S., Bresolin, N., Comi, G. P., & Lucchiari, S. (2014). In vitro analysis of splice site mutations in the CLCN1 gene using the minigene assay. Molecular Biology Reports, 41(5), 2865–2874.CrossRefPubMed
go back to reference Weinberger, S., Wojciechowski, D., Sternberg, D., Lehmann-Horn, F., Jurkat-Rott, K., Becher, T., et al. (2012). Disease-causing mutations C277R and C277Y modify gating of human ClC-1 chloride channels in myotonia congenita. The Journal of Physiology, 590, 3449–3464.PubMedCentralCrossRefPubMed Weinberger, S., Wojciechowski, D., Sternberg, D., Lehmann-Horn, F., Jurkat-Rott, K., Becher, T., et al. (2012). Disease-causing mutations C277R and C277Y modify gating of human ClC-1 chloride channels in myotonia congenita. The Journal of Physiology, 590, 3449–3464.PubMedCentralCrossRefPubMed
Metadata
Title
Clinical, Molecular, and Functional Characterization of CLCN1 Mutations in Three Families with Recessive Myotonia Congenita
Authors
Simona Portaro
Concetta Altamura
Norma Licata
Giulia M. Camerino
Paola Imbrici
Olimpia Musumeci
Carmelo Rodolico
Diana Conte Camerino
Antonio Toscano
Jean-François Desaphy
Publication date
01-09-2015
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 3/2015
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-015-8356-8

Other articles of this Issue 3/2015

NeuroMolecular Medicine 3/2015 Go to the issue