Skip to main content
Top
Published in: NeuroMolecular Medicine 3/2015

01-09-2015 | Original Paper

Neuronal Network Oscillations in Neurodegenerative Diseases

Authors: Volker Nimmrich, Andreas Draguhn, Nikolai Axmacher

Published in: NeuroMolecular Medicine | Issue 3/2015

Login to get access

Abstract

Cognitive and behavioral acts go along with highly coordinated spatiotemporal activity patterns in neuronal networks. Most of these patterns are synchronized by coherent membrane potential oscillations within and between local networks. By entraining multiple neurons into a common time regime, such network oscillations form a critical interface between cellular activity and large-scale systemic functions. Synaptic integrity is altered in neurodegenerative diseases, and it is likely that this goes along with characteristic changes of coordinated network activity. This notion is supported by EEG recordings from human patients and from different animal models of such disorders. However, our knowledge about the pathophysiology of network oscillations in neurodegenerative diseases is surprisingly incomplete, and increased research efforts are urgently needed. One complicating factor is the pronounced diversity of network oscillations between different brain regions and functional states. Pathological changes must, therefore, be analyzed separately in each condition and affected area. However, cumulative evidence from different diseases may result, in the future, in more unifying “oscillopathy” concepts of neurodegenerative diseases. In this review, we report present evidence for pathological changes of network oscillations in Alzheimer’s disease (AD), one of the most prominent and challenging neurodegenerative disorders. The heterogeneous findings from AD are contrasted to Parkinson’s disease, where motor-related changes in specific frequency bands do already fulfill criteria of a valid biomarker.
Literature
go back to reference Abramov, E., Dolev, I., Fogel, H., Ciccotosto, G. D., Ruff, E., & Slutsky, I. (2009). Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nature Neuroscience, 12, 1567–1576.PubMed Abramov, E., Dolev, I., Fogel, H., Ciccotosto, G. D., Ruff, E., & Slutsky, I. (2009). Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nature Neuroscience, 12, 1567–1576.PubMed
go back to reference Adaya-Villanueva, A., Ordaz, B., Balleza-Tapia, H., Márquez-Ramos, A., & Peña-Ortega, F. (2010). Beta-like hippocampal network activity is differentially affected by amyloid beta peptides. Peptides, 31, 1761–1766.PubMed Adaya-Villanueva, A., Ordaz, B., Balleza-Tapia, H., Márquez-Ramos, A., & Peña-Ortega, F. (2010). Beta-like hippocampal network activity is differentially affected by amyloid beta peptides. Peptides, 31, 1761–1766.PubMed
go back to reference Amatniek, J. C., Hauser, W. A., DelCastillo-Castaneda, C., Jacobs, D. M., Marder, K., Bell, K., et al. (2006). Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia, 47, 867–872.PubMed Amatniek, J. C., Hauser, W. A., DelCastillo-Castaneda, C., Jacobs, D. M., Marder, K., Bell, K., et al. (2006). Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia, 47, 867–872.PubMed
go back to reference Babiloni, C., Binetti, G., Cassetta, E., Cerboneschi, D., Dal Forno, G., Del Percio, C., et al. (2004). Mapping distributed sources of cortical rhythms in mild Alzheimer’s disease. A multicentric EEG study. Neuroimage, 22, 57–67.PubMed Babiloni, C., Binetti, G., Cassetta, E., Cerboneschi, D., Dal Forno, G., Del Percio, C., et al. (2004). Mapping distributed sources of cortical rhythms in mild Alzheimer’s disease. A multicentric EEG study. Neuroimage, 22, 57–67.PubMed
go back to reference Bähner, F., Weiss, E. K., Birke, G., Maier, N., Schmitz, D., Rudolph, U., et al. (2011). Cellular correlate of assembly formation in oscillating hippocampal networks in vitro. Proceedings of the National Academy of Sciences of the United States of America, 108, E607–E616.PubMedCentralPubMed Bähner, F., Weiss, E. K., Birke, G., Maier, N., Schmitz, D., Rudolph, U., et al. (2011). Cellular correlate of assembly formation in oscillating hippocampal networks in vitro. Proceedings of the National Academy of Sciences of the United States of America, 108, E607–E616.PubMedCentralPubMed
go back to reference Bakker, A., Krauss, G. L., Albert, M. S., Speck, C. L., Jones, L. R., Stark, C. E., et al. (2012). Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron, 74, 467–474.PubMedCentralPubMed Bakker, A., Krauss, G. L., Albert, M. S., Speck, C. L., Jones, L. R., Stark, C. E., et al. (2012). Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron, 74, 467–474.PubMedCentralPubMed
go back to reference Bartus, R. T., Dean, R. L, 3rd, Beer, B., & Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 217, 408–414.PubMed Bartus, R. T., Dean, R. L, 3rd, Beer, B., & Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 217, 408–414.PubMed
go back to reference Berger, H. (1929). Über das Elektroenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten, 87, 527–570. Berger, H. (1929). Über das Elektroenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten, 87, 527–570.
go back to reference Besthorn, C., Zerfass, R., Geiger-Kabisch, C., Sattel, H., Daniel, S., Schreiter-Gasser, U., & Förstl, H. (1997). Discrimination of Alzheimer’s disease and normal aging by EEG data. Electroencephalography and Clinical Neurophysiology, 103, 241–248.PubMed Besthorn, C., Zerfass, R., Geiger-Kabisch, C., Sattel, H., Daniel, S., Schreiter-Gasser, U., & Förstl, H. (1997). Discrimination of Alzheimer’s disease and normal aging by EEG data. Electroencephalography and Clinical Neurophysiology, 103, 241–248.PubMed
go back to reference Blatow, M., Rozov, A., Katona, I., Hormuzdi, S. G., Meyer, A. H., Whittington, M. A., et al. (2003). A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron, 38, 805–817.PubMed Blatow, M., Rozov, A., Katona, I., Hormuzdi, S. G., Meyer, A. H., Whittington, M. A., et al. (2003). A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron, 38, 805–817.PubMed
go back to reference Bokde, A. L., Ewers, M., & Hampel, H. (2009). Assessing neuronal networks: understanding Alzheimer’s disease. Progress in Neurobiology, 89, 125–133.PubMed Bokde, A. L., Ewers, M., & Hampel, H. (2009). Assessing neuronal networks: understanding Alzheimer’s disease. Progress in Neurobiology, 89, 125–133.PubMed
go back to reference Bosboom, J. L., Stoffers, D., Stam, C. J., Berendse, H. W., & Wolters, E Ch. (2009). Cholinergic modulation of MEG resting-state oscillatory activity in Parkinson’s disease related dementia. Clinical Neurophysiology, 120, 910–915.PubMed Bosboom, J. L., Stoffers, D., Stam, C. J., Berendse, H. W., & Wolters, E Ch. (2009). Cholinergic modulation of MEG resting-state oscillatory activity in Parkinson’s disease related dementia. Clinical Neurophysiology, 120, 910–915.PubMed
go back to reference Bosboom, J. L., Stoffers, D., Stam, C. J., van Dijk, B. W., Verbunt, J., Berendse, H. W., & Wolters, E Ch. (2006). Resting state oscillatory brain dynamics in Parkinson’s disease: An MEG study. Clinical Neurophysiology, 117, 2521–2531.PubMed Bosboom, J. L., Stoffers, D., Stam, C. J., van Dijk, B. W., Verbunt, J., Berendse, H. W., & Wolters, E Ch. (2006). Resting state oscillatory brain dynamics in Parkinson’s disease: An MEG study. Clinical Neurophysiology, 117, 2521–2531.PubMed
go back to reference Böttger, D., Herrmann, C. S., & von Cramon, D. Y. (2002). Amplitude differences of evoked alpha and gamma oscillations in two different age groups. International Journal of Psychophysiology, 45, 245–251.PubMed Böttger, D., Herrmann, C. S., & von Cramon, D. Y. (2002). Amplitude differences of evoked alpha and gamma oscillations in two different age groups. International Journal of Psychophysiology, 45, 245–251.PubMed
go back to reference Brown, P., & Williams, D. (2005). Basal ganglia local field potential activity: Character and functional significance in the human. Clinical Neurophysiology, 116, 2510–2519.PubMed Brown, P., & Williams, D. (2005). Basal ganglia local field potential activity: Character and functional significance in the human. Clinical Neurophysiology, 116, 2510–2519.PubMed
go back to reference Busche, M. A., Chen, X., Henning, H. A., Reichwald, J., Staufenbiel, M., Sakmann, B., & Konnerth, A. (2012). Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 109, 8740–8745.PubMedCentralPubMed Busche, M. A., Chen, X., Henning, H. A., Reichwald, J., Staufenbiel, M., Sakmann, B., & Konnerth, A. (2012). Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 109, 8740–8745.PubMedCentralPubMed
go back to reference Busche, M. A., Eichhoff, G., Adelsberger, H., Abramowski, D., Wiederhold, K. H., Haass, C., et al. (2008). Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science, 321, 1686–1689.PubMed Busche, M. A., Eichhoff, G., Adelsberger, H., Abramowski, D., Wiederhold, K. H., Haass, C., et al. (2008). Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science, 321, 1686–1689.PubMed
go back to reference Buzsáki, G. (2006). Rhythms of the brain. Oxford, New York: Oxford University Press. Buzsáki, G. (2006). Rhythms of the brain. Oxford, New York: Oxford University Press.
go back to reference Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33, 325–340.PubMed Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33, 325–340.PubMed
go back to reference Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929.PubMed Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929.PubMed
go back to reference Buzsáki, G., & Gage, F. H. (1989). The cholinergic nucleus basalis: A key structure in neocortical arousal. EXS, 57, 159–171.PubMed Buzsáki, G., & Gage, F. H. (1989). The cholinergic nucleus basalis: A key structure in neocortical arousal. EXS, 57, 159–171.PubMed
go back to reference Buzsáki, G., Horvath, Z., Urioste, R., Hetke, J., & Wise, K. (1992). High-frequency network oscillation in the hippocampus. Science, 256, 1025–1027.PubMed Buzsáki, G., Horvath, Z., Urioste, R., Hetke, J., & Wise, K. (1992). High-frequency network oscillation in the hippocampus. Science, 256, 1025–1027.PubMed
go back to reference Bylsma, F. W., Peyser, C. E., Folstein, S. E., Folstein, M. F., Ross, C., & Brandt, J. (1994). EEG power spectra in Huntington’s disease: Clinical and neuropsychological correlates. Neuropsychologia, 32, 137–150.PubMed Bylsma, F. W., Peyser, C. E., Folstein, S. E., Folstein, M. F., Ross, C., & Brandt, J. (1994). EEG power spectra in Huntington’s disease: Clinical and neuropsychological correlates. Neuropsychologia, 32, 137–150.PubMed
go back to reference Cardin, J. A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., et al. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459, 663–667.PubMedCentralPubMed Cardin, J. A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., et al. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459, 663–667.PubMedCentralPubMed
go back to reference Caso, F., Cursi, M., Magnani, G., Fanelli, G., Falautano, M., Comim, G., et al. (2012). Quantitative EEG and LORETA: Valuable tools in discerning FTD from AD? Neurobiology of Aging, 33, 2343–2356.PubMed Caso, F., Cursi, M., Magnani, G., Fanelli, G., Falautano, M., Comim, G., et al. (2012). Quantitative EEG and LORETA: Valuable tools in discerning FTD from AD? Neurobiology of Aging, 33, 2343–2356.PubMed
go back to reference Cea-del Rio, C. A., Lawrence, J. J., Erdelyi, F., Szabo, G., & McBain, C. J. (2011). Cholinergic modulation amplifies the intrinsic oscillatory properties of CA1 hippocampal cholecystokinin-positive interneurons. Journal of Physiology, 589, 609–627.PubMedCentralPubMed Cea-del Rio, C. A., Lawrence, J. J., Erdelyi, F., Szabo, G., & McBain, C. J. (2011). Cholinergic modulation amplifies the intrinsic oscillatory properties of CA1 hippocampal cholecystokinin-positive interneurons. Journal of Physiology, 589, 609–627.PubMedCentralPubMed
go back to reference Celone, K. A., Calhoun, V. D., Dickerson, B. C., Atri, A., Chua, E. F., Miller, S. L., et al. (2006). Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: An independent component analysis. Journal of Neuroscience, 26, 10222–10231.PubMed Celone, K. A., Calhoun, V. D., Dickerson, B. C., Atri, A., Chua, E. F., Miller, S. L., et al. (2006). Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: An independent component analysis. Journal of Neuroscience, 26, 10222–10231.PubMed
go back to reference Chen, C. C., Lin, W. Y., Chan, H. L., Hsu, Y. T., Tu, P. H., Lee, S. T., et al. (2011). Stimulation of the subthalamic region at 20 Hz slows the development of grip force in Parkinson’s disease. Experimental Neurology, 231, 91–96.PubMed Chen, C. C., Lin, W. Y., Chan, H. L., Hsu, Y. T., Tu, P. H., Lee, S. T., et al. (2011). Stimulation of the subthalamic region at 20 Hz slows the development of grip force in Parkinson’s disease. Experimental Neurology, 231, 91–96.PubMed
go back to reference Chen, C. C., Litvak, V., Gilbertson, T., Kühn, A., Lu, C. S., Lee, S. T., et al. (2007). Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Experimental Neurology, 205, 214–221.PubMed Chen, C. C., Litvak, V., Gilbertson, T., Kühn, A., Lu, C. S., Lee, S. T., et al. (2007). Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Experimental Neurology, 205, 214–221.PubMed
go back to reference Chiaramonti, R., Muscas, G. C., Paganini, M., Müller, T. J., Fallgatter, A. J., Versari, A., & Strik, W. K. (1997). Correlations of topographical EEG features with clinical severity in mild and moderate dementia of Alzheimer type. Neuropsychobiology, 36, 153–158.PubMed Chiaramonti, R., Muscas, G. C., Paganini, M., Müller, T. J., Fallgatter, A. J., Versari, A., & Strik, W. K. (1997). Correlations of topographical EEG features with clinical severity in mild and moderate dementia of Alzheimer type. Neuropsychobiology, 36, 153–158.PubMed
go back to reference Claus, J. J., Strijers, R. L., Jonkman, E. J., Ongerboer de Visser, B. W., Jonker, C., Walstra, G. J., et al. (1999). The diagnostic value of electroencephalography in mild senile Alzheimer’s disease. Clinical Neurophysiology, 110, 825–832.PubMed Claus, J. J., Strijers, R. L., Jonkman, E. J., Ongerboer de Visser, B. W., Jonker, C., Walstra, G. J., et al. (1999). The diagnostic value of electroencephalography in mild senile Alzheimer’s disease. Clinical Neurophysiology, 110, 825–832.PubMed
go back to reference Cloud, L. J., Rosenblatt, A., Margolis, R. L., Ross, C. A., Pillai, J. A., Corey-Bloom, J., et al. (2012). Seizures in juvenile Huntington’s disease: Frequency and characterization in a multicenter cohort. Movement Disorders, 27, 1797–1800.PubMed Cloud, L. J., Rosenblatt, A., Margolis, R. L., Ross, C. A., Pillai, J. A., Corey-Bloom, J., et al. (2012). Seizures in juvenile Huntington’s disease: Frequency and characterization in a multicenter cohort. Movement Disorders, 27, 1797–1800.PubMed
go back to reference Cook, I. A., & Leuchter, A. F. (1996). Synaptic dysfunction in Alzheimer’s disease: Clinical assessment using quantitative EEG. Behavioural Brain Research, 78, 15–23.PubMed Cook, I. A., & Leuchter, A. F. (1996). Synaptic dysfunction in Alzheimer’s disease: Clinical assessment using quantitative EEG. Behavioural Brain Research, 78, 15–23.PubMed
go back to reference Cross, A. J. (1990). Serotonin in Alzheimer-type dementia and other dementing illnesses. Annals of the New York Academy of Sciences, 600, 405–415.PubMed Cross, A. J. (1990). Serotonin in Alzheimer-type dementia and other dementing illnesses. Annals of the New York Academy of Sciences, 600, 405–415.PubMed
go back to reference Cummins, T. D., Broughton, M., & Finnigan, S. (2008). Theta oscillations are affected by amnestic mild cognitive impairment and cognitive load. International Journal of Psychophysiology, 70, 75–81.PubMed Cummins, T. D., Broughton, M., & Finnigan, S. (2008). Theta oscillations are affected by amnestic mild cognitive impairment and cognitive load. International Journal of Psychophysiology, 70, 75–81.PubMed
go back to reference Curley, A. A., & Lewis, D. A. (2012). Cortical basket cell dysfunction in schizophrenia. Journal of Physiology, 590, 715–724.PubMedCentralPubMed Curley, A. A., & Lewis, D. A. (2012). Cortical basket cell dysfunction in schizophrenia. Journal of Physiology, 590, 715–724.PubMedCentralPubMed
go back to reference De Felice, F. G., Velasco, P. T., Lambert, M. P., Viola, K., Fernandez, S. J., Ferreira, S. T., & Klein, W. L. (2007). Abeta oligomers induce neuronal oxidative stress through an NMDA receptor-dependent mechanism that is blocked by the Alzheimer’s drug memantine. Journal of Biological Chemistry, 282, 11590–11601.PubMed De Felice, F. G., Velasco, P. T., Lambert, M. P., Viola, K., Fernandez, S. J., Ferreira, S. T., & Klein, W. L. (2007). Abeta oligomers induce neuronal oxidative stress through an NMDA receptor-dependent mechanism that is blocked by the Alzheimer’s drug memantine. Journal of Biological Chemistry, 282, 11590–11601.PubMed
go back to reference de Tommaso, M., De Carlo, F., Difruscolo, O., Massafra, R., Sciruicchio, V., & Bellotti, R. (2003). Detection of subclinical brain electrical activity changes in Huntington’s disease using artificial neural networks. Clinical Neurophysiology, 114, 1237–1245.PubMed de Tommaso, M., De Carlo, F., Difruscolo, O., Massafra, R., Sciruicchio, V., & Bellotti, R. (2003). Detection of subclinical brain electrical activity changes in Huntington’s disease using artificial neural networks. Clinical Neurophysiology, 114, 1237–1245.PubMed
go back to reference Détári, L., Rasmusson, D. D., & Semba, K. (1999). The role of basal forebrain neurons in tonic and phasic activation of the cerebral cortex. Progress in Neurobiology, 58, 249–277.PubMed Détári, L., Rasmusson, D. D., & Semba, K. (1999). The role of basal forebrain neurons in tonic and phasic activation of the cerebral cortex. Progress in Neurobiology, 58, 249–277.PubMed
go back to reference Di Lazzaro, V., Oliviero, A., Pilato, F., Saturno, E., Dileone, M., Marra, C., et al. (2004). Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 75, 555–559.PubMed Di Lazzaro, V., Oliviero, A., Pilato, F., Saturno, E., Dileone, M., Marra, C., et al. (2004). Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 75, 555–559.PubMed
go back to reference Dougherty, J. J., Wu, J., & Nichols, R. A. (2003). Beta-amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. Journal of Neuroscience, 23, 6740–6747.PubMed Dougherty, J. J., Wu, J., & Nichols, R. A. (2003). Beta-amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. Journal of Neuroscience, 23, 6740–6747.PubMed
go back to reference Draguhn, A., Traub, R. D., Schmitz, D., & Jefferys, J. G. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature, 394, 189–192.PubMed Draguhn, A., Traub, R. D., Schmitz, D., & Jefferys, J. G. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature, 394, 189–192.PubMed
go back to reference Dringenberg, H. C. (2000). Alzheimer’s disease: More than a ‘cholinergic disorder’—Evidence that cholinergic–monoaminergic interactions contribute to EEG slowing and dementia. Behavioural Brain Research, 115, 235–249.PubMed Dringenberg, H. C. (2000). Alzheimer’s disease: More than a ‘cholinergic disorder’—Evidence that cholinergic–monoaminergic interactions contribute to EEG slowing and dementia. Behavioural Brain Research, 115, 235–249.PubMed
go back to reference Driver, J. E., Racca, C., Cunningham, M. O., Towers, S. K., Davies, C. H., Whittington, M. A., & LeBeau, F. E. (2007). Impairment of hippocampal gamma-frequency oscillations in vitro in mice overexpressing human amyloid precursor protein (APP). European Journal of Neuroscience, 26, 1280–1288.PubMed Driver, J. E., Racca, C., Cunningham, M. O., Towers, S. K., Davies, C. H., Whittington, M. A., & LeBeau, F. E. (2007). Impairment of hippocampal gamma-frequency oscillations in vitro in mice overexpressing human amyloid precursor protein (APP). European Journal of Neuroscience, 26, 1280–1288.PubMed
go back to reference Düzel, E., Penny, W. D., & Burgess, N. (2010). Brain oscillations and memory. Current Opinion in Neurobiology, 20, 143–149.PubMed Düzel, E., Penny, W. D., & Burgess, N. (2010). Brain oscillations and memory. Current Opinion in Neurobiology, 20, 143–149.PubMed
go back to reference Ego-Stengel, V., & Wilson, M. A. (2010). Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus, 20, 1–10.PubMedCentralPubMed Ego-Stengel, V., & Wilson, M. A. (2010). Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus, 20, 1–10.PubMedCentralPubMed
go back to reference Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2, 704–716.PubMed Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2, 704–716.PubMed
go back to reference Eusebio, A., Chen, C. C., Lu, C. S., Lee, S. T., Tsai, C. H., Limousin, P., et al. (2008). Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson’s disease. Experimental Neurology, 209, 125–130.PubMedCentralPubMed Eusebio, A., Chen, C. C., Lu, C. S., Lee, S. T., Tsai, C. H., Limousin, P., et al. (2008). Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson’s disease. Experimental Neurology, 209, 125–130.PubMedCentralPubMed
go back to reference Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12, 105–118.PubMed Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12, 105–118.PubMed
go back to reference Fell, J., Klaver, P., Elger, C. E., & Fernández, G. (2002). The interaction of rhinal cortex and hippocampus in human declarative memory formation. Reviews in the Neurosciences, 13, 299–312.PubMed Fell, J., Klaver, P., Elger, C. E., & Fernández, G. (2002). The interaction of rhinal cortex and hippocampus in human declarative memory formation. Reviews in the Neurosciences, 13, 299–312.PubMed
go back to reference Fell, J., Staresina, B. P., Do Lam, A. T., Widman, G., Helmstaedter, C., Elger, C. E., & Axmacher, N. (2013). Memory modulation by weak synchronous deep brain stimulation: A pilot study. Brain Stimul, 6, 270–273.PubMed Fell, J., Staresina, B. P., Do Lam, A. T., Widman, G., Helmstaedter, C., Elger, C. E., & Axmacher, N. (2013). Memory modulation by weak synchronous deep brain stimulation: A pilot study. Brain Stimul, 6, 270–273.PubMed
go back to reference Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M., et al. (2009). Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proceedings of the National Academy of Sciences of the United States of America, 106, 7209–7214.PubMedCentralPubMed Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M., et al. (2009). Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proceedings of the National Academy of Sciences of the United States of America, 106, 7209–7214.PubMedCentralPubMed
go back to reference Foffani, G., Priori, A., Egidi, M., Rampini, P., Tamma, F., Caputo, E., et al. (2003). 300-Hz subthalamic oscillations in Parkinson’s disease. Brain, 126, 2153–2163.PubMed Foffani, G., Priori, A., Egidi, M., Rampini, P., Tamma, F., Caputo, E., et al. (2003). 300-Hz subthalamic oscillations in Parkinson’s disease. Brain, 126, 2153–2163.PubMed
go back to reference Frank, M. J. (2006). Hold your horses: A dynamic computational role for the subthalamic nucleus in decision making. Neural Networks, 19, 1120–1136.PubMed Frank, M. J. (2006). Hold your horses: A dynamic computational role for the subthalamic nucleus in decision making. Neural Networks, 19, 1120–1136.PubMed
go back to reference Freund, T. F., & Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6, 347–470.PubMed Freund, T. F., & Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6, 347–470.PubMed
go back to reference Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9, 474–480.PubMed Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9, 474–480.PubMed
go back to reference García-Cabrero, A. M., Guerrero-López, R., Giráldez, B. G., Llorens-Martín, M., Avila, J., Serratosa, J. M., & Sánchez, M. P. (2013). Hyperexcitability and epileptic seizures in a model of frontotemporal dementia. Neurobiology of Diseases, 58, 200–208. García-Cabrero, A. M., Guerrero-López, R., Giráldez, B. G., Llorens-Martín, M., Avila, J., Serratosa, J. M., & Sánchez, M. P. (2013). Hyperexcitability and epileptic seizures in a model of frontotemporal dementia. Neurobiology of Diseases, 58, 200–208.
go back to reference Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G., & Zugaro, M. B. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience, 12, 1222–1223.PubMed Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G., & Zugaro, M. B. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience, 12, 1222–1223.PubMed
go back to reference Goutagny, R., & Krantic, S. (2013). Hippocampal oscillatory activity in Alzheimer’s disease: Toward the identification of early biomarkers? Aging and Disease, 4, 134–140.PubMedCentralPubMed Goutagny, R., & Krantic, S. (2013). Hippocampal oscillatory activity in Alzheimer’s disease: Toward the identification of early biomarkers? Aging and Disease, 4, 134–140.PubMedCentralPubMed
go back to reference Grady, C. L., McIntosh, A. R., Beig, S., Keightley, M. L., Burian, H., & Black, S. E. (2003). Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. Journal of Neuroscience, 23, 986–993.PubMed Grady, C. L., McIntosh, A. R., Beig, S., Keightley, M. L., Burian, H., & Black, S. E. (2003). Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. Journal of Neuroscience, 23, 986–993.PubMed
go back to reference Gregory, R. (2008). Pedunculopontine nucleus stimulation for people with Parkinson’s disease? A clinical perspective. British Journal of Neurosurgery, 22(Suppl 1), S13–S15.PubMed Gregory, R. (2008). Pedunculopontine nucleus stimulation for people with Parkinson’s disease? A clinical perspective. British Journal of Neurosurgery, 22(Suppl 1), S13–S15.PubMed
go back to reference Grillner, S. (2006). Biological pattern generation: The cellular and computational logic of networks in motion. Neuron, 52, 751–766.PubMed Grillner, S. (2006). Biological pattern generation: The cellular and computational logic of networks in motion. Neuron, 52, 751–766.PubMed
go back to reference Gruber, T., Müller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. Journal of Cognitive Neuroscience, 14, 732–744.PubMed Gruber, T., Müller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. Journal of Cognitive Neuroscience, 14, 732–744.PubMed
go back to reference Gruber, T., Müller, M. M., Keil, A., & Elbert, T. (1999). Selective visual–spatial attention alters induced gamma band responses in the human EEG. Clinical Neurophysiology, 110, 2074–2085.PubMed Gruber, T., Müller, M. M., Keil, A., & Elbert, T. (1999). Selective visual–spatial attention alters induced gamma band responses in the human EEG. Clinical Neurophysiology, 110, 2074–2085.PubMed
go back to reference Haier, R. J., Alkire, M. T., White, N. S., Uncapher, M. R., Head, E., Lott, I. T., & Cotman, C. W. (2003). Temporal cortex hypermetabolism in Down syndrome prior to the onset of dementia. Neurology, 61, 1673–1679.PubMed Haier, R. J., Alkire, M. T., White, N. S., Uncapher, M. R., Head, E., Lott, I. T., & Cotman, C. W. (2003). Temporal cortex hypermetabolism in Down syndrome prior to the onset of dementia. Neurology, 61, 1673–1679.PubMed
go back to reference Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends in Neurosciences, 30, 357–364.PubMed Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends in Neurosciences, 30, 357–364.PubMed
go back to reference Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256, 184–185.PubMed Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256, 184–185.PubMed
go back to reference Hatashita, S., & Yamasaki, H. (2013). Diagnosed mild cognitive impairment due to Alzheimer’s disease with PET biomarkers of beta amyloid and neuronal dysfunction. PLoS ONE, 8, e66877.PubMedCentralPubMed Hatashita, S., & Yamasaki, H. (2013). Diagnosed mild cognitive impairment due to Alzheimer’s disease with PET biomarkers of beta amyloid and neuronal dysfunction. PLoS ONE, 8, e66877.PubMedCentralPubMed
go back to reference Hermann, D., Both, M., Ebert, U., Gross, G., Schoemaker, H., Draguhn, A., et al. (2009). Synaptic transmission is impaired prior to plaque formation in amyloid precursor protein-overexpressing mice without altering behaviorally-correlated sharp wave–ripple complexes. Neuroscience, 162, 1081–1090.PubMed Hermann, D., Both, M., Ebert, U., Gross, G., Schoemaker, H., Draguhn, A., et al. (2009). Synaptic transmission is impaired prior to plaque formation in amyloid precursor protein-overexpressing mice without altering behaviorally-correlated sharp wave–ripple complexes. Neuroscience, 162, 1081–1090.PubMed
go back to reference Hermann, D., Mezler, M., Müller, M. K., Wicke, K., Gross, G., Draguhn, A., et al. (2013). Synthetic Aβ oligomers (Aβ(1-42) globulomer) modulate presynaptic calcium currents: Prevention of Aβ-induced synaptic deficits by calcium channel blockers. European Journal of Pharmacology, 702, 44–55.PubMed Hermann, D., Mezler, M., Müller, M. K., Wicke, K., Gross, G., Draguhn, A., et al. (2013). Synthetic Aβ oligomers (Aβ(1-42) globulomer) modulate presynaptic calcium currents: Prevention of Aβ-induced synaptic deficits by calcium channel blockers. European Journal of Pharmacology, 702, 44–55.PubMed
go back to reference Herrmann, C. S., & Demiralp, T. (2005). Human EEG gamma oscillations in neuropsychiatric disorders. Clinical Neurophysiology, 116, 2719–2733.PubMed Herrmann, C. S., & Demiralp, T. (2005). Human EEG gamma oscillations in neuropsychiatric disorders. Clinical Neurophysiology, 116, 2719–2733.PubMed
go back to reference Igarashi, K. M., Lu, L., Colgin, L. L., Moser, M. B., & Moser, E. I. (2014). Coordination of entorhinal–hippocampal ensemble activity during associative learning. Nature, 510, 143–147.PubMed Igarashi, K. M., Lu, L., Colgin, L. L., Moser, M. B., & Moser, E. I. (2014). Coordination of entorhinal–hippocampal ensemble activity during associative learning. Nature, 510, 143–147.PubMed
go back to reference Jelic, V., Blomberg, M., Dierks, T., Basun, H., Shigeta, M., Julin, P., et al. (1998). EEG slowing and cerebrospinal fluid tau levels in patients with cognitive decline. Neuroreport, 9, 157–160.PubMed Jelic, V., Blomberg, M., Dierks, T., Basun, H., Shigeta, M., Julin, P., et al. (1998). EEG slowing and cerebrospinal fluid tau levels in patients with cognitive decline. Neuroreport, 9, 157–160.PubMed
go back to reference Jelic, V., Julin, P., Shigeta, M., Nordberg, A., Lannfelt, L., Winblad, B., & Wahlund, L. O. (1997). Apolipoprotein E epsilon4 allele decreases functional connectivity in Alzheimer’s disease as measured by EEG coherence. Journal of Neurology, Neurosurgery and Psychiatry, 63, 59–65.PubMedCentralPubMed Jelic, V., Julin, P., Shigeta, M., Nordberg, A., Lannfelt, L., Winblad, B., & Wahlund, L. O. (1997). Apolipoprotein E epsilon4 allele decreases functional connectivity in Alzheimer’s disease as measured by EEG coherence. Journal of Neurology, Neurosurgery and Psychiatry, 63, 59–65.PubMedCentralPubMed
go back to reference Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30, 317–324.PubMed Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30, 317–324.PubMed
go back to reference Jeong, J. (2004). EEG dynamics in patients with Alzheimer’s disease. Clinical Neurophysiology, 115, 1490–1505.PubMed Jeong, J. (2004). EEG dynamics in patients with Alzheimer’s disease. Clinical Neurophysiology, 115, 1490–1505.PubMed
go back to reference Jyoti, A., Plano, A., Riedel, G., & Platt, B. (2010). EEG, activity, and sleep architecture in a transgenic AβPPswe/PSEN1A246E Alzheimer’s disease mouse. Journal of Alzheimer’s Disease, 22, 873–887.PubMed Jyoti, A., Plano, A., Riedel, G., & Platt, B. (2010). EEG, activity, and sleep architecture in a transgenic AβPPswe/PSEN1A246E Alzheimer’s disease mouse. Journal of Alzheimer’s Disease, 22, 873–887.PubMed
go back to reference Kaiser, J., Ripper, B., Birbaumer, N., & Lutzenberger, W. (2003). Dynamics of gamma-band activity in human magnetoencephalogram during auditory pattern working memory. Neuroimage, 20, 816–827.PubMed Kaiser, J., Ripper, B., Birbaumer, N., & Lutzenberger, W. (2003). Dynamics of gamma-band activity in human magnetoencephalogram during auditory pattern working memory. Neuroimage, 20, 816–827.PubMed
go back to reference Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., et al. (2003). APP processing and synaptic function. Neuron, 37, 925–937.PubMed Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., et al. (2003). APP processing and synaptic function. Neuron, 37, 925–937.PubMed
go back to reference Kawaguchi, Y., & Kondo, S. (2002). Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. Journal of Neurocytology, 31, 277–287.PubMed Kawaguchi, Y., & Kondo, S. (2002). Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. Journal of Neurocytology, 31, 277–287.PubMed
go back to reference Kelly, B. L., & Ferreira, A. (2006). Beta-Amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. Journal of Biological Chemistry, 281, 28079–28089.PubMed Kelly, B. L., & Ferreira, A. (2006). Beta-Amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. Journal of Biological Chemistry, 281, 28079–28089.PubMed
go back to reference Kelly, B. L., & Ferreira, A. (2007). Beta-amyloid disrupted synaptic vesicle endocytosis in cultured hippocampal neurons. Neuroscience, 147, 60–70.PubMedCentralPubMed Kelly, B. L., & Ferreira, A. (2007). Beta-amyloid disrupted synaptic vesicle endocytosis in cultured hippocampal neurons. Neuroscience, 147, 60–70.PubMedCentralPubMed
go back to reference Klausberger, T. (2009). GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. European Journal of Neuroscience, 30, 947–957.PubMed Klausberger, T. (2009). GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. European Journal of Neuroscience, 30, 947–957.PubMed
go back to reference Klausberger, T., & Somogyi, P. (2008). Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science, 321, 53–57.PubMedCentralPubMed Klausberger, T., & Somogyi, P. (2008). Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science, 321, 53–57.PubMedCentralPubMed
go back to reference Kotzauer, N., & Katz, R. (2013). Regulatory innovation and drug development for early-stage Alzheimer‘s disease. New England Journal of Medicine, 368, 1169–1171. Kotzauer, N., & Katz, R. (2013). Regulatory innovation and drug development for early-stage Alzheimer‘s disease. New England Journal of Medicine, 368, 1169–1171.
go back to reference Kühn, A. A., Trottenberg, T., Kivi, A., Kupsch, A., Schneider, G. H., & Brown, P. (2005). The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease. Experimental Neurology, 194, 212–220.PubMed Kühn, A. A., Trottenberg, T., Kivi, A., Kupsch, A., Schneider, G. H., & Brown, P. (2005). The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease. Experimental Neurology, 194, 212–220.PubMed
go back to reference Kumar-Singh, S., Dewachter, I., Moechars, D., Lübke, U., De Jonghe, C., Ceuterick, C., et al. (2000). Behavioral disturbances without amyloid deposits in mice overexpressing human amyloid precursor protein with Flemish (A692G) or Dutch (E693Q) mutation. Neurobiology of Diseases, 7, 9–22. Kumar-Singh, S., Dewachter, I., Moechars, D., Lübke, U., De Jonghe, C., Ceuterick, C., et al. (2000). Behavioral disturbances without amyloid deposits in mice overexpressing human amyloid precursor protein with Flemish (A692G) or Dutch (E693Q) mutation. Neurobiology of Diseases, 7, 9–22.
go back to reference Lacor, P. N., Bruniel, M. C., Furlow, P. W., Sanz Clemente, A., Velasco, P. T., Wood, M., et al. (2007). Aß oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. Journal of Neuroscience, 27, 796–807.PubMed Lacor, P. N., Bruniel, M. C., Furlow, P. W., Sanz Clemente, A., Velasco, P. T., Wood, M., et al. (2007). Aß oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. Journal of Neuroscience, 27, 796–807.PubMed
go back to reference LaFerla, F. M. (2010). Pathways linking Abeta and tau pathologies. Biochemical Society Transactions, 38, 993–995.PubMed LaFerla, F. M. (2010). Pathways linking Abeta and tau pathologies. Biochemical Society Transactions, 38, 993–995.PubMed
go back to reference LaFerla, F. M., Tinkle, B. T., Bieberich, C. J., Haudenschild, C. C., & Jay, G. (1995). The Alzheimer’s A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nature Genetics, 9, 21–30.PubMed LaFerla, F. M., Tinkle, B. T., Bieberich, C. J., Haudenschild, C. C., & Jay, G. (1995). The Alzheimer’s A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nature Genetics, 9, 21–30.PubMed
go back to reference Lalonde, R., Dumont, M., Staufenbiel, M., & Strazielle, C. (2005). Neurobehavioral characterization of APP23 transgenic mice with the SHIRPA primary screen. Behavioural Brain Research, 157, 91–98.PubMed Lalonde, R., Dumont, M., Staufenbiel, M., & Strazielle, C. (2005). Neurobehavioral characterization of APP23 transgenic mice with the SHIRPA primary screen. Behavioural Brain Research, 157, 91–98.PubMed
go back to reference Larner, A. J. (2010). Epileptic seizures in AD patients. Neuromolecular Medicine, 12, 71–77.PubMed Larner, A. J. (2010). Epileptic seizures in AD patients. Neuromolecular Medicine, 12, 71–77.PubMed
go back to reference Lasztóczi, B., & Klausberger, T. (2014). Layer-specific GABAergic control of distinct gamma oscillations in the CA1 hippocampus. Neuron, 81, 1126–1139.PubMed Lasztóczi, B., & Klausberger, T. (2014). Layer-specific GABAergic control of distinct gamma oscillations in the CA1 hippocampus. Neuron, 81, 1126–1139.PubMed
go back to reference Lee, H., Fell, J., & Axmacher, N. (2013). Electrical engram: How deep brain stimulation affects memory. Trends in Cognitive Sciences, 17, 574–584.PubMed Lee, H., Fell, J., & Axmacher, N. (2013). Electrical engram: How deep brain stimulation affects memory. Trends in Cognitive Sciences, 17, 574–584.PubMed
go back to reference Lewis, D. A., Curley, A. A., Glausier, J. R., & Volk, D. W. (2012). Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends in Neurosciences, 35, 57–67.PubMedCentralPubMed Lewis, D. A., Curley, A. A., Glausier, J. R., & Volk, D. W. (2012). Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends in Neurosciences, 35, 57–67.PubMedCentralPubMed
go back to reference Lindau, M., Jelic, V., Johansson, S. E., Andersen, C., Wahlund, L. O., & Almkvist, O. (2003). Quantitative EEG abnormalities and cognitive dysfunctions in frontotemporal dementia and Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 15, 106–114.PubMed Lindau, M., Jelic, V., Johansson, S. E., Andersen, C., Wahlund, L. O., & Almkvist, O. (2003). Quantitative EEG abnormalities and cognitive dysfunctions in frontotemporal dementia and Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 15, 106–114.PubMed
go back to reference Locatelli, T., Cursi, M., Liberati, D., Franceschi, M., & Comi, G. (1998). EEG coherence in Alzheimer’s disease. Electroencephalography and Clinical Neurophysiology, 106, 229–237.PubMed Locatelli, T., Cursi, M., Liberati, D., Franceschi, M., & Comi, G. (1998). EEG coherence in Alzheimer’s disease. Electroencephalography and Clinical Neurophysiology, 106, 229–237.PubMed
go back to reference López-Azcárate, J., Tainta, M., Rodríguez-Oroz, M. C., Valencia, M., González, R., Guridi, J., et al. (2010). Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. Journal of Neuroscience, 30, 6667–6677.PubMed López-Azcárate, J., Tainta, M., Rodríguez-Oroz, M. C., Valencia, M., González, R., Guridi, J., et al. (2010). Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. Journal of Neuroscience, 30, 6667–6677.PubMed
go back to reference Lozano, A. M., & Lipsman, N. (2013). Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron, 77, 406–424.PubMed Lozano, A. M., & Lipsman, N. (2013). Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron, 77, 406–424.PubMed
go back to reference Lustig, C., Snyder, A. Z., Bhakta, M., O’Brien, K. C., McAvoy, M., Raichle, M. E., et al. (2003). Functional deactivations: Change with age and dementia of the Alzheimer type. Proceedings of the National Academy of Sciences of the United States of America, 100, 14504–14509.PubMedCentralPubMed Lustig, C., Snyder, A. Z., Bhakta, M., O’Brien, K. C., McAvoy, M., Raichle, M. E., et al. (2003). Functional deactivations: Change with age and dementia of the Alzheimer type. Proceedings of the National Academy of Sciences of the United States of America, 100, 14504–14509.PubMedCentralPubMed
go back to reference Mann, E. O., & Paulsen, O. (2007). Role of GABAergic inhibition in hippocampal network oscillations. Trends in Neurosciences, 30, 343–349.PubMed Mann, E. O., & Paulsen, O. (2007). Role of GABAergic inhibition in hippocampal network oscillations. Trends in Neurosciences, 30, 343–349.PubMed
go back to reference Mendez, M., & Lim, G. (2003). Seizures in elderly patients with dementia: Epidemiology and management. Drugs and Aging, 20, 791–803.PubMed Mendez, M., & Lim, G. (2003). Seizures in elderly patients with dementia: Epidemiology and management. Drugs and Aging, 20, 791–803.PubMed
go back to reference Metherate, R., Cox, C. L., & Ashe, J. H. (1992). Cellular bases of neocortical activation: Modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. Journal of Neuroscience, 12, 4701–4711.PubMed Metherate, R., Cox, C. L., & Ashe, J. H. (1992). Cellular bases of neocortical activation: Modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. Journal of Neuroscience, 12, 4701–4711.PubMed
go back to reference Mezler, M., Barghorn, S., Schoemaker, H., Gross, G., & Nimmrich, V. (2012). A β-amyloid oligomer directly modulates P/Q-type calcium currents in Xenopus oocytes. British Journal of Pharmacology, 165, 1572–1583.PubMedCentralPubMed Mezler, M., Barghorn, S., Schoemaker, H., Gross, G., & Nimmrich, V. (2012). A β-amyloid oligomer directly modulates P/Q-type calcium currents in Xenopus oocytes. British Journal of Pharmacology, 165, 1572–1583.PubMedCentralPubMed
go back to reference Miller, S. L., Celone, K., DePeau, K., Diamond, E., Dickerson, B. C., Rentz, D., et al. (2008). Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proceedings of the National Academy of Sciences of the United States of America, 105, 2181–2186.PubMedCentralPubMed Miller, S. L., Celone, K., DePeau, K., Diamond, E., Dickerson, B. C., Rentz, D., et al. (2008). Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proceedings of the National Academy of Sciences of the United States of America, 105, 2181–2186.PubMedCentralPubMed
go back to reference Minkeviciene, R., Rheims, S., Dobszay, M. B., Zilberter, M., Hartikainen, J., Fülöp, L., et al. (2009). Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. Journal of Neuroscience, 29, 3453–3462.PubMed Minkeviciene, R., Rheims, S., Dobszay, M. B., Zilberter, M., Hartikainen, J., Fülöp, L., et al. (2009). Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. Journal of Neuroscience, 29, 3453–3462.PubMed
go back to reference Moechars, D., Lorent, K., & Van Leuven, F. (1999). Premature death in transgenic mice that overexpress a mutant amyloid precursor protein is preceded by severe neurodegeneration and apoptosis. Neuroscience, 91, 819–830.PubMed Moechars, D., Lorent, K., & Van Leuven, F. (1999). Premature death in transgenic mice that overexpress a mutant amyloid precursor protein is preceded by severe neurodegeneration and apoptosis. Neuroscience, 91, 819–830.PubMed
go back to reference Mondadori, C. R., Buchmann, A., Mustovic, H., Schmidt, C. F., Boesiger, P., Nitsch, R. M., et al. (2006). Enhanced brain activity may precede the diagnosis of Alzheimer’s disease by 30 years. Brain, 129, 2908–2922.PubMed Mondadori, C. R., Buchmann, A., Mustovic, H., Schmidt, C. F., Boesiger, P., Nitsch, R. M., et al. (2006). Enhanced brain activity may precede the diagnosis of Alzheimer’s disease by 30 years. Brain, 129, 2908–2922.PubMed
go back to reference Montez, T., Poil, S. S., Jones, B. F., Manshanden, I., Verbunt, J. P., van Dijk, B. W., et al. (2009). Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 106, 1614–1619.PubMedCentralPubMed Montez, T., Poil, S. S., Jones, B. F., Manshanden, I., Verbunt, J. P., van Dijk, B. W., et al. (2009). Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 106, 1614–1619.PubMedCentralPubMed
go back to reference Montplaisir, J., Petit, D., Gauthier, S., Gaudreau, H., & Décary, A. (1998). Sleep disturbances and eeg slowing in Alzheimer’s disease. Sleep Research Online, 1, 147–151.PubMed Montplaisir, J., Petit, D., Gauthier, S., Gaudreau, H., & Décary, A. (1998). Sleep disturbances and eeg slowing in Alzheimer’s disease. Sleep Research Online, 1, 147–151.PubMed
go back to reference Moraes Wdos, S., Poyares, D. R., Guilleminault, C., Ramos, L. R., Bertolucci, P. H., & Tufik, S. (2006). The effect of donepezil on sleep and REM sleep EEG in patients with Alzheimer disease: A double-blind placebo-controlled study. Sleep, 29, 199–205.PubMed Moraes Wdos, S., Poyares, D. R., Guilleminault, C., Ramos, L. R., Bertolucci, P. H., & Tufik, S. (2006). The effect of donepezil on sleep and REM sleep EEG in patients with Alzheimer disease: A double-blind placebo-controlled study. Sleep, 29, 199–205.PubMed
go back to reference Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., et al. (1998). Frontotemporal lobar degeneration. A consensus on clinical diagnostic criteria. Neurology, 51, 1546–1554.PubMed Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., et al. (1998). Frontotemporal lobar degeneration. A consensus on clinical diagnostic criteria. Neurology, 51, 1546–1554.PubMed
go back to reference Nimmrich, V., & Ebert, U. (2009). Is Alzheimer’s disease a result of presynaptic failure? Synaptic dysfunctions induced by oligomeric beta-amyloid. Reviews in the Neurosciences, 20, 1–12.PubMed Nimmrich, V., & Ebert, U. (2009). Is Alzheimer’s disease a result of presynaptic failure? Synaptic dysfunctions induced by oligomeric beta-amyloid. Reviews in the Neurosciences, 20, 1–12.PubMed
go back to reference Nimmrich, V., Grimm, C., Draguhn, A., Barghorn, S., Lehmann, A., Schoemaker, H., et al. (2008). Amyloid ß oligomers (Aß 1-42 globulomer) suppress spontaneous synaptic activity by inhibition of P/Q calcium currents. Journal of Neuroscience, 28, 788–797.PubMed Nimmrich, V., Grimm, C., Draguhn, A., Barghorn, S., Lehmann, A., Schoemaker, H., et al. (2008). Amyloid ß oligomers (Aß 1-42 globulomer) suppress spontaneous synaptic activity by inhibition of P/Q calcium currents. Journal of Neuroscience, 28, 788–797.PubMed
go back to reference Nimmrich, V., Maier, N., Schmitz, D., & Draguhn, A. (2005). Induced sharp wave–ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices. Journal of Physiology, 563, 663–670.PubMedCentralPubMed Nimmrich, V., Maier, N., Schmitz, D., & Draguhn, A. (2005). Induced sharp wave–ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices. Journal of Physiology, 563, 663–670.PubMedCentralPubMed
go back to reference Nishida, K., Yoshimura, M., Isotani, T., Yoshida, T., Kitaura, Y., Saito, A., et al. (2011). Differences in quantitative EEG between frontotemporal dementia and Alzheimer’s disease as revealed by LORETA. Clinical Neurophysiology, 122, 1718–1725.PubMed Nishida, K., Yoshimura, M., Isotani, T., Yoshida, T., Kitaura, Y., Saito, A., et al. (2011). Differences in quantitative EEG between frontotemporal dementia and Alzheimer’s disease as revealed by LORETA. Clinical Neurophysiology, 122, 1718–1725.PubMed
go back to reference Osipova, D., Pekkonen, E., & Ahveninen, J. (2006). Enhanced magnetic auditory steady-state response in early Alzheimer’s disease. Clinical Neurophysiology, 117, 1990–1995.PubMed Osipova, D., Pekkonen, E., & Ahveninen, J. (2006). Enhanced magnetic auditory steady-state response in early Alzheimer’s disease. Clinical Neurophysiology, 117, 1990–1995.PubMed
go back to reference Painold, A., Anderer, P., Holl, A. K., Letmaier, M., Saletu-Zyhlarz, G. M., Saletu, B., & Bonelli, R. M. (2011). EEG low-resolution brain electromagnetic tomography (LORETA) in Huntington’s disease. Journal of Neurology, 258, 840–854.PubMed Painold, A., Anderer, P., Holl, A. K., Letmaier, M., Saletu-Zyhlarz, G. M., Saletu, B., & Bonelli, R. M. (2011). EEG low-resolution brain electromagnetic tomography (LORETA) in Huntington’s disease. Journal of Neurology, 258, 840–854.PubMed
go back to reference Palop, J. J., Chin, J., Roberson, E. D., Wang, J., Thwin, M. T., Bien-Ly, N., et al. (2007). Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron, 55, 697–711.PubMed Palop, J. J., Chin, J., Roberson, E. D., Wang, J., Thwin, M. T., Bien-Ly, N., et al. (2007). Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron, 55, 697–711.PubMed
go back to reference Palop, J. J., & Mucke, L. (2009). Epilepsy and cognitive impairments in Alzheimer Disease. Archives of Neurology, 66, 435–440.PubMedCentralPubMed Palop, J. J., & Mucke, L. (2009). Epilepsy and cognitive impairments in Alzheimer Disease. Archives of Neurology, 66, 435–440.PubMedCentralPubMed
go back to reference Palop, J. J., & Mucke, L. (2010). Synaptic depression and aberrant excitatory network activity in Alzheimer’s disease: Two faces of the same coin? Neuromolecular. Med, 12, 48–55. Palop, J. J., & Mucke, L. (2010). Synaptic depression and aberrant excitatory network activity in Alzheimer’s disease: Two faces of the same coin? Neuromolecular. Med, 12, 48–55.
go back to reference Peña-Ortega, F., & Bernal-Pedraza, R. (2012). Amyloid Beta Peptide slows down sensory-induced hippocampal oscillations. International Journal of Peptides, 2012, 236289.PubMedCentralPubMed Peña-Ortega, F., & Bernal-Pedraza, R. (2012). Amyloid Beta Peptide slows down sensory-induced hippocampal oscillations. International Journal of Peptides, 2012, 236289.PubMedCentralPubMed
go back to reference Persson, J., Lind, J., Larsson, A., Ingvar, M., Sleegers, K., Van Broeckhoven, C., et al. (2008). Altered deactivation in individuals with genetic risk for Alzheimer’s disease. Neuropsychologia, 46, 1679–1687.PubMed Persson, J., Lind, J., Larsson, A., Ingvar, M., Sleegers, K., Van Broeckhoven, C., et al. (2008). Altered deactivation in individuals with genetic risk for Alzheimer’s disease. Neuropsychologia, 46, 1679–1687.PubMed
go back to reference Petit, D., Lorrain, D., Gauthier, S., & Montplaisir, J. (1993). Regional spectral analysis of the REM sleep EEG in mild to moderate Alzheimer’s disease. Neurobiology of Aging, 14, 141–145.PubMed Petit, D., Lorrain, D., Gauthier, S., & Montplaisir, J. (1993). Regional spectral analysis of the REM sleep EEG in mild to moderate Alzheimer’s disease. Neurobiology of Aging, 14, 141–145.PubMed
go back to reference Pignatelli, M., Lebreton, F., Cho, Y. H., & Leinekugel, X. (2012). “Ectopic” theta oscillations and interictal activity during slow-wave state in the R6/1 mouse model of Huntington’s disease. Neurobiology of Diseases, 48, 409–417. Pignatelli, M., Lebreton, F., Cho, Y. H., & Leinekugel, X. (2012). “Ectopic” theta oscillations and interictal activity during slow-wave state in the R6/1 mouse model of Huntington’s disease. Neurobiology of Diseases, 48, 409–417.
go back to reference Pihlajamäki, M., DePeau, K. M., Blacker, D., & Sperling, R. A. (2008). Impaired medial temporal repetition suppression is related to failure of parietal deactivation in Alzheimer disease. The American Journal of Geriatric Psychiatry, 16, 283–292.PubMed Pihlajamäki, M., DePeau, K. M., Blacker, D., & Sperling, R. A. (2008). Impaired medial temporal repetition suppression is related to failure of parietal deactivation in Alzheimer disease. The American Journal of Geriatric Psychiatry, 16, 283–292.PubMed
go back to reference Pijnenburg, Y. A., Strijers, R. L., Made, Y. V., van der Flier, W. M., Scheltens, P., & Stam, C. J. (2008). Investigation of resting-state EEG functional connectivity in frontotemporal lobar degeneration. Clinical Neurophysiology, 119, 1732–1738.PubMed Pijnenburg, Y. A., Strijers, R. L., Made, Y. V., van der Flier, W. M., Scheltens, P., & Stam, C. J. (2008). Investigation of resting-state EEG functional connectivity in frontotemporal lobar degeneration. Clinical Neurophysiology, 119, 1732–1738.PubMed
go back to reference Platt, B., Drever, B., Koss, D., Stoppelkamp, S., Jyoti, A., Plano, A., et al. (2011). Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1. PLoS ONE, 6, e27068.PubMedCentralPubMed Platt, B., Drever, B., Koss, D., Stoppelkamp, S., Jyoti, A., Plano, A., et al. (2011). Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1. PLoS ONE, 6, e27068.PubMedCentralPubMed
go back to reference Polanía, R., Nitsche, M. A., Korman, C., Batsikadze, G., & Paulus, W. (2012). The importance of timing in segregated theta phase-coupling for cognitive performance. Current Biology, 22, 1314–1318.PubMed Polanía, R., Nitsche, M. A., Korman, C., Batsikadze, G., & Paulus, W. (2012). The importance of timing in segregated theta phase-coupling for cognitive performance. Current Biology, 22, 1314–1318.PubMed
go back to reference Ponomareva, N., Klyushnikov, S., Abramycheva, N., Malina, D., Scheglova, N., Fokin, V., et al. (2014). Alpha-theta border EEG abnormalities in preclinical Huntington’s disease. Journal of the Neurological Sciences, 344, 114–120.PubMed Ponomareva, N., Klyushnikov, S., Abramycheva, N., Malina, D., Scheglova, N., Fokin, V., et al. (2014). Alpha-theta border EEG abnormalities in preclinical Huntington’s disease. Journal of the Neurological Sciences, 344, 114–120.PubMed
go back to reference Pooler, A. M., Noble, W., & Hanger, D. P. (2014). A role for tau at the synapse in Alzheimer’s disease pathogenesis. Neuropharmacology, 76(Pt A), 1–8.PubMed Pooler, A. M., Noble, W., & Hanger, D. P. (2014). A role for tau at the synapse in Alzheimer’s disease pathogenesis. Neuropharmacology, 76(Pt A), 1–8.PubMed
go back to reference Prichep, L. S. (2007). Quantitative EEG and electromagnetic brain imaging in aging and in the evolution of dementia. Annals of the New York Academy of Sciences, 1097, 156–167.PubMed Prichep, L. S. (2007). Quantitative EEG and electromagnetic brain imaging in aging and in the evolution of dementia. Annals of the New York Academy of Sciences, 1097, 156–167.PubMed
go back to reference Rabinowicz, A. L., Starkstein, S. E., Leiguarda, R. C., & Coleman, A. E. (2000). Transient epileptic amnesia in dementia: A treatable unrecognized cause of episodic amnestic wandering. Alzheimer Disease and Associated Disorders, 14, 231–233.PubMed Rabinowicz, A. L., Starkstein, S. E., Leiguarda, R. C., & Coleman, A. E. (2000). Transient epileptic amnesia in dementia: A treatable unrecognized cause of episodic amnestic wandering. Alzheimer Disease and Associated Disorders, 14, 231–233.PubMed
go back to reference Ramsden, M., Henderson, Z., & Pearson, H. A. (2002). Modulation of Ca2+ channel currents in primary cultures of rat cortical neurones by amyloid beta protein (1–40) is dependent on solubility status. Brain Research, 956, 254–261.PubMed Ramsden, M., Henderson, Z., & Pearson, H. A. (2002). Modulation of Ca2+ channel currents in primary cultures of rat cortical neurones by amyloid beta protein (1–40) is dependent on solubility status. Brain Research, 956, 254–261.PubMed
go back to reference Ray, P. G., & Jackson, W. J. (1991). Lesions of nucleus basalis alter ChAT activity and EEG in rat frontal neocortex. Electroencephalography and Clinical Neurophysiology, 79, 62–68.PubMed Ray, P. G., & Jackson, W. J. (1991). Lesions of nucleus basalis alter ChAT activity and EEG in rat frontal neocortex. Electroencephalography and Clinical Neurophysiology, 79, 62–68.PubMed
go back to reference Ray, N. J., Jenkinson, N., Wang, S., Holland, P., Brittain, J. S., Joint, C., et al. (2008). Local field potential beta activity in the subthalamic nucleus of patients with Parkinson’s disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Experimental Neurology, 213, 108–113.PubMed Ray, N. J., Jenkinson, N., Wang, S., Holland, P., Brittain, J. S., Joint, C., et al. (2008). Local field potential beta activity in the subthalamic nucleus of patients with Parkinson’s disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Experimental Neurology, 213, 108–113.PubMed
go back to reference Ribary, U., Ioannides, A. A., Singh, K. D., Hasson, R., Bolton, J. P., Lado, F., et al. (1991). Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proceedings of the National Academy of Sciences of the United States of America, 88, 11037–11041.PubMedCentralPubMed Ribary, U., Ioannides, A. A., Singh, K. D., Hasson, R., Bolton, J. P., Lado, F., et al. (1991). Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proceedings of the National Academy of Sciences of the United States of America, 88, 11037–11041.PubMedCentralPubMed
go back to reference Rodriguez, G., Copello, F., Vitali, P., Perego, G., & Nobili, F. (1999). EEG spectral profile to stage Alzheimer’s disease. Clinical Neurophysiology, 110, 1831–1837.PubMed Rodriguez, G., Copello, F., Vitali, P., Perego, G., & Nobili, F. (1999). EEG spectral profile to stage Alzheimer’s disease. Clinical Neurophysiology, 110, 1831–1837.PubMed
go back to reference Romanelli, M. F., Morris, J. C., Ashkin, K., & Coben, L. A. (1990). Advanced Alzheimer’s disease is a risk factor for late-onset seizures. Archives of Neurology, 47, 847–850.PubMed Romanelli, M. F., Morris, J. C., Ashkin, K., & Coben, L. A. (1990). Advanced Alzheimer’s disease is a risk factor for late-onset seizures. Archives of Neurology, 47, 847–850.PubMed
go back to reference Rombouts, S. A., Barkhof, F., Goekoop, R., Stam, C. J., & Scheltens, P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: An fMRI study. Human Brain Mapping, 26, 231–239.PubMed Rombouts, S. A., Barkhof, F., Goekoop, R., Stam, C. J., & Scheltens, P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: An fMRI study. Human Brain Mapping, 26, 231–239.PubMed
go back to reference Rosen, H. J., Hartikainen, K. M., Jagust, W., Kramer, J. H., Reed, B. R., Cummings, J. L., et al. (2002). Utility of clinical criteria in differentiating frontotemporal lobar degeneration (FTLD) from AD. Neurology, 58, 1608–1615.PubMed Rosen, H. J., Hartikainen, K. M., Jagust, W., Kramer, J. H., Reed, B. R., Cummings, J. L., et al. (2002). Utility of clinical criteria in differentiating frontotemporal lobar degeneration (FTLD) from AD. Neurology, 58, 1608–1615.PubMed
go back to reference Sanchez, P. E., Zhu, L., Verret, L., Vossel, K. A., Orr, A. G., Cirrito, J. R., et al. (2012). Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proceedings of the National Academy of Sciences of the United States of America, 109, E2895–E2903.PubMedCentralPubMed Sanchez, P. E., Zhu, L., Verret, L., Vossel, K. A., Orr, A. G., Cirrito, J. R., et al. (2012). Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proceedings of the National Academy of Sciences of the United States of America, 109, E2895–E2903.PubMedCentralPubMed
go back to reference Schlingloff, D., Káli, S., Freund, T. F., Hajos, N., & Gulyás, A. I. (2014). Mechanisms of sharp wave initiation and ripple generation. Journal of Neuroscience, 34, 11385–11398.PubMed Schlingloff, D., Káli, S., Freund, T. F., Hajos, N., & Gulyás, A. I. (2014). Mechanisms of sharp wave initiation and ripple generation. Journal of Neuroscience, 34, 11385–11398.PubMed
go back to reference Schmitz, D., Fisahn, A., Draguhn, A., Buhl, E. H., Petrasch-Parwez, E., Dermietzel, R., et al. (2001). Axo-axonal coupling. A novel mechanism for ultrafast neuronal communication. Neuron, 31, 831–840.PubMed Schmitz, D., Fisahn, A., Draguhn, A., Buhl, E. H., Petrasch-Parwez, E., Dermietzel, R., et al. (2001). Axo-axonal coupling. A novel mechanism for ultrafast neuronal communication. Neuron, 31, 831–840.PubMed
go back to reference Schnitzler, A., & Gross, J. (2005). Normal and pathological oscillatory communication in the brain. Nature Reviews Neuroscience, 6, 285–296.PubMed Schnitzler, A., & Gross, J. (2005). Normal and pathological oscillatory communication in the brain. Nature Reviews Neuroscience, 6, 285–296.PubMed
go back to reference Schnitzler, A., Timmermann, L., & Gross, J. (2006). Physiological and pathological oscillatory networks in the human motor system. Journal of Physiology-Paris, 99, 3–7. Schnitzler, A., Timmermann, L., & Gross, J. (2006). Physiological and pathological oscillatory networks in the human motor system. Journal of Physiology-Paris, 99, 3–7.
go back to reference Scott, L., Feng, J., Kiss, T., Needle, E., Atchison, K., Kawabe, T. T., et al. (2012). Age-dependent disruption in hippocampal theta oscillation in amyloid-β overproducing transgenic mice. Neurobiology of Aging, 33, 1481.e13–1481.e23. Scott, L., Feng, J., Kiss, T., Needle, E., Atchison, K., Kawabe, T. T., et al. (2012). Age-dependent disruption in hippocampal theta oscillation in amyloid-β overproducing transgenic mice. Neurobiology of Aging, 33, 1481.e13–1481.e23.
go back to reference Scott, D. F., Heathfield, K. W., Toone, B., & Margerison, J. H. (1972). The EEG in Huntington’s chorea: A clinical and neuropathological study. Journal of Neurology, Neurosurgery and Psychiatry, 35, 97–102.PubMedCentralPubMed Scott, D. F., Heathfield, K. W., Toone, B., & Margerison, J. H. (1972). The EEG in Huntington’s chorea: A clinical and neuropathological study. Journal of Neurology, Neurosurgery and Psychiatry, 35, 97–102.PubMedCentralPubMed
go back to reference Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62, 42–52.PubMedCentralPubMed Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62, 42–52.PubMedCentralPubMed
go back to reference Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science, 298, 789–791.PubMed Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science, 298, 789–791.PubMed
go back to reference Shah, M., & Catafau, A. M. (2014). Molecular imaging insights into neurodegeneration: Focus on tau PET radiotracers. Journal of Nuclear Medicine, 55, 871–874. Shah, M., & Catafau, A. M. (2014). Molecular imaging insights into neurodegeneration: Focus on tau PET radiotracers. Journal of Nuclear Medicine, 55, 871–874.
go back to reference Shankar, G. M., Bloodgood, B. L., Townsend, M., Walsh, D. M., Selkoe, D. J., & Sabatini, B. L. (2007). Natural oligomers of the Alzheimer Amyloid-ß protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signalling pathway. Journal of Neuroscience, 27, 2866–2875.PubMed Shankar, G. M., Bloodgood, B. L., Townsend, M., Walsh, D. M., Selkoe, D. J., & Sabatini, B. L. (2007). Natural oligomers of the Alzheimer Amyloid-ß protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signalling pathway. Journal of Neuroscience, 27, 2866–2875.PubMed
go back to reference Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13, 121–134.PubMed Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13, 121–134.PubMed
go back to reference Simon, A., Traub, R. D., Vladimirov, N., Jenkins, A., Nicholson, C., Whittaker, R. G., et al. (2014). Gap junction networks can generate both ripple-like and fast ripple-like oscillations. European Journal of Neuroscience, 39, 46–60.PubMedCentralPubMed Simon, A., Traub, R. D., Vladimirov, N., Jenkins, A., Nicholson, C., Whittaker, R. G., et al. (2014). Gap junction networks can generate both ripple-like and fast ripple-like oscillations. European Journal of Neuroscience, 39, 46–60.PubMedCentralPubMed
go back to reference Snyder, E. M., Nong, Y., Almeida, C. G., Paul, S., Moran, T., Choi, E. Y., et al. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neuroscience, 8, 1051–1058.PubMed Snyder, E. M., Nong, Y., Almeida, C. G., Paul, S., Moran, T., Choi, E. Y., et al. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neuroscience, 8, 1051–1058.PubMed
go back to reference Sperfeld, A. D., Collatz, M. B., Baier, H., Palmbach, M., Storch, A., Schwarz, J., et al. (1999). FTDP-17: An early-onset phenotype with parkinsonism and epileptic seizures caused by a novel mutation. Annals of Neurology, 46, 708–715.PubMed Sperfeld, A. D., Collatz, M. B., Baier, H., Palmbach, M., Storch, A., Schwarz, J., et al. (1999). FTDP-17: An early-onset phenotype with parkinsonism and epileptic seizures caused by a novel mutation. Annals of Neurology, 46, 708–715.PubMed
go back to reference Sperling, R. (2007). Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer’s disease. Annals of the New York Academy of Sciences, 1097, 146–155.PubMed Sperling, R. (2007). Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer’s disease. Annals of the New York Academy of Sciences, 1097, 146–155.PubMed
go back to reference Sperling, R. A., Dickerson, B. C., Pihlajamaki, M., Vannini, P., LaViolette, P. S., Vitolo, O. V., et al. (2010). Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Medicine, 12, 27–43.PubMedCentralPubMed Sperling, R. A., Dickerson, B. C., Pihlajamaki, M., Vannini, P., LaViolette, P. S., Vitolo, O. V., et al. (2010). Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Medicine, 12, 27–43.PubMedCentralPubMed
go back to reference Stam, C. J., van Cappellen van Walsum, A. M., Pijnenburg, Y. A., Berendse, H. W., de Munck, J. C., Scheltens, P., & van Dijk, B. W. (2002). Generalized synchronization of MEG recordings in Alzheimer’s Disease: Evidence for involvement of the gamma band. Journal of Clinical Neurophysiology, 19, 562–574.PubMed Stam, C. J., van Cappellen van Walsum, A. M., Pijnenburg, Y. A., Berendse, H. W., de Munck, J. C., Scheltens, P., & van Dijk, B. W. (2002). Generalized synchronization of MEG recordings in Alzheimer’s Disease: Evidence for involvement of the gamma band. Journal of Clinical Neurophysiology, 19, 562–574.PubMed
go back to reference Stark, E., Roux, L., Eichler, R., Senzai, Y., Royer, S., & Buzsáki, G. (2014). Pyramidal cell–interneuron interactions underlie hippocampal ripple oscillations. Neuron, 83, 467–480.PubMedCentralPubMed Stark, E., Roux, L., Eichler, R., Senzai, Y., Royer, S., & Buzsáki, G. (2014). Pyramidal cell–interneuron interactions underlie hippocampal ripple oscillations. Neuron, 83, 467–480.PubMedCentralPubMed
go back to reference Steriade, M. (2003). The corticothalamic system in sleep. Front. Biosci, 8, d878–d899.PubMed Steriade, M. (2003). The corticothalamic system in sleep. Front. Biosci, 8, d878–d899.PubMed
go back to reference Stoffers, D., Bosboom, J. L., Deijen, J. B., Wolters, E. C., Berendse, H. W., & Stam, C. J. (2007). Slowing of oscillatory brain activity is a stable characteristic of Parkinson’s disease without dementia. Brain, 130, 1847–1860.PubMed Stoffers, D., Bosboom, J. L., Deijen, J. B., Wolters, E. C., Berendse, H. W., & Stam, C. J. (2007). Slowing of oscillatory brain activity is a stable characteristic of Parkinson’s disease without dementia. Brain, 130, 1847–1860.PubMed
go back to reference Swaab, D. F., Lucassen, P. J., Salehi, A., Scherder, E. J., van Someren, E. J., & Verwer, R. W. (1998). Reduced neuronal activity and reactivation in Alzheimer’s disease. Progress in Brain Research, 117, 343–377.PubMed Swaab, D. F., Lucassen, P. J., Salehi, A., Scherder, E. J., van Someren, E. J., & Verwer, R. W. (1998). Reduced neuronal activity and reactivation in Alzheimer’s disease. Progress in Brain Research, 117, 343–377.PubMed
go back to reference Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22, 2963–2976.PubMed Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22, 2963–2976.PubMed
go back to reference Thevathasan, W., Pogosyan, A., Hyam, J. A., Jenkinson, N., Foltynie, T., Limousin, P., et al. (2012). Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain, 135, 148–160.PubMedCentralPubMed Thevathasan, W., Pogosyan, A., Hyam, J. A., Jenkinson, N., Foltynie, T., Limousin, P., et al. (2012). Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain, 135, 148–160.PubMedCentralPubMed
go back to reference Timmermann, L., & Florin, E. (2012). Parkinson’s disease and pathological oscillatory activity: Is the beta band the bad guy? New lessons learned from low-frequency deep brain stimulation. Experimental Neurology, 233, 123–125.PubMed Timmermann, L., & Florin, E. (2012). Parkinson’s disease and pathological oscillatory activity: Is the beta band the bad guy? New lessons learned from low-frequency deep brain stimulation. Experimental Neurology, 233, 123–125.PubMed
go back to reference Traub, R. D., Draguhn, A., Whittington, M. A., Baldeweg, T., Bibbig, A., Buhl, E. H., & Schmitz, D. (2002). Axonal gap junctions between principal neurons: A novel source of network oscillations, and perhaps epileptogenesis. Reviews in the Neurosciences, 13, 1–30.PubMed Traub, R. D., Draguhn, A., Whittington, M. A., Baldeweg, T., Bibbig, A., Buhl, E. H., & Schmitz, D. (2002). Axonal gap junctions between principal neurons: A novel source of network oscillations, and perhaps epileptogenesis. Reviews in the Neurosciences, 13, 1–30.PubMed
go back to reference Traub, R. D., & Whittington, M. A. (2010). Cortical oscillations in health and disease. Oxford, New York: Oxford University Press. Traub, R. D., & Whittington, M. A. (2010). Cortical oscillations in health and disease. Oxford, New York: Oxford University Press.
go back to reference Trottenberg, T., Fogelson, N., Kühn, A. A., Kivi, A., Kupsch, A., Schneider, G. H., & Brown, P. (2006). Subthalamic gamma activity in patients with Parkinson’s disease. Experimental Neurology, 200, 56–65.PubMed Trottenberg, T., Fogelson, N., Kühn, A. A., Kivi, A., Kupsch, A., Schneider, G. H., & Brown, P. (2006). Subthalamic gamma activity in patients with Parkinson’s disease. Experimental Neurology, 200, 56–65.PubMed
go back to reference van der Hiele, K., Jurgens, C. K., Vein, A. A., Reijntjes, R. H., Witjes-Ané, M. N., Roos, R. A., et al. (2007). Memory activation reveals abnormal EEG in preclinical Huntington’s disease. Movement Disorders, 22, 690–695.PubMed van der Hiele, K., Jurgens, C. K., Vein, A. A., Reijntjes, R. H., Witjes-Ané, M. N., Roos, R. A., et al. (2007). Memory activation reveals abnormal EEG in preclinical Huntington’s disease. Movement Disorders, 22, 690–695.PubMed
go back to reference van der Zee, J., Sleegers, K., & Van Broeckhoven, C. (2008). Invited article: the Alzheimer disease-frontotemporal lobar degeneration spectrum. Neurology, 71, 1191–1197.PubMed van der Zee, J., Sleegers, K., & Van Broeckhoven, C. (2008). Invited article: the Alzheimer disease-frontotemporal lobar degeneration spectrum. Neurology, 71, 1191–1197.PubMed
go back to reference van Deursen, J. A., Vuurman, E. F., van Kranen-Mastenbroek, V. H., & Riedel, W. J. (2008). Increased EEG gamma band activity in Alzheimer’s disease and mild cognitive impairment. J Neural Transm, 115, 1301–1311.PubMedCentralPubMed van Deursen, J. A., Vuurman, E. F., van Kranen-Mastenbroek, V. H., & Riedel, W. J. (2008). Increased EEG gamma band activity in Alzheimer’s disease and mild cognitive impairment. J Neural Transm, 115, 1301–1311.PubMedCentralPubMed
go back to reference van Deursen, J. A., Vuurman, E. F., van Kranen-Mastenbroek, V. H., Verhey, F. R., & Riedel, W. J. (2011). 40-Hz steady state response in Alzheimer’s disease and mild cognitive impairment. Neurobiology of Aging, 32, 24–30.PubMed van Deursen, J. A., Vuurman, E. F., van Kranen-Mastenbroek, V. H., Verhey, F. R., & Riedel, W. J. (2011). 40-Hz steady state response in Alzheimer’s disease and mild cognitive impairment. Neurobiology of Aging, 32, 24–30.PubMed
go back to reference Verret, L., Mann, E. O., Hang, G. B., Barth, A. M., Cobos, I., Ho, K., et al. (2012). Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell, 149, 708–721.PubMedCentralPubMed Verret, L., Mann, E. O., Hang, G. B., Barth, A. M., Cobos, I., Ho, K., et al. (2012). Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell, 149, 708–721.PubMedCentralPubMed
go back to reference Villette, V., Poindessous-Jazat, F., Simon, A., Léna, C., Roullot, E., Bellessort, B., et al. (2010). Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-beta pathology in the rat. Journal of Neuroscience, 30, 10991–11003.PubMed Villette, V., Poindessous-Jazat, F., Simon, A., Léna, C., Roullot, E., Bellessort, B., et al. (2010). Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-beta pathology in the rat. Journal of Neuroscience, 30, 10991–11003.PubMed
go back to reference Vreugdenhil, M., & Toescu, E. C. (2005). Age-dependent reduction of gamma oscillations in the mouse hippocampus in vitro. Neuroscience, 132, 1151–1157.PubMed Vreugdenhil, M., & Toescu, E. C. (2005). Age-dependent reduction of gamma oscillations in the mouse hippocampus in vitro. Neuroscience, 132, 1151–1157.PubMed
go back to reference Wada, Y., Nanbu, Y., Koshino, Y., Yamaguchi, N., & Hashimoto, T. (1998). Reduced interhemispheric EEG coherence in Alzheimer disease: Analysis during rest and photic stimulation. Alzheimer Disease and Associated Disorders, 12, 175–181.PubMed Wada, Y., Nanbu, Y., Koshino, Y., Yamaguchi, N., & Hashimoto, T. (1998). Reduced interhemispheric EEG coherence in Alzheimer disease: Analysis during rest and photic stimulation. Alzheimer Disease and Associated Disorders, 12, 175–181.PubMed
go back to reference Walsh, D. M., & Selkoe, D. J. (2007). Aβ oligomers—A decade of discovery. Journal of Neurochemistry, 101, 1172–1184.PubMed Walsh, D. M., & Selkoe, D. J. (2007). Aβ oligomers—A decade of discovery. Journal of Neurochemistry, 101, 1172–1184.PubMed
go back to reference Weinberger, M., Hutchison, W. D., Lozano, A. M., Hodaie, M., & Dostrovsky, J. O. (2009). Increased gamma oscillatory activity in the subthalamic nucleus during tremor in Parkinson’s disease patients. Journal of Neurophysiology, 101, 789–802.PubMed Weinberger, M., Hutchison, W. D., Lozano, A. M., Hodaie, M., & Dostrovsky, J. O. (2009). Increased gamma oscillatory activity in the subthalamic nucleus during tremor in Parkinson’s disease patients. Journal of Neurophysiology, 101, 789–802.PubMed
go back to reference Wenk, G. L., Zajaczkowski, W., & Danysz, W. (1997). Neuroprotection of acetylcholinergic basal forebrain neurons by memantine and neurokinin B. Behavioural Brain Research, 83, 129–133.PubMed Wenk, G. L., Zajaczkowski, W., & Danysz, W. (1997). Neuroprotection of acetylcholinergic basal forebrain neurons by memantine and neurokinin B. Behavioural Brain Research, 83, 129–133.PubMed
go back to reference Whittington, M. A., & Traub, R. D. (2003). Interneuron Diversity series: Inhibitory interneurons and network oscillations in vitro. Trends in Neurosciences, 26, 676–682.PubMed Whittington, M. A., & Traub, R. D. (2003). Interneuron Diversity series: Inhibitory interneurons and network oscillations in vitro. Trends in Neurosciences, 26, 676–682.PubMed
go back to reference Wu, J., Anwyl, R., & Rowan, M. J. (1995). Beta-Amyloid selectively augments NMDA receptor-mediated synaptic transmission in rat hippocampus. Neuroreport, 6, 2409–2413.PubMed Wu, J., Anwyl, R., & Rowan, M. J. (1995). Beta-Amyloid selectively augments NMDA receptor-mediated synaptic transmission in rat hippocampus. Neuroreport, 6, 2409–2413.PubMed
go back to reference Yamamoto, T., & Hirano, A. (1985). Nucleus raphe dorsalis in Alzheimer’s disease: Neurofibrillary tangles and loss of large neurons. Annals of Neurology, 17, 573–577.PubMed Yamamoto, T., & Hirano, A. (1985). Nucleus raphe dorsalis in Alzheimer’s disease: Neurofibrillary tangles and loss of large neurons. Annals of Neurology, 17, 573–577.PubMed
go back to reference Yener, G. G., Emek-Savaş, D. D., Lizio, R., Çavuşoğlu, B., Carducci, F., Ada, E., et al. (2015). Frontal delta event-related oscillations relate to frontal volume in mild cognitive impairment and healthy controls. International Journal of Psychophysiology. doi:10.1016/j.ijpsycho.2015.02.005. Yener, G. G., Emek-Savaş, D. D., Lizio, R., Çavuşoğlu, B., Carducci, F., Ada, E., et al. (2015). Frontal delta event-related oscillations relate to frontal volume in mild cognitive impairment and healthy controls. International Journal of Psychophysiology. doi:10.​1016/​j.​ijpsycho.​2015.​02.​005.
go back to reference Yener, G., Güntekin, B., & Başar, E. (2008). Event-related delta oscillatory responses of Alzheimer patients. European Journal of Neurology, 15, 540–547.PubMed Yener, G., Güntekin, B., & Başar, E. (2008). Event-related delta oscillatory responses of Alzheimer patients. European Journal of Neurology, 15, 540–547.PubMed
go back to reference Yu, J. T., Chang, R. C., & Tan, L. (2009). Calcium dysregulation in Alzheimer’s disease: From mechanisms to therapeutic opportunities. Progress in Neurobiology, 89, 240–255.PubMed Yu, J. T., Chang, R. C., & Tan, L. (2009). Calcium dysregulation in Alzheimer’s disease: From mechanisms to therapeutic opportunities. Progress in Neurobiology, 89, 240–255.PubMed
go back to reference Zempel, H., & Mandelkow, E. M. (2012). Linking amyloid-β and tau: Amyloid-β induced synaptic dysfunction via local wreckage of the neuronal cytoskeleton. Neurodegenerative Diseases, 10, 64–72.PubMed Zempel, H., & Mandelkow, E. M. (2012). Linking amyloid-β and tau: Amyloid-β induced synaptic dysfunction via local wreckage of the neuronal cytoskeleton. Neurodegenerative Diseases, 10, 64–72.PubMed
go back to reference Zhang, S., Han, D., Tan, X., Feng, J., Guo, Y., & Ding, Y. (2012). Diagnostic accuracy of 18 F-FDG and 11 C-PIB-PET for prediction of short-term conversion to Alzheimer’s disease in subjects with mild cognitive impairment. International Journal of Clinical Practice, 66, 185–189.PubMed Zhang, S., Han, D., Tan, X., Feng, J., Guo, Y., & Ding, Y. (2012). Diagnostic accuracy of 18 F-FDG and 11 C-PIB-PET for prediction of short-term conversion to Alzheimer’s disease in subjects with mild cognitive impairment. International Journal of Clinical Practice, 66, 185–189.PubMed
Metadata
Title
Neuronal Network Oscillations in Neurodegenerative Diseases
Authors
Volker Nimmrich
Andreas Draguhn
Nikolai Axmacher
Publication date
01-09-2015
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 3/2015
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-015-8355-9

Other articles of this Issue 3/2015

NeuroMolecular Medicine 3/2015 Go to the issue