Skip to main content
Top
Published in: NeuroMolecular Medicine 3/2015

01-09-2015 | Review Paper

Structure, Distribution, and Function of Neuronal/Synaptic Spinules and Related Invaginating Projections

Authors: Ronald S. Petralia, Ya-Xian Wang, Mark P. Mattson, Pamela J. Yao

Published in: NeuroMolecular Medicine | Issue 3/2015

Login to get access

Abstract

Neurons and especially their synapses often project long thin processes that can invaginate neighboring neuronal or glial cells. These “invaginating projections” can occur in almost any combination of postsynaptic, presynaptic, and glial processes. Invaginating projections provide a precise mechanism for one neuron to communicate or exchange material exclusively at a highly localized site on another neuron, e.g., to regulate synaptic plasticity. The best-known types are postsynaptic projections called “spinules” that invaginate into presynaptic terminals. Spinules seem to be most prevalent at large very active synapses. Here, we present a comprehensive review of all kinds of invaginating projections associated with both neurons in general and more specifically with synapses; we describe them in all animals including simple, basal metazoans. These structures may have evolved into more elaborate structures in some higher animal groups exhibiting greater synaptic plasticity. In addition to classic spinules and filopodial invaginations, we describe a variety of lesser-known structures such as amphid microvilli, spinules in giant mossy terminals and en marron/brush synapses, the highly specialized fish retinal spinules, the trophospongium, capitate projections, and fly gnarls, as well as examples in which the entire presynaptic or postsynaptic process is invaginated. These various invaginating projections have evolved to modify the function of a particular synapse, or to channel an effect to one specific synapse or neuron, without affecting those nearby. We discuss how they function in membrane recycling, nourishment, and cell signaling and explore how they might change in aging and disease.
Literature
go back to reference Acsády, L., Katona, I., Martinez-Guijarro, F. J., Buzsaki, G., & Freund, T. F. (2000). Unusual target selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus. Journal of Neuroscience, 20(18), 6907–6919.PubMed Acsády, L., Katona, I., Martinez-Guijarro, F. J., Buzsaki, G., & Freund, T. F. (2000). Unusual target selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus. Journal of Neuroscience, 20(18), 6907–6919.PubMed
go back to reference Adamo, N. J., & Daigneault, E. A. (1973a). Ultrastructural features of neurons and nerve fibres in the spiral ganglia of cats. Journal of Neurocytology, 2(1), 91–103.PubMed Adamo, N. J., & Daigneault, E. A. (1973a). Ultrastructural features of neurons and nerve fibres in the spiral ganglia of cats. Journal of Neurocytology, 2(1), 91–103.PubMed
go back to reference Adamo, N. J., & Daigneault, E. A. (1973b). Ultrastructural morphology of Schwann cell-neuronal relationships in the spiral ganglia of cats. American Journal of Anatomy, 138(1), 73–77. doi:10.1002/aja.1001380105.PubMed Adamo, N. J., & Daigneault, E. A. (1973b). Ultrastructural morphology of Schwann cell-neuronal relationships in the spiral ganglia of cats. American Journal of Anatomy, 138(1), 73–77. doi:10.​1002/​aja.​1001380105.PubMed
go back to reference Altman, J. (1971). Coated vesicles and synaptogenesis. A developmental study in the cerebellar cortex of the rat. Brain Research, 30(2), 311–322.PubMed Altman, J. (1971). Coated vesicles and synaptogenesis. A developmental study in the cerebellar cortex of the rat. Brain Research, 30(2), 311–322.PubMed
go back to reference Altman, J. (1993). Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. Journal of Comparative Neurology, 145, 399–464. Altman, J. (1993). Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. Journal of Comparative Neurology, 145, 399–464.
go back to reference Altman, J., & Bayer, S. A. (1997). Development of the cerebellar system in relation to its evolution, structure, and functions. New York: CRC Press. Altman, J., & Bayer, S. A. (1997). Development of the cerebellar system in relation to its evolution, structure, and functions. New York: CRC Press.
go back to reference Anglade, P., Mouatt-Prigent, A., Agid, Y., & Hirsch, E. (1996). Synaptic plasticity in the caudate nucleus of patients with Parkinson’s disease. Neurodegeneration, 5(2), 121–128.PubMed Anglade, P., Mouatt-Prigent, A., Agid, Y., & Hirsch, E. (1996). Synaptic plasticity in the caudate nucleus of patients with Parkinson’s disease. Neurodegeneration, 5(2), 121–128.PubMed
go back to reference Ashton, F. T., Li, J., & Schad, G. A. (1999). Chemo- and thermosensory neurons: Structure and function in animal parasitic nematodes. Veterinary Parasitology, 84(3–4), 297–316.PubMed Ashton, F. T., Li, J., & Schad, G. A. (1999). Chemo- and thermosensory neurons: Structure and function in animal parasitic nematodes. Veterinary Parasitology, 84(3–4), 297–316.PubMed
go back to reference Atwood, H. L., Govind, C. K., & Wu, C. F. (1993). Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. Journal of Neurobiology, 24(8), 1008–1024. doi:10.1002/neu.480240803.PubMed Atwood, H. L., Govind, C. K., & Wu, C. F. (1993). Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. Journal of Neurobiology, 24(8), 1008–1024. doi:10.​1002/​neu.​480240803.PubMed
go back to reference Bailey, C. H., Chen, M., Keller, F., & Kandel, E. R. (1992). Serotonin-mediated endocytosis of apCAM: An early step of learning-related synaptic growth in Aplysia. Science, 256(5057), 645–649.PubMed Bailey, C. H., Chen, M., Keller, F., & Kandel, E. R. (1992). Serotonin-mediated endocytosis of apCAM: An early step of learning-related synaptic growth in Aplysia. Science, 256(5057), 645–649.PubMed
go back to reference Bailey, C. H., Thompson, E. B., Castellucci, V. F., & Kandel, E. R. (1979). Ultrastructure of the synapses of sensory neurons that mediate the gill-withdrawal reflex in Aplysia. Journal of Neurocytology, 8(4), 415–444.PubMed Bailey, C. H., Thompson, E. B., Castellucci, V. F., & Kandel, E. R. (1979). Ultrastructure of the synapses of sensory neurons that mediate the gill-withdrawal reflex in Aplysia. Journal of Neurocytology, 8(4), 415–444.PubMed
go back to reference Biserova, N. M., Gordeev, I. I., Korneva, J. V., & Salnikova, M. M. (2010). Structure of the glial cells in the nervous system of parasitic and free-living flatworms. Biology Bulletin, 37(3), 277–287. Biserova, N. M., Gordeev, I. I., Korneva, J. V., & Salnikova, M. M. (2010). Structure of the glial cells in the nervous system of parasitic and free-living flatworms. Biology Bulletin, 37(3), 277–287.
go back to reference Blanco, R. E. (1988). Glial cells in peripheral nerves of the cockroach, Periplaneta americana. Tissue and Cell, 20(5), 771–782.PubMed Blanco, R. E. (1988). Glial cells in peripheral nerves of the cockroach, Periplaneta americana. Tissue and Cell, 20(5), 771–782.PubMed
go back to reference Blanque, A., Repetto, D., Rohlmann, A., Brockhaus, J., Duning, K., Pavenstädt, H., et al. (2015). Deletion of KIBRA, protein expressed in kidney and brain, increases filopodial-like long dendritic spines in neocortical and hippocampal neurons in vivo and in vitro. Frontiers in Neuroanatomy, 9, 13. doi:10.3389/fnana.2015.00013.PubMedCentralPubMed Blanque, A., Repetto, D., Rohlmann, A., Brockhaus, J., Duning, K., Pavenstädt, H., et al. (2015). Deletion of KIBRA, protein expressed in kidney and brain, increases filopodial-like long dendritic spines in neocortical and hippocampal neurons in vivo and in vitro. Frontiers in Neuroanatomy, 9, 13. doi:10.​3389/​fnana.​2015.​00013.PubMedCentralPubMed
go back to reference Bonga, S. E. W. (1970). Ultrastructure and histochemistry of neurosecretory cells and neurohaemal areas in the pond snail Lymnaea stagnalis. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 108, 190–224. Bonga, S. E. W. (1970). Ultrastructure and histochemistry of neurosecretory cells and neurohaemal areas in the pond snail Lymnaea stagnalis. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 108, 190–224.
go back to reference Boschek, C. B. (1971). On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 118(3), 369–409.PubMed Boschek, C. B. (1971). On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 118(3), 369–409.PubMed
go back to reference Boyne, A. F., & McLeod, S. (1979). Ultrastructural plasticity in stimulated nerve terminals: Pseudopodial invasions of abutted terminals in Torpedine ray electric organ. Neuroscience, 4(5), 615–624.PubMed Boyne, A. F., & McLeod, S. (1979). Ultrastructural plasticity in stimulated nerve terminals: Pseudopodial invasions of abutted terminals in Torpedine ray electric organ. Neuroscience, 4(5), 615–624.PubMed
go back to reference Boyne, A. F., & Tarrant, S. B. (1982). Pseudopodial interdigitations between abutted nerve terminals: diffusion traps which occur in several nuclei of the rat limbic system. Journal of Neuroscience, 2(4), 463–469.PubMed Boyne, A. F., & Tarrant, S. B. (1982). Pseudopodial interdigitations between abutted nerve terminals: diffusion traps which occur in several nuclei of the rat limbic system. Journal of Neuroscience, 2(4), 463–469.PubMed
go back to reference Bozhilova-Pastirova, A., & Ovtscharoff, W. (1999). Intramembranous structure of synaptic membranes with special reference to spinules in the rat sensorimotor cortex. European Journal of Neuroscience, 11(5), 1843–1846.PubMed Bozhilova-Pastirova, A., & Ovtscharoff, W. (1999). Intramembranous structure of synaptic membranes with special reference to spinules in the rat sensorimotor cortex. European Journal of Neuroscience, 11(5), 1843–1846.PubMed
go back to reference Buchheit, T. E., & Tytell, M. (1992). Transfer of molecules from glia to axon in the squid may be mediated by glial vesicles. Journal of Neurobiology, 23(3), 217–230. doi:10.1002/neu.480230303.PubMed Buchheit, T. E., & Tytell, M. (1992). Transfer of molecules from glia to axon in the squid may be mediated by glial vesicles. Journal of Neurobiology, 23(3), 217–230. doi:10.​1002/​neu.​480230303.PubMed
go back to reference Budziakowski, M. E., & Mettrick, D. F. (1985). Ultrastructural morphology of the neuropile of the cerebral ganglion of Moniliformis moniliformis (Acanthocephala). Journal of Parasitology, 71(1), 75–85.PubMed Budziakowski, M. E., & Mettrick, D. F. (1985). Ultrastructural morphology of the neuropile of the cerebral ganglion of Moniliformis moniliformis (Acanthocephala). Journal of Parasitology, 71(1), 75–85.PubMed
go back to reference Bumbarger, D. J., Wijeratne, S., Carter, C., Crum, J., Ellisman, M. H., & Baldwin, J. G. (2009). Three-dimensional reconstruction of the amphid sensilla in the microbial feeding nematode, Acrobeles complexus (Nematoda: Rhabditida). Journal of Comparative Neurology, 512(2), 271–281. doi:10.1002/cne.21882.PubMedCentralPubMed Bumbarger, D. J., Wijeratne, S., Carter, C., Crum, J., Ellisman, M. H., & Baldwin, J. G. (2009). Three-dimensional reconstruction of the amphid sensilla in the microbial feeding nematode, Acrobeles complexus (Nematoda: Rhabditida). Journal of Comparative Neurology, 512(2), 271–281. doi:10.​1002/​cne.​21882.PubMedCentralPubMed
go back to reference Cadete-Leite, A., Tavares, M. A., Paula-Barbosa, M. M., & Gray, E. G. (1986). ‘Perforated’ synapses in frontal cortex of chronic alcohol-fed rats. Journal of Submicroscopic Cytology, 18(3), 495–499.PubMed Cadete-Leite, A., Tavares, M. A., Paula-Barbosa, M. M., & Gray, E. G. (1986). ‘Perforated’ synapses in frontal cortex of chronic alcohol-fed rats. Journal of Submicroscopic Cytology, 18(3), 495–499.PubMed
go back to reference Cagan, R. L., Kramer, H., Hart, A. C., & Zipursky, S. L. (1992). The bride of sevenless and sevenless interaction: Internalization of a transmembrane ligand. Cell, 69(3), 393–399.PubMed Cagan, R. L., Kramer, H., Hart, A. C., & Zipursky, S. L. (1992). The bride of sevenless and sevenless interaction: Internalization of a transmembrane ligand. Cell, 69(3), 393–399.PubMed
go back to reference Calverley, R. K., & Jones, D. G. (1987). A serial-section study of perforated synapses in rat neocortex. Cell and Tissue Research, 247(3), 565–572.PubMed Calverley, R. K., & Jones, D. G. (1987). A serial-section study of perforated synapses in rat neocortex. Cell and Tissue Research, 247(3), 565–572.PubMed
go back to reference Campos-Ortega, J. A., & Strausfeld, N. J. (1973). Synaptic connections of intrinsic cells and basket arborizations in the external plexiform layer of the fly’s eye. Brain Research, 59, 119–136.PubMed Campos-Ortega, J. A., & Strausfeld, N. J. (1973). Synaptic connections of intrinsic cells and basket arborizations in the external plexiform layer of the fly’s eye. Brain Research, 59, 119–136.PubMed
go back to reference Carlin, R. K., & Siekevitz, P. (1983). Plasticity in the central nervous system: Do synapses divide? Proceedings of the National Academy of Sciences of the USA, 80(11), 3517–3521.PubMedCentralPubMed Carlin, R. K., & Siekevitz, P. (1983). Plasticity in the central nervous system: Do synapses divide? Proceedings of the National Academy of Sciences of the USA, 80(11), 3517–3521.PubMedCentralPubMed
go back to reference Carlson, S. D. (1987). Ultrastructure of the arthropod neuroglia and neuropil. In A. P. Gupta (Ed.), Arthropod brain: Its evolution, development, structure, and functions (pp. 323–346). New York: Wiley. Carlson, S. D. (1987). Ultrastructure of the arthropod neuroglia and neuropil. In A. P. Gupta (Ed.), Arthropod brain: Its evolution, development, structure, and functions (pp. 323–346). New York: Wiley.
go back to reference Case, N. M., Gray, E. G., & Young, J. Z. (1972). Ultrastructure and synaptic relations in the optic lobe of the brain of Eledone and Octopus. Journal of Ultrastructure Research, 39(1), 115–123.PubMed Case, N. M., Gray, E. G., & Young, J. Z. (1972). Ultrastructure and synaptic relations in the optic lobe of the brain of Eledone and Octopus. Journal of Ultrastructure Research, 39(1), 115–123.PubMed
go back to reference Chi, C., & Carlson, S. D. (1976). Close apposition of photoreceptor cell axons in the house fly. Journal of Insect Physiology, 22(8), 1153–1157.PubMed Chi, C., & Carlson, S. D. (1976). Close apposition of photoreceptor cell axons in the house fly. Journal of Insect Physiology, 22(8), 1153–1157.PubMed
go back to reference Chicurel, M. E., & Harris, K. M. (1992). Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. Journal of Comparative Neurology, 325(2), 169–182. doi:10.1002/cne.903250204.PubMed Chicurel, M. E., & Harris, K. M. (1992). Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. Journal of Comparative Neurology, 325(2), 169–182. doi:10.​1002/​cne.​903250204.PubMed
go back to reference Cocucci, E., & Meldolesi, J. (2015). Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends in Cell Biology, 25(6), 364–372.PubMed Cocucci, E., & Meldolesi, J. (2015). Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends in Cell Biology, 25(6), 364–372.PubMed
go back to reference Coggeshall, R. E., & Fawcett, D. W. (1964). The fine structure of the central nervous system of the leech, Hirudo medicinalis. Journal of Neurophysiology, 27, 229–289.PubMed Coggeshall, R. E., & Fawcett, D. W. (1964). The fine structure of the central nervous system of the leech, Hirudo medicinalis. Journal of Neurophysiology, 27, 229–289.PubMed
go back to reference Cohen, A. I. (1973). An ultrastructural analysis of the photoreceptors of the squid and their synaptic connections. 3. Photoreceptor terminations in the optic lobes. Journal of Comparative Neurology, 147(3), 399–426. doi:10.1002/cne.901470306.PubMed Cohen, A. I. (1973). An ultrastructural analysis of the photoreceptors of the squid and their synaptic connections. 3. Photoreceptor terminations in the optic lobes. Journal of Comparative Neurology, 147(3), 399–426. doi:10.​1002/​cne.​901470306.PubMed
go back to reference Curcio, C. A., McNelly, N. A., & Hinds, J. W. (1985). Aging in the rat olfactory system: Relative stability of piriform cortex contrasts with changes in olfactory bulb and olfactory epithelium. Journal of Comparative Neurology, 235(4), 519–528. doi:10.1002/cne.902350409.PubMed Curcio, C. A., McNelly, N. A., & Hinds, J. W. (1985). Aging in the rat olfactory system: Relative stability of piriform cortex contrasts with changes in olfactory bulb and olfactory epithelium. Journal of Comparative Neurology, 235(4), 519–528. doi:10.​1002/​cne.​902350409.PubMed
go back to reference Dayel, M. J., Alegado, R. A., Fairclough, S. R., Levin, T. C., Nichols, S. A., McDonald, K., et al. (2011). Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Development Biology, 357(1), 73–82. doi:10.1016/j.ydbio.2011.06.003. Dayel, M. J., Alegado, R. A., Fairclough, S. R., Levin, T. C., Nichols, S. A., McDonald, K., et al. (2011). Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Development Biology, 357(1), 73–82. doi:10.​1016/​j.​ydbio.​2011.​06.​003.
go back to reference Desmond, N. L., & Levy, W. B. (1983). Synaptic correlates of associative potentiation/depression: An ultrastructural study in the hippocampus. Brain Research, 265(1), 21–30.PubMed Desmond, N. L., & Levy, W. B. (1983). Synaptic correlates of associative potentiation/depression: An ultrastructural study in the hippocampus. Brain Research, 265(1), 21–30.PubMed
go back to reference Dilly, P. N., Gray, E. G., & Young, J. Z. (1963). Electron microscopy of optic nerves and optic lobes of Octopus and Eledone. Proceedings of the Royal Society of London. Series B: Biological Sciences, 158, 446–456. Dilly, P. N., Gray, E. G., & Young, J. Z. (1963). Electron microscopy of optic nerves and optic lobes of Octopus and Eledone. Proceedings of the Royal Society of London. Series B: Biological Sciences, 158, 446–456.
go back to reference Dirks, P., Tieding, S., Schneider, I., Mey, J., & Weiler, R. (2004). Characterization of retinoic acid neuromodulation in the carp retina. Journal of Neuroscience Research, 78(2), 177–185. doi:10.1002/jnr.20253.PubMed Dirks, P., Tieding, S., Schneider, I., Mey, J., & Weiler, R. (2004). Characterization of retinoic acid neuromodulation in the carp retina. Journal of Neuroscience Research, 78(2), 177–185. doi:10.​1002/​jnr.​20253.PubMed
go back to reference Dyson, S. E., & Jones, D. G. (1984). Synaptic remodelling during development and maturation: Junction differentiation and splitting as a mechanism for modifying connectivity. Brain Research, 315(1), 125–137.PubMed Dyson, S. E., & Jones, D. G. (1984). Synaptic remodelling during development and maturation: Junction differentiation and splitting as a mechanism for modifying connectivity. Brain Research, 315(1), 125–137.PubMed
go back to reference Eckenhoff, M. F., & Pysh, J. J. (1979). Double-walled coated vesicle formation: Evidence for massive and transient conjugate internalization of plasma membranes during cerebellar development. Journal of Neurocytology, 8(5), 623–638.PubMed Eckenhoff, M. F., & Pysh, J. J. (1979). Double-walled coated vesicle formation: Evidence for massive and transient conjugate internalization of plasma membranes during cerebellar development. Journal of Neurocytology, 8(5), 623–638.PubMed
go back to reference Erisir, A., & Dreusicke, M. (2005). Quantitative morphology and postsynaptic targets of thalamocortical axons in critical period and adult ferret visual cortex. Journal of Comparative Neurology, 485(1), 11–31. doi:10.1002/cne.20507.PubMed Erisir, A., & Dreusicke, M. (2005). Quantitative morphology and postsynaptic targets of thalamocortical axons in critical period and adult ferret visual cortex. Journal of Comparative Neurology, 485(1), 11–31. doi:10.​1002/​cne.​20507.PubMed
go back to reference Fabian-Fine, R., Verstreken, P., Hiesinger, P. R., Horne, J. A., Kostyleva, R., Zhou, Y., et al. (2003). Endophilin promotes a late step in endocytosis at glial invaginations in Drosophila photoreceptor terminals. Journal of Neuroscience, 23(33), 10732–10744.PubMed Fabian-Fine, R., Verstreken, P., Hiesinger, P. R., Horne, J. A., Kostyleva, R., Zhou, Y., et al. (2003). Endophilin promotes a late step in endocytosis at glial invaginations in Drosophila photoreceptor terminals. Journal of Neuroscience, 23(33), 10732–10744.PubMed
go back to reference Fairchild, C. L., & Barna, M. (2014). Specialized filopodia: At the “tip” of morphogen transport and vertebrate tissue patterning. Current Opinion in Genetics & Development, 27, 67–73. Fairchild, C. L., & Barna, M. (2014). Specialized filopodia: At the “tip” of morphogen transport and vertebrate tissue patterning. Current Opinion in Genetics & Development, 27, 67–73.
go back to reference Familtsev, D. (2013). Synapses, spines, zinc and pathology of Alzheimer’s disease. Louisville, Kentucky: University of Louisville. Familtsev, D. (2013). Synapses, spines, zinc and pathology of Alzheimer’s disease. Louisville, Kentucky: University of Louisville.
go back to reference Farley, R. D., & Chan, D. J. (1985). The ultrastructure of the cardiac ganglion of the desert scorpion, Paruroctonus mesaensis (Scorpionida: Vaejovidae). J Morph, 184, 231–252. Farley, R. D., & Chan, D. J. (1985). The ultrastructure of the cardiac ganglion of the desert scorpion, Paruroctonus mesaensis (Scorpionida: Vaejovidae). J Morph, 184, 231–252.
go back to reference Fiala, J. C., Allwardt, B., & Harris, K. M. (2002). Dendritic spines do not split during hippocampal LTP or maturation. Nature Neuroscience, 5(4), 297–298. doi:10.1038/nn830.PubMed Fiala, J. C., Allwardt, B., & Harris, K. M. (2002). Dendritic spines do not split during hippocampal LTP or maturation. Nature Neuroscience, 5(4), 297–298. doi:10.​1038/​nn830.PubMed
go back to reference Fiala, J. C., Feinberg, M., Popov, V., & Harris, K. M. (1998). Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. Journal of Neuroscience, 18(21), 8900–8911.PubMed Fiala, J. C., Feinberg, M., Popov, V., & Harris, K. M. (1998). Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. Journal of Neuroscience, 18(21), 8900–8911.PubMed
go back to reference Floris, A., Dino, M., Jacobowitz, D. M., & Mugnaini, E. (1994). The unipolar brush cells of the rat cerebellar cortex and cochlear nucleus are calretinin-positive: A study by light and electron microscopic immunocytochemistry. Anatomy and Embryology (Berl), 189(6), 495–520. Floris, A., Dino, M., Jacobowitz, D. M., & Mugnaini, E. (1994). The unipolar brush cells of the rat cerebellar cortex and cochlear nucleus are calretinin-positive: A study by light and electron microscopic immunocytochemistry. Anatomy and Embryology (Berl), 189(6), 495–520.
go back to reference Fox, C. A., Andrade, A. N., Lu Qui, I. J., & Rafols, J. A. (1974). The primate globus pallidus: A Golgi and electron microscopic study. Journal fur Hirnforschung, 15(1), 75–93.PubMed Fox, C. A., Andrade, A. N., Lu Qui, I. J., & Rafols, J. A. (1974). The primate globus pallidus: A Golgi and electron microscopic study. Journal fur Hirnforschung, 15(1), 75–93.PubMed
go back to reference Friedlander, M. J., Martin, K. A. C., & Wassenhove-McCarthy, D. (1991). Effects of monocular visual deprivation on geniculocortical innervation of area 18 in cat. Journal of Neuroscience, 11(10), 3268–3288.PubMed Friedlander, M. J., Martin, K. A. C., & Wassenhove-McCarthy, D. (1991). Effects of monocular visual deprivation on geniculocortical innervation of area 18 in cat. Journal of Neuroscience, 11(10), 3268–3288.PubMed
go back to reference Fritzsch, B., & Straka, H. (2014). Evolution of vertebrate mechanosensory hair cells and inner ears: Toward identifying stimuli that select mutation driven altered morphologies. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 200(1), 5–18. doi:10.1007/s00359-013-0865-z.PubMedCentralPubMed Fritzsch, B., & Straka, H. (2014). Evolution of vertebrate mechanosensory hair cells and inner ears: Toward identifying stimuli that select mutation driven altered morphologies. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 200(1), 5–18. doi:10.​1007/​s00359-013-0865-z.PubMedCentralPubMed
go back to reference Fröhlich, A., & Meinertzhagen, I. A. (1982). Synaptogenesis in the first optic neuropile of the fly’s visual system. Journal of Neurocytology, 11(1), 159–180.PubMed Fröhlich, A., & Meinertzhagen, I. A. (1982). Synaptogenesis in the first optic neuropile of the fly’s visual system. Journal of Neurocytology, 11(1), 159–180.PubMed
go back to reference Gad, H., Low, P., Zotova, E., Brodin, L., & Shupliakov, O. (1998). Dissociation between Ca2+-triggered synaptic vesicle exocytosis and clathrin-mediated endocytosis at a central synapse. Neuron, 21(3), 607–616.PubMed Gad, H., Low, P., Zotova, E., Brodin, L., & Shupliakov, O. (1998). Dissociation between Ca2+-triggered synaptic vesicle exocytosis and clathrin-mediated endocytosis at a central synapse. Neuron, 21(3), 607–616.PubMed
go back to reference Ganeshina, O., Berry, R. W., Petralia, R. S., Nicholson, D. A., & Geinisman, Y. (2004a). Synapses with a segmented, completely partitioned postsynaptic density express more AMPA receptors than other axospinous synaptic junctions. Neuroscience, 125(3), 615–623.PubMed Ganeshina, O., Berry, R. W., Petralia, R. S., Nicholson, D. A., & Geinisman, Y. (2004a). Synapses with a segmented, completely partitioned postsynaptic density express more AMPA receptors than other axospinous synaptic junctions. Neuroscience, 125(3), 615–623.PubMed
go back to reference Ganeshina, O., Berry, R. W., Petralia, R. S., Nicholson, D. A., & Geinisman, Y. (2004b). Differences in the expression of AMPA and NMDA receptors between axospinous perforated and nonperforated synapses are related to the configuration and size of postsynaptic densities. Journal of Comparative Neurology, 468(1), 86–95.PubMed Ganeshina, O., Berry, R. W., Petralia, R. S., Nicholson, D. A., & Geinisman, Y. (2004b). Differences in the expression of AMPA and NMDA receptors between axospinous perforated and nonperforated synapses are related to the configuration and size of postsynaptic densities. Journal of Comparative Neurology, 468(1), 86–95.PubMed
go back to reference Gao, C., Cao, W., Bao, L., Zuo, W., Xie, G., Cai, T., et al. (2010). Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nature Cell Biology, 12(8), 781–790. doi:10.1038/ncb2082.PubMed Gao, C., Cao, W., Bao, L., Zuo, W., Xie, G., Cai, T., et al. (2010). Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nature Cell Biology, 12(8), 781–790. doi:10.​1038/​ncb2082.PubMed
go back to reference Geinisman, Y. (2000). Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cerebral Cortex, 10(10), 952–962.PubMed Geinisman, Y. (2000). Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cerebral Cortex, 10(10), 952–962.PubMed
go back to reference Geinisman, Y., deToledo-Morrell, L., & Morrell, F. (1994). Comparison of structural synaptic modifications induced by long-term potentiation in the hippocampal dentate gyrus of young adult and aged rats. Annals of the New York Academy of Sciences, 747, 452–466.PubMed Geinisman, Y., deToledo-Morrell, L., & Morrell, F. (1994). Comparison of structural synaptic modifications induced by long-term potentiation in the hippocampal dentate gyrus of young adult and aged rats. Annals of the New York Academy of Sciences, 747, 452–466.PubMed
go back to reference Gennaro, J. F, Jr, Nastuk, W. L., & Rutherford, D. T. (1978). Reversible depletion of synaptic vesicles induced by application of high external potassium to the frog neuromuscular junction. Journal of Physiology, 280, 237–247.PubMedCentralPubMed Gennaro, J. F, Jr, Nastuk, W. L., & Rutherford, D. T. (1978). Reversible depletion of synaptic vesicles induced by application of high external potassium to the frog neuromuscular junction. Journal of Physiology, 280, 237–247.PubMedCentralPubMed
go back to reference Gonobobleva, E., & Maldonado, M. (2009). Choanocyte ultrastructure in Halisarca dujardini (Demospongiae, Halisarcida). Journal of Morphology, 270(5), 615–627. doi:10.1002/jmor.10709.PubMed Gonobobleva, E., & Maldonado, M. (2009). Choanocyte ultrastructure in Halisarca dujardini (Demospongiae, Halisarcida). Journal of Morphology, 270(5), 615–627. doi:10.​1002/​jmor.​10709.PubMed
go back to reference Gordon, W. C. (1985). Nonconventional interactions between photoreceptor axons in the butterfly lamina ganglionaris. Zeitschrift für Naturforschung, 40c, 460–463. Gordon, W. C. (1985). Nonconventional interactions between photoreceptor axons in the butterfly lamina ganglionaris. Zeitschrift für Naturforschung, 40c, 460–463.
go back to reference Gray, E. G. (1961). The granule cells, mossy synapses and Purkinje spine synapses of the cerebellum: Light and electron microscope observations. Journal of Anatomy, 95, 345–356.PubMedCentralPubMed Gray, E. G. (1961). The granule cells, mossy synapses and Purkinje spine synapses of the cerebellum: Light and electron microscope observations. Journal of Anatomy, 95, 345–356.PubMedCentralPubMed
go back to reference Greco, V., Hannus, M., & Eaton, S. (2001). Argosomes: A potential vehicle for the spread of morphogens through epithelia. Cell, 106(5), 633–645.PubMed Greco, V., Hannus, M., & Eaton, S. (2001). Argosomes: A potential vehicle for the spread of morphogens through epithelia. Cell, 106(5), 633–645.PubMed
go back to reference Gregory, W. A., Hall, D. H., & Bennett, M. V. (1988). Satellite glial cells penetrate neurosecretory cells to perinuclear position in the goldfish preoptic area. Developmental Brain Research, 44(1), 1–8.PubMed Gregory, W. A., Hall, D. H., & Bennett, M. V. (1988). Satellite glial cells penetrate neurosecretory cells to perinuclear position in the goldfish preoptic area. Developmental Brain Research, 44(1), 1–8.PubMed
go back to reference Haamedi, S. N., Karten, H. J., & Djamgoz, M. B. (2001). Nerve growth factor induces light adaptive cellular and synaptic plasticity in the outer retina of fish. Journal of Comparative Neurology, 431(4), 397–404.PubMed Haamedi, S. N., Karten, H. J., & Djamgoz, M. B. (2001). Nerve growth factor induces light adaptive cellular and synaptic plasticity in the outer retina of fish. Journal of Comparative Neurology, 431(4), 397–404.PubMed
go back to reference Halanych, K. M. (2015). The ctenophore lineage is older than sponges? That cannot be right! Or can it? Journal of Experimental Biology, 218(Pt 4), 592–597. doi:10.1242/jeb.111872.PubMed Halanych, K. M. (2015). The ctenophore lineage is older than sponges? That cannot be right! Or can it? Journal of Experimental Biology, 218(Pt 4), 592–597. doi:10.​1242/​jeb.​111872.PubMed
go back to reference Harreveld, A. V., & Trubatch, J. (1975). Synaptic changes in frog brain after stimulation with potassium chloride. Journal of Neurocytology, 4(1), 33–46.PubMed Harreveld, A. V., & Trubatch, J. (1975). Synaptic changes in frog brain after stimulation with potassium chloride. Journal of Neurocytology, 4(1), 33–46.PubMed
go back to reference Hartfelder, K., Hanton, W. K., & Bollenbacher, W. E. (1994). Diapause-dependent changes in prothoracicotropic hormone-producing neurons of the tobacco hornworm, Manduca sexta. Cell and Tissue Research, 277(1), 69–78.PubMed Hartfelder, K., Hanton, W. K., & Bollenbacher, W. E. (1994). Diapause-dependent changes in prothoracicotropic hormone-producing neurons of the tobacco hornworm, Manduca sexta. Cell and Tissue Research, 277(1), 69–78.PubMed
go back to reference Heuser, J. E., & Reese, T. S. (1973). Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. Journal of Cell Biology, 57(2), 315–344.PubMedCentralPubMed Heuser, J. E., & Reese, T. S. (1973). Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. Journal of Cell Biology, 57(2), 315–344.PubMedCentralPubMed
go back to reference Holtmann, M., & Thurm, U. (2001). Mono- and oligo-vesicular synapses and their connectivity in a Cnidarian sensory epithelium (Coryne tubulosa). J Comp Neurol, 432(4), 537–549.PubMed Holtmann, M., & Thurm, U. (2001). Mono- and oligo-vesicular synapses and their connectivity in a Cnidarian sensory epithelium (Coryne tubulosa). J Comp Neurol, 432(4), 537–549.PubMed
go back to reference Hoyle, G., Williams, M., & Philips, C. (1986). Functional morphology of insect neuronal cell-surface/glial contacts: The trophospongium. Journal of Comparative Neurology, 246, 113–128.PubMed Hoyle, G., Williams, M., & Philips, C. (1986). Functional morphology of insect neuronal cell-surface/glial contacts: The trophospongium. Journal of Comparative Neurology, 246, 113–128.PubMed
go back to reference Jia, X. X., Gorczyca, M., & Budnik, V. (1993). Ultrastructure of neuromuscular junctions in Drosophila: Comparison of wild type and mutants with increased excitability. Journal of Neurobiology, 24(8), 1025–1044. doi:10.1002/neu.480240804.PubMed Jia, X. X., Gorczyca, M., & Budnik, V. (1993). Ultrastructure of neuromuscular junctions in Drosophila: Comparison of wild type and mutants with increased excitability. Journal of Neurobiology, 24(8), 1025–1044. doi:10.​1002/​neu.​480240804.PubMed
go back to reference Jones, D. G., & Calverley, R. K. (1991). Perforated and non-perforated synapses in rat neocortex: Three-dimensional reconstructions. Brain Research, 556(2), 247–258.PubMed Jones, D. G., & Calverley, R. K. (1991). Perforated and non-perforated synapses in rat neocortex: Three-dimensional reconstructions. Brain Research, 556(2), 247–258.PubMed
go back to reference Joshi, P., Benussi, L., Furlan, R., Ghidoni, R., & Verderio, C. (2015). Extracellular Vesicles in Alzheimer’s Disease: Friends or Foes? Focus on Abeta-Vesicle Interaction. International Journal of Molecular Sciences, 16(3), 4800–4813. doi:10.3390/ijms16034800.PubMedCentralPubMed Joshi, P., Benussi, L., Furlan, R., Ghidoni, R., & Verderio, C. (2015). Extracellular Vesicles in Alzheimer’s Disease: Friends or Foes? Focus on Abeta-Vesicle Interaction. International Journal of Molecular Sciences, 16(3), 4800–4813. doi:10.​3390/​ijms16034800.PubMedCentralPubMed
go back to reference Klueg, K. M., & Muskavitch, M. A. (1999). Ligand-receptor interactions and trans-endocytosis of Delta, Serrate and Notch: Members of the Notch signalling pathway in Drosophila. Journal of Cell Science, 112(Pt 19), 3289–3297.PubMed Klueg, K. M., & Muskavitch, M. A. (1999). Ligand-receptor interactions and trans-endocytosis of Delta, Serrate and Notch: Members of the Notch signalling pathway in Drosophila. Journal of Cell Science, 112(Pt 19), 3289–3297.PubMed
go back to reference Krämer, H., Cagan, R. L., & Zipursky, S. L. (1991). Interaction of bride of sevenless membrane-bound ligand and the sevenless tyrosine-kinase receptor. Nature, 352(6332), 207–212. doi:10.1038/352207a0.PubMed Krämer, H., Cagan, R. L., & Zipursky, S. L. (1991). Interaction of bride of sevenless membrane-bound ligand and the sevenless tyrosine-kinase receptor. Nature, 352(6332), 207–212. doi:10.​1038/​352207a0.PubMed
go back to reference Kröger, R. H., & Wagner, H. J. (1996). Horizontal cell spinule dynamics in fish are affected by rearing in monochromatic light. Vision Research, 36(24), 3879–3889.PubMed Kröger, R. H., & Wagner, H. J. (1996). Horizontal cell spinule dynamics in fish are affected by rearing in monochromatic light. Vision Research, 36(24), 3879–3889.PubMed
go back to reference Larsen, W. J. (1983). Biological implications of gap junction structure, distribution and composition: A review. Tissue and Cell, 15(5), 645–671.PubMed Larsen, W. J. (1983). Biological implications of gap junction structure, distribution and composition: A review. Tissue and Cell, 15(5), 645–671.PubMed
go back to reference Leise, E. M., & Cloney, R. A. (1982). Chiton integument: Ultrastructure of the sensory hairs of Mopalia muscosa (Mollusca: Polyplacophora). Cell and Tissue Research, 223(1), 43–59.PubMed Leise, E. M., & Cloney, R. A. (1982). Chiton integument: Ultrastructure of the sensory hairs of Mopalia muscosa (Mollusca: Polyplacophora). Cell and Tissue Research, 223(1), 43–59.PubMed
go back to reference Leranth, C., & Frotscher, M. (1986). Synaptic connections of cholecystokinin-immunoreactive neurons and terminals in the rat fascia dentata: A combined light and electron microscopic study. Journal of Comparative Neurology, 254(1), 51–64. doi:10.1002/cne.902540105.PubMed Leranth, C., & Frotscher, M. (1986). Synaptic connections of cholecystokinin-immunoreactive neurons and terminals in the rat fascia dentata: A combined light and electron microscopic study. Journal of Comparative Neurology, 254(1), 51–64. doi:10.​1002/​cne.​902540105.PubMed
go back to reference Li, Y. C., Li, Y. N., Cheng, C. X., Sakamoto, H., Kawate, T., Shimada, O., et al. (2005). Subsurface cisterna-lined axonal invaginations and double-walled vesicles at the axonal-myelin sheath interface. Neuroscience Research, 53(3), 298–303. doi:10.1016/j.neures.2005.07.006.PubMed Li, Y. C., Li, Y. N., Cheng, C. X., Sakamoto, H., Kawate, T., Shimada, O., et al. (2005). Subsurface cisterna-lined axonal invaginations and double-walled vesicles at the axonal-myelin sheath interface. Neuroscience Research, 53(3), 298–303. doi:10.​1016/​j.​neures.​2005.​07.​006.PubMed
go back to reference Mäntylä, K., Reuter, M., Halton, D. W., Maule, A. G., Brennan, G. P., Shaw, C., et al. (1998). The nervous system of Procerodes littoralis (Maricola, Tricladida). An ultrastructural and immunoelectron microscopical study. Acta Zoologica, 79(1), 1–8. Mäntylä, K., Reuter, M., Halton, D. W., Maule, A. G., Brennan, G. P., Shaw, C., et al. (1998). The nervous system of Procerodes littoralis (Maricola, Tricladida). An ultrastructural and immunoelectron microscopical study. Acta Zoologica, 79(1), 1–8.
go back to reference Marston, D. J., Dickinson, S., & Nobes, C. D. (2003). Rac-dependent trans-endocytosis of ephrinBs regulates Eph–ephrin contact repulsion. Nature Cell Biology, 5(10), 879–888. doi:10.1038/ncb1044.PubMed Marston, D. J., Dickinson, S., & Nobes, C. D. (2003). Rac-dependent trans-endocytosis of ephrinBs regulates Eph–ephrin contact repulsion. Nature Cell Biology, 5(10), 879–888. doi:10.​1038/​ncb1044.PubMed
go back to reference Mashanov, V. S., Zueva, O. R., Heinzeller, T., & Dolmatov, I. Y. (2006). Ultrastructure of the circumoral nerve ring and the radial nerve cords in holothurians (Echinodermata). Zoomorphology, 125, 27–38. Mashanov, V. S., Zueva, O. R., Heinzeller, T., & Dolmatov, I. Y. (2006). Ultrastructure of the circumoral nerve ring and the radial nerve cords in holothurians (Echinodermata). Zoomorphology, 125, 27–38.
go back to reference Matsuo, I., Kimura-Yoshida, C., & Shimokawa, K. (2014). Divergent roles of heparan sulfate in regulation of FGF signaling during mammalian embryogenesis. In H. Kondoh & A. Kuroiwa (Eds.), New principles in developmental processes (pp. 239–251). Japan: Springer. Matsuo, I., Kimura-Yoshida, C., & Shimokawa, K. (2014). Divergent roles of heparan sulfate in regulation of FGF signaling during mammalian embryogenesis. In H. Kondoh & A. Kuroiwa (Eds.), New principles in developmental processes (pp. 239–251). Japan: Springer.
go back to reference Medvedev, N. I., Dallérac, G., Popov, V. I., Rodriguez Arellano, J. J., Davies, H. A., Kraev, I. V., et al. (2014). Multiple spine boutons are formed after long-lasting LTP in the awake rat. Brain Structure and Function, 219(1), 407–414. doi:10.1007/s00429-012-0488-0.PubMed Medvedev, N. I., Dallérac, G., Popov, V. I., Rodriguez Arellano, J. J., Davies, H. A., Kraev, I. V., et al. (2014). Multiple spine boutons are formed after long-lasting LTP in the awake rat. Brain Structure and Function, 219(1), 407–414. doi:10.​1007/​s00429-012-0488-0.PubMed
go back to reference Mitchell, N., Petralia, R. S., Currier, D. G., Wang, Y. X., Kim, A., Mattson, M. P., et al. (2012). Sonic hedgehog regulates presynaptic terminal size, ultrastructure and function in hippocampal neurons. Journal of Cell Science, 125(Pt 18), 4207–4213. doi:10.1242/jcs.105080.PubMedCentralPubMed Mitchell, N., Petralia, R. S., Currier, D. G., Wang, Y. X., Kim, A., Mattson, M. P., et al. (2012). Sonic hedgehog regulates presynaptic terminal size, ultrastructure and function in hippocampal neurons. Journal of Cell Science, 125(Pt 18), 4207–4213. doi:10.​1242/​jcs.​105080.PubMedCentralPubMed
go back to reference Mueller, W. A., Hassel, M., & Grealy, M. (2015). Development and reproduction in humans and animal model species. Berlin: Springer. Mueller, W. A., Hassel, M., & Grealy, M. (2015). Development and reproduction in humans and animal model species. Berlin: Springer.
go back to reference Mugnaini, E., Floris, A., & Wright-Goss, M. (1994). Extraordinary synapses of the unipolar brush cell: An electron microscopic study in the rat cerebellum. Synapse, 16(4), 284–311. doi:10.1002/syn.890160406.PubMed Mugnaini, E., Floris, A., & Wright-Goss, M. (1994). Extraordinary synapses of the unipolar brush cell: An electron microscopic study in the rat cerebellum. Synapse, 16(4), 284–311. doi:10.​1002/​syn.​890160406.PubMed
go back to reference Mugnaini, E., Osen, K. K., Dahl, A. L., Friedrich, V. L, Jr, & Korte, G. (1980). Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse. Journal of Neurocytology, 9(4), 537–570.PubMed Mugnaini, E., Osen, K. K., Dahl, A. L., Friedrich, V. L, Jr, & Korte, G. (1980). Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse. Journal of Neurocytology, 9(4), 537–570.PubMed
go back to reference Muriel, M. P., Agid, Y., & Hirsch, E. (2001). Plasticity of afferent fibers to striatal neurons bearing D1 dopamine receptors in Parkinson’s disease. Movement Disorders, 16(3), 435–441.PubMed Muriel, M. P., Agid, Y., & Hirsch, E. (2001). Plasticity of afferent fibers to striatal neurons bearing D1 dopamine receptors in Parkinson’s disease. Movement Disorders, 16(3), 435–441.PubMed
go back to reference Murphy, D. D., & Andrews, S. B. (2000). Culture models for the study of estradiol-induced synaptic plasticity. Journal of Neurocytology, 29(5–6), 411–417.PubMed Murphy, D. D., & Andrews, S. B. (2000). Culture models for the study of estradiol-induced synaptic plasticity. Journal of Neurocytology, 29(5–6), 411–417.PubMed
go back to reference Nickel, M. (2010). Evolutionary emergence of synaptic nervous systems: What can we learn from the non-synaptic, nerveless Porifera? Invertebrate Biology, 129(1), 1–16. Nickel, M. (2010). Evolutionary emergence of synaptic nervous systems: What can we learn from the non-synaptic, nerveless Porifera? Invertebrate Biology, 129(1), 1–16.
go back to reference Nitsch, C., & Rinne, U. (1981). Large dense-core vesicle exocytosis and membrane recycling in the mossy fibre synapses of the rabbit hippocampus during epileptiform seizures. Journal of Neurocytology, 10(2), 201–209.PubMed Nitsch, C., & Rinne, U. (1981). Large dense-core vesicle exocytosis and membrane recycling in the mossy fibre synapses of the rabbit hippocampus during epileptiform seizures. Journal of Neurocytology, 10(2), 201–209.PubMed
go back to reference Nordlander, R. H., Masnyi, J. A., & Singer, M. (1975). Distribution of ultrastructural tracers in crustacean axons. Journal of Comparative Neurology, 161, 499–514.PubMed Nordlander, R. H., Masnyi, J. A., & Singer, M. (1975). Distribution of ultrastructural tracers in crustacean axons. Journal of Comparative Neurology, 161, 499–514.PubMed
go back to reference Omiya, Y., Uchigashima, M., Konno, K., Yamasaki, M., Miyazaki, T., Yoshida, T., et al. (2015). VGluT3-Expressing CCK-positive basket cells construct invaginating synapses enriched with endocannabinoid signaling proteins in particular cortical and cortex-like amygdaloid regions of mouse brains. Journal of Neuroscience, 35(10), 4215–4228. doi:10.1523/JNEUROSCI.4681-14.2015.PubMed Omiya, Y., Uchigashima, M., Konno, K., Yamasaki, M., Miyazaki, T., Yoshida, T., et al. (2015). VGluT3-Expressing CCK-positive basket cells construct invaginating synapses enriched with endocannabinoid signaling proteins in particular cortical and cortex-like amygdaloid regions of mouse brains. Journal of Neuroscience, 35(10), 4215–4228. doi:10.​1523/​JNEUROSCI.​4681-14.​2015.PubMed
go back to reference Osborne, M. P. (1967). The fine structure of neuromuscular junctions in the segmental muscles of the blowfly larva. Journal of Insect Physiology, 13, 827–833. Osborne, M. P. (1967). The fine structure of neuromuscular junctions in the segmental muscles of the blowfly larva. Journal of Insect Physiology, 13, 827–833.
go back to reference Palacios-Prü, E. L., Palacios, L., & Mendoza, R. V. (1981). Synaptogenetic mechanisms during chick cerebellar cortex development. Journal of Submicroscopic Cytology, 13(2), 145–167.PubMed Palacios-Prü, E. L., Palacios, L., & Mendoza, R. V. (1981). Synaptogenetic mechanisms during chick cerebellar cortex development. Journal of Submicroscopic Cytology, 13(2), 145–167.PubMed
go back to reference Palay, S. L., & Chan-Palay, V. (1974). Cerebellar cortex. Cytology and organization. New York: Springer. Palay, S. L., & Chan-Palay, V. (1974). Cerebellar cortex. Cytology and organization. New York: Springer.
go back to reference Papassotiropoulos, A., Stephan, D. A., Huentelman, M. J., Hoerndli, F. J., Craig, D. W., Pearson, J. V., et al. (2006). Common Kibra alleles are associated with human memory performance. Science, 314(5798), 475–478. doi:10.1126/science.1129837.PubMed Papassotiropoulos, A., Stephan, D. A., Huentelman, M. J., Hoerndli, F. J., Craig, D. W., Pearson, J. V., et al. (2006). Common Kibra alleles are associated with human memory performance. Science, 314(5798), 475–478. doi:10.​1126/​science.​1129837.PubMed
go back to reference Pappas, G. D., & Purpura, D. P. (1961). Fine structure of dendrites in the superficial neocortical neuropil. Experimental Neurology, 4, 507–530.PubMed Pappas, G. D., & Purpura, D. P. (1961). Fine structure of dendrites in the superficial neocortical neuropil. Experimental Neurology, 4, 507–530.PubMed
go back to reference Paspalas, C. D., Rakic, P., & Goldman-Rakic, P. S. (2006). Internalization of D2 dopamine receptors is clathrin-dependent and select to dendro-axonic appositions in primate prefrontal cortex. European Journal of Neuroscience, 24(5), 1395–1403. doi:10.1111/j.1460-9568.2006.05023.x.PubMed Paspalas, C. D., Rakic, P., & Goldman-Rakic, P. S. (2006). Internalization of D2 dopamine receptors is clathrin-dependent and select to dendro-axonic appositions in primate prefrontal cortex. European Journal of Neuroscience, 24(5), 1395–1403. doi:10.​1111/​j.​1460-9568.​2006.​05023.​x.PubMed
go back to reference Passey, S., Pellegrin, S., & Mellor, H. (2004). What is in a filopodium? Starfish versus hedgehogs. Biochemical Society Transactions, 32(Pt 6), 1115–1117. doi:10.1042/BST0321115.PubMed Passey, S., Pellegrin, S., & Mellor, H. (2004). What is in a filopodium? Starfish versus hedgehogs. Biochemical Society Transactions, 32(Pt 6), 1115–1117. doi:10.​1042/​BST0321115.PubMed
go back to reference Pavans de Ceccatty, M. (1966). Ultrastructures et rapports des cellules mesenchymateuses de type nerveux de l’eponge Tethya lyncurium Link. Annales des Sciences Naturelles—Zoologie et Biologie Animale, 8, 577–614. Pavans de Ceccatty, M. (1966). Ultrastructures et rapports des cellules mesenchymateuses de type nerveux de l’eponge Tethya lyncurium Link. Annales des Sciences Naturelles—Zoologie et Biologie Animale, 8, 577–614.
go back to reference Pentreath, V. W., Berry, M. S., & Cobb, J. L. (1975). Nerve-ending specializations in the central ganglia of Planorbis corneus. Cell and Tissue Research, 163(1), 99–110.PubMed Pentreath, V. W., Berry, M. S., & Cobb, J. L. (1975). Nerve-ending specializations in the central ganglia of Planorbis corneus. Cell and Tissue Research, 163(1), 99–110.PubMed
go back to reference Petralia, R. S., Mattson, M. P., & Yao, P. J. (2014a). Communication breakdown: The impact of ageing on synapse structure. Ageing Res Rev, 14, 31–42.PubMedCentralPubMed Petralia, R. S., Mattson, M. P., & Yao, P. J. (2014a). Communication breakdown: The impact of ageing on synapse structure. Ageing Res Rev, 14, 31–42.PubMedCentralPubMed
go back to reference Petralia, R. S., Schwartz, C. M., Wang, Y. X., Mattson, M. P., & Yao, P. J. (2011). Subcellular localization of patched and smoothened, the receptors for sonic hedgehog signaling, in the hippocampal neuron. Journal of Comparative Neurology, 519(18), 3684–3699. doi:10.1002/cne.22681.PubMedCentralPubMed Petralia, R. S., Schwartz, C. M., Wang, Y. X., Mattson, M. P., & Yao, P. J. (2011). Subcellular localization of patched and smoothened, the receptors for sonic hedgehog signaling, in the hippocampal neuron. Journal of Comparative Neurology, 519(18), 3684–3699. doi:10.​1002/​cne.​22681.PubMedCentralPubMed
go back to reference Petralia, R. S., & Wenthold, R. J. (1992). Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. Journal of Comparative Neurology, 318(3), 329–354. doi:10.1002/cne.903180309.PubMed Petralia, R. S., & Wenthold, R. J. (1992). Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. Journal of Comparative Neurology, 318(3), 329–354. doi:10.​1002/​cne.​903180309.PubMed
go back to reference Popov, V. I., Kleschevnikov, A. M., Klimenko, O. A., Stewart, M. G., & Belichenko, P. V. (2011). Three-dimensional synaptic ultrastructure in the dentate gyrus and hippocampal area CA3 in the Ts65Dn mouse model of down syndrome. Journal of Comparative Neurology, 519(7), 1338–1354. doi:10.1002/cne.22573.PubMed Popov, V. I., Kleschevnikov, A. M., Klimenko, O. A., Stewart, M. G., & Belichenko, P. V. (2011). Three-dimensional synaptic ultrastructure in the dentate gyrus and hippocampal area CA3 in the Ts65Dn mouse model of down syndrome. Journal of Comparative Neurology, 519(7), 1338–1354. doi:10.​1002/​cne.​22573.PubMed
go back to reference Raikova, O. I., Reuter, M., Jondelius, U., & Gustafsson, M. K. S. (2000). An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (Bilateria inc. sed.). Zoomorphology, 120, 107–118. Raikova, O. I., Reuter, M., Jondelius, U., & Gustafsson, M. K. S. (2000). An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (Bilateria inc. sed.). Zoomorphology, 120, 107–118.
go back to reference Ramirez-Weber, F. A., & Kornberg, T. B. (1999). Cytonemes: Cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell, 97(5), 599–607.PubMed Ramirez-Weber, F. A., & Kornberg, T. B. (1999). Cytonemes: Cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell, 97(5), 599–607.PubMed
go back to reference Remis, J. P., Wei, D., Gorur, A., Zemla, M., Haraga, J., Allen, S., et al. (2014). Bacterial social networks: Structure and composition of Myxococcus xanthus outer membrane vesicle chains. Environmental Microbiology, 16(2), 598–610. doi:10.1111/1462-2920.12187.PubMedCentralPubMed Remis, J. P., Wei, D., Gorur, A., Zemla, M., Haraga, J., Allen, S., et al. (2014). Bacterial social networks: Structure and composition of Myxococcus xanthus outer membrane vesicle chains. Environmental Microbiology, 16(2), 598–610. doi:10.​1111/​1462-2920.​12187.PubMedCentralPubMed
go back to reference Richards, D. A., Mateos, J. M., Hugel, S., de Paola, V., Caroni, P., Gahwiler, B. H., et al. (2005). Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures. Proceedings of the National Academy of Sciences of the USA, 102(17), 6166–6171. doi:10.1073/pnas.0501881102.PubMedCentralPubMed Richards, D. A., Mateos, J. M., Hugel, S., de Paola, V., Caroni, P., Gahwiler, B. H., et al. (2005). Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures. Proceedings of the National Academy of Sciences of the USA, 102(17), 6166–6171. doi:10.​1073/​pnas.​0501881102.PubMedCentralPubMed
go back to reference Ringstad, N., Gad, H., Low, P., Di Paolo, G., Brodin, L., Shupliakov, O., et al. (1999). Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron, 24(1), 143–154.PubMed Ringstad, N., Gad, H., Low, P., Di Paolo, G., Brodin, L., Shupliakov, O., et al. (1999). Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron, 24(1), 143–154.PubMed
go back to reference Risinger, M. A., & Larsen, W. J. (1981). Endocytosis of cell-cell junctions and spontaneous cell disaggregation in a cultured human ovarian adenocarcinoma. (COLO 316). Tissue and Cell, 13(2), 413–430.PubMed Risinger, M. A., & Larsen, W. J. (1981). Endocytosis of cell-cell junctions and spontaneous cell disaggregation in a cultured human ovarian adenocarcinoma. (COLO 316). Tissue and Cell, 13(2), 413–430.PubMed
go back to reference Robbins, J. R., Barth, A. I., Marquis, H., de Hostos, E. L., Nelson, W. J., & Theriot, J. A. (1999). Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. Journal of Cell Biology, 146(6), 1333–1350.PubMedCentralPubMed Robbins, J. R., Barth, A. I., Marquis, H., de Hostos, E. L., Nelson, W. J., & Theriot, J. A. (1999). Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. Journal of Cell Biology, 146(6), 1333–1350.PubMedCentralPubMed
go back to reference Saint Marie, R. L., & Carlson, S. D. (1982). Synaptic vesicle activity in stimulated and unstimulated photoreceptor axons in the housefly. A freeze-fracture study. Journal of Neurocytology, 11(5), 747–761.PubMed Saint Marie, R. L., & Carlson, S. D. (1982). Synaptic vesicle activity in stimulated and unstimulated photoreceptor axons in the housefly. A freeze-fracture study. Journal of Neurocytology, 11(5), 747–761.PubMed
go back to reference Sasaki, S., & Iwata, M. (1995). Synaptic loss in the proximal axon of anterior horn neurons in motor neuron disease. Acta Neuropathologica, 90(2), 170–175.PubMed Sasaki, S., & Iwata, M. (1995). Synaptic loss in the proximal axon of anterior horn neurons in motor neuron disease. Acta Neuropathologica, 90(2), 170–175.PubMed
go back to reference Sasaki, S., & Iwata, M. (1996). Synaptic loss in anterior horn neurons in lower motor neuron disease. Acta Neuropathologica, 91(4), 416–421.PubMed Sasaki, S., & Iwata, M. (1996). Synaptic loss in anterior horn neurons in lower motor neuron disease. Acta Neuropathologica, 91(4), 416–421.PubMed
go back to reference Sasaki, S., & Iwata, M. (1999). Ultrastructural change of synapses of Betz cells in patients with amyotrophic lateral sclerosis. Neuroscience Letters, 268(1), 29–32.PubMed Sasaki, S., & Iwata, M. (1999). Ultrastructural change of synapses of Betz cells in patients with amyotrophic lateral sclerosis. Neuroscience Letters, 268(1), 29–32.PubMed
go back to reference Satterlie, R. A., & Case, J. F. (1978). Gap junctions suggest epithelial conduction within the comb plates of the ctenophore Pleurobrachia bachei. Cell and Tissue Research, 193(1), 87–91.PubMed Satterlie, R. A., & Case, J. F. (1978). Gap junctions suggest epithelial conduction within the comb plates of the ctenophore Pleurobrachia bachei. Cell and Tissue Research, 193(1), 87–91.PubMed
go back to reference Schmidt, A., Hannah, M. J., & Huttner, W. B. (1997). Synaptic-like microvesicles of neuroendocrine cells originate from a novel compartment that is continuous with the plasma membrane and devoid of transferrin receptor. Journal of Cell Biology, 137(2), 445–458.PubMedCentralPubMed Schmidt, A., Hannah, M. J., & Huttner, W. B. (1997). Synaptic-like microvesicles of neuroendocrine cells originate from a novel compartment that is continuous with the plasma membrane and devoid of transferrin receptor. Journal of Cell Biology, 137(2), 445–458.PubMedCentralPubMed
go back to reference Schultz, K., Janssen-Bienhold, U., Gundelfinger, E. D., Kreutz, M. R., & Weiler, R. (2004). Calcium-binding protein Caldendrin and CaMKII are localized in spinules of the carp retina. Journal of Comparative Neurology, 479(1), 84–93. doi:10.1002/cne.20314.PubMed Schultz, K., Janssen-Bienhold, U., Gundelfinger, E. D., Kreutz, M. R., & Weiler, R. (2004). Calcium-binding protein Caldendrin and CaMKII are localized in spinules of the carp retina. Journal of Comparative Neurology, 479(1), 84–93. doi:10.​1002/​cne.​20314.PubMed
go back to reference Schuster, T., Krug, M., & Wenzel, J. (1990). Spinules in axospinous synapses of the rat dentate gyrus: Changes in density following long-term potentiation. Brain Research, 523(1), 171–174.PubMed Schuster, T., Krug, M., & Wenzel, J. (1990). Spinules in axospinous synapses of the rat dentate gyrus: Changes in density following long-term potentiation. Brain Research, 523(1), 171–174.PubMed
go back to reference Sebé-Pedrós, A., Burkhardt, P., Sanchez-Pons, N., Fairclough, S. R., Lang, B. F., King, N., et al. (2013). Insights into the origin of metazoan filopodia and microvilli. Molecular Biology and Evolution, 30(9), 2013–2023. doi:10.1093/molbev/mst110.PubMedCentralPubMed Sebé-Pedrós, A., Burkhardt, P., Sanchez-Pons, N., Fairclough, S. R., Lang, B. F., King, N., et al. (2013). Insights into the origin of metazoan filopodia and microvilli. Molecular Biology and Evolution, 30(9), 2013–2023. doi:10.​1093/​molbev/​mst110.PubMedCentralPubMed
go back to reference Shaw, S. R., & Meinertzhagen, I. A. (1986). Evolutionary progression at synaptic connections made by identified homologous neurones. Proceedings of the National Academy of Sciences of the USA, 83(20), 7961–7965.PubMedCentralPubMed Shaw, S. R., & Meinertzhagen, I. A. (1986). Evolutionary progression at synaptic connections made by identified homologous neurones. Proceedings of the National Academy of Sciences of the USA, 83(20), 7961–7965.PubMedCentralPubMed
go back to reference Sherer, N. M., Lehmann, M. J., Jimenez-Soto, L. F., Horensavitz, C., Pypaert, M., & Mothes, W. (2007). Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nature Cell Biology, 9(3), 310–315. doi:10.1038/ncb1544.PubMedCentralPubMed Sherer, N. M., Lehmann, M. J., Jimenez-Soto, L. F., Horensavitz, C., Pypaert, M., & Mothes, W. (2007). Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nature Cell Biology, 9(3), 310–315. doi:10.​1038/​ncb1544.PubMedCentralPubMed
go back to reference Shupliakov, O., Low, P., Grabs, D., Gad, H., Chen, H., David, C., et al. (1997). Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science, 276(5310), 259–263.PubMed Shupliakov, O., Low, P., Grabs, D., Gad, H., Chen, H., David, C., et al. (1997). Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science, 276(5310), 259–263.PubMed
go back to reference Smith, J. E., Clark, A. W., & Kuster, T. A. (1977). Suppression by elevated calcium of black widow spider venom activity at frog neuromuscular junctions. Journal of Neurocytology, 6(5), 519–539.PubMed Smith, J. E., Clark, A. W., & Kuster, T. A. (1977). Suppression by elevated calcium of black widow spider venom activity at frog neuromuscular junctions. Journal of Neurocytology, 6(5), 519–539.PubMed
go back to reference Sobkowicz, H. M., August, B. K., Slapnick, S. M., & Luthy, D. F. (1998). Terminal dendritic sprouting and reactive synaptogenesis in the postnatal organ of Corti in culture. Journal of Comparative Neurology, 397(2), 213–230.PubMed Sobkowicz, H. M., August, B. K., Slapnick, S. M., & Luthy, D. F. (1998). Terminal dendritic sprouting and reactive synaptogenesis in the postnatal organ of Corti in culture. Journal of Comparative Neurology, 397(2), 213–230.PubMed
go back to reference Sobkowicz, H. M., Rose, J. E., Scott, G. L., & Levenick, C. V. (1986). Distribution of synaptic ribbons in the developing organ of Corti. Journal of Neurocytology, 15(6), 693–714.PubMed Sobkowicz, H. M., Rose, J. E., Scott, G. L., & Levenick, C. V. (1986). Distribution of synaptic ribbons in the developing organ of Corti. Journal of Neurocytology, 15(6), 693–714.PubMed
go back to reference Sobkowicz, H. M., Slapnick, S. M., & August, B. K. (1999). Apoptosis of inner hair cells caused by laser ablation of their spiral ganglion neurons in cultures of the mouse organ of Corti. Journal of Neurocytology, 28(10–11), 939–954.PubMed Sobkowicz, H. M., Slapnick, S. M., & August, B. K. (1999). Apoptosis of inner hair cells caused by laser ablation of their spiral ganglion neurons in cultures of the mouse organ of Corti. Journal of Neurocytology, 28(10–11), 939–954.PubMed
go back to reference Sobkowicz, H. M., Slapnick, S. M., & August, B. K. (2002). Differentiation of spinous synapses in the mouse organ of corti. Synapse, 45(1), 10–24. doi:10.1002/syn.10080.PubMed Sobkowicz, H. M., Slapnick, S. M., & August, B. K. (2002). Differentiation of spinous synapses in the mouse organ of corti. Synapse, 45(1), 10–24. doi:10.​1002/​syn.​10080.PubMed
go back to reference Sobkowicz, H. M., Slapnick, S. M., & August, B. K. (2003). Reciprocal synapses between inner hair cell spines and afferent dendrites in the organ of corti of the mouse. Synapse, 50(1), 53–66. doi:10.1002/syn.10241.PubMed Sobkowicz, H. M., Slapnick, S. M., & August, B. K. (2003). Reciprocal synapses between inner hair cell spines and afferent dendrites in the organ of corti of the mouse. Synapse, 50(1), 53–66. doi:10.​1002/​syn.​10241.PubMed
go back to reference Sorra, K. E., Fiala, J. C., & Harris, K. M. (1998). Critical assessment of the involvement of perforations, spinules, and spine branching in hippocampal synapse formation. Journal of Comparative Neurology, 398(2), 225–240.PubMed Sorra, K. E., Fiala, J. C., & Harris, K. M. (1998). Critical assessment of the involvement of perforations, spinules, and spine branching in hippocampal synapse formation. Journal of Comparative Neurology, 398(2), 225–240.PubMed
go back to reference Stark, W. S., & Carlson, S. D. (1986). Ultrastructure of capitate projections in the optic neuropil of Diptera. Cell and Tissue Research, 246(3), 481–486.PubMed Stark, W. S., & Carlson, S. D. (1986). Ultrastructure of capitate projections in the optic neuropil of Diptera. Cell and Tissue Research, 246(3), 481–486.PubMed
go back to reference Stark, W. S., Sapp, R., & Carlson, S. D. (1989). Ultrastructure of the ocellar visual system in normal and mutant Drosophila melanogaster. Journal of Neurogenetics, 5, 127–153.PubMed Stark, W. S., Sapp, R., & Carlson, S. D. (1989). Ultrastructure of the ocellar visual system in normal and mutant Drosophila melanogaster. Journal of Neurogenetics, 5, 127–153.PubMed
go back to reference Stewart, M. G., Davies, H. A., Sandi, C., Kraev, I. V., Rogachevsky, V. V., Peddie, C. J., et al. (2005a). Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: A three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities. Neuroscience, 131(1), 43–54. doi:10.1016/j.neuroscience.2004.10.031.PubMed Stewart, M. G., Davies, H. A., Sandi, C., Kraev, I. V., Rogachevsky, V. V., Peddie, C. J., et al. (2005a). Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: A three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities. Neuroscience, 131(1), 43–54. doi:10.​1016/​j.​neuroscience.​2004.​10.​031.PubMed
go back to reference Stewart, M. G., Medvedev, N. I., Popov, V. I., Schoepfer, R., Davies, H. A., Murphy, K., et al. (2005b). Chemically induced long-term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices. European Journal of Neuroscience, 21(12), 3368–3378. doi:10.1111/j.1460-9568.2005.04174.x.PubMed Stewart, M. G., Medvedev, N. I., Popov, V. I., Schoepfer, R., Davies, H. A., Murphy, K., et al. (2005b). Chemically induced long-term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices. European Journal of Neuroscience, 21(12), 3368–3378. doi:10.​1111/​j.​1460-9568.​2005.​04174.​x.PubMed
go back to reference Sukhdeo, S. C., & Sukhdeo, M. V. K. (1994). Mesenchyme cells in Fasciola hepatica (Platyhelminthes): Primitive glia? Tissue and Cell, 26(1), 123–131.PubMed Sukhdeo, S. C., & Sukhdeo, M. V. K. (1994). Mesenchyme cells in Fasciola hepatica (Platyhelminthes): Primitive glia? Tissue and Cell, 26(1), 123–131.PubMed
go back to reference Tarrant, S. B., & Routtenberg, A. (1977). The synaptic spinule in the dendritic spine: Electron microscopic study of the hippocampal dentate gyrus. Tissue and Cell, 9(3), 461–473.PubMed Tarrant, S. B., & Routtenberg, A. (1977). The synaptic spinule in the dendritic spine: Electron microscopic study of the hippocampal dentate gyrus. Tissue and Cell, 9(3), 461–473.PubMed
go back to reference Tarrant, S. B., & Routtenberg, A. (1979). Postsynaptic membrane and spine apparatus: Proximity in dendritic spines. Neuroscience Letters, 11(3), 289–294.PubMed Tarrant, S. B., & Routtenberg, A. (1979). Postsynaptic membrane and spine apparatus: Proximity in dendritic spines. Neuroscience Letters, 11(3), 289–294.PubMed
go back to reference Toh, Y., & Kuwabara, M. (1974). Fine structure of the dorsal ocellus of the worker honeybee. Journal of Morphology, 143, 285–306. Toh, Y., & Kuwabara, M. (1974). Fine structure of the dorsal ocellus of the worker honeybee. Journal of Morphology, 143, 285–306.
go back to reference Toh, Y., & Kuwabara, M. (1975). Synaptic organization of the fleshfly ocellus. Journal of Neurocytology, 4(3), 271–287.PubMed Toh, Y., & Kuwabara, M. (1975). Synaptic organization of the fleshfly ocellus. Journal of Neurocytology, 4(3), 271–287.PubMed
go back to reference Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R., & Muller, D. (1999). LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature, 402(6760), 421–425. doi:10.1038/46574.PubMed Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R., & Muller, D. (1999). LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature, 402(6760), 421–425. doi:10.​1038/​46574.PubMed
go back to reference Trujillo-Cenóz, O. (1965). Some aspects of the structural organization of the intermediate retina of dipterans. Journal of Ultrastructure Research, 13(1), 1–33.PubMed Trujillo-Cenóz, O. (1965). Some aspects of the structural organization of the intermediate retina of dipterans. Journal of Ultrastructure Research, 13(1), 1–33.PubMed
go back to reference Wagner, H. J. (1980). Light-dependent plasticity of the morphology of horizontal cell terminals in cone pedicles of fish retinas. Journal of Neurocytology, 9(5), 573–590.PubMed Wagner, H. J. (1980). Light-dependent plasticity of the morphology of horizontal cell terminals in cone pedicles of fish retinas. Journal of Neurocytology, 9(5), 573–590.PubMed
go back to reference Wagner, H. J., & Djamgoz, M. B. (1993). Spinules: a case for retinal synaptic plasticity. Trends in Neurosciences, 16(6), 201–206.PubMed Wagner, H. J., & Djamgoz, M. B. (1993). Spinules: a case for retinal synaptic plasticity. Trends in Neurosciences, 16(6), 201–206.PubMed
go back to reference Waxman, S. G., Waxman, M., & Pappas, G. D. (1980). Coordinated micropinocytotic activity of adjacent neuronal membranes in mammalian central nervous system. Neuroscience Letters, 20(2), 141–146.PubMed Waxman, S. G., Waxman, M., & Pappas, G. D. (1980). Coordinated micropinocytotic activity of adjacent neuronal membranes in mammalian central nervous system. Neuroscience Letters, 20(2), 141–146.PubMed
go back to reference Weiler, R., & Schultz, K. (1993). Ionotropic non-N-methyl-D-aspartate agonists induce retraction of dendritic spinules from retinal horizontal cells. Proceedings of the National Academy of Sciences of the USA, 90(14), 6533–6537.PubMedCentralPubMed Weiler, R., & Schultz, K. (1993). Ionotropic non-N-methyl-D-aspartate agonists induce retraction of dendritic spinules from retinal horizontal cells. Proceedings of the National Academy of Sciences of the USA, 90(14), 6533–6537.PubMedCentralPubMed
go back to reference Weiler, R., Schultz, K., & Janssen-Bienhold, U. (1996). Ca(2+)-dependency of spinule plasticity at dendrites of retinal horizontal cells and its possible implication for the functional role of spinules. Vision Research, 36(24), 3891–3900.PubMed Weiler, R., Schultz, K., & Janssen-Bienhold, U. (1996). Ca(2+)-dependency of spinule plasticity at dendrites of retinal horizontal cells and its possible implication for the functional role of spinules. Vision Research, 36(24), 3891–3900.PubMed
go back to reference Westfall, J. A. (1970). Ultrastructure of synapses in a primitive coelenterate. Journal of Ultrastructure Research, 32(3), 237–246.PubMed Westfall, J. A. (1970). Ultrastructure of synapses in a primitive coelenterate. Journal of Ultrastructure Research, 32(3), 237–246.PubMed
go back to reference Westrum, L. E., & Blackstad, T. W. (1962). An electron microscopic study of the stratum radiatum of the rat hippocampus (regio superior, CA 1) with particular emphasis on synaptology. Journal of Comparative Neurology, 119, 281–309.PubMed Westrum, L. E., & Blackstad, T. W. (1962). An electron microscopic study of the stratum radiatum of the rat hippocampus (regio superior, CA 1) with particular emphasis on synaptology. Journal of Comparative Neurology, 119, 281–309.PubMed
go back to reference Wierenga, C. J., Becker, N., & Bonhoeffer, T. (2008). GABAergic synapses are formed without the involvement of dendritic protrusions. Nature Neuroscience, 11(9), 1044–1052. doi:10.1038/nn.2180.PubMed Wierenga, C. J., Becker, N., & Bonhoeffer, T. (2008). GABAergic synapses are formed without the involvement of dendritic protrusions. Nature Neuroscience, 11(9), 1044–1052. doi:10.​1038/​nn.​2180.PubMed
go back to reference Williams, J. B. (1994). Unicellular adhesive secretion glands and other cells in the parenchyma of Temnocephala novaezealandiae (Platyhelminthes, Temnocephaloidea): Intercell relationships and nuclear pockets. New Zealand Journal of Zoology, 21(2), 167–178. Williams, J. B. (1994). Unicellular adhesive secretion glands and other cells in the parenchyma of Temnocephala novaezealandiae (Platyhelminthes, Temnocephaloidea): Intercell relationships and nuclear pockets. New Zealand Journal of Zoology, 21(2), 167–178.
go back to reference Wood, C. R., & Rosenbaum, J. L. (2015). Ciliary ectosomes: Transmissions from the cell’s antenna. Trends in Cell Biology, 25(5), 276–285.PubMed Wood, C. R., & Rosenbaum, J. L. (2015). Ciliary ectosomes: Transmissions from the cell’s antenna. Trends in Cell Biology, 25(5), 276–285.PubMed
go back to reference Wright, K. A., & Hui, N. (1976). Post-labial sensory structures on the cecal worm, Heterakis gallinarum. Journal of Parasitology, 62(4), 579–584.PubMed Wright, K. A., & Hui, N. (1976). Post-labial sensory structures on the cecal worm, Heterakis gallinarum. Journal of Parasitology, 62(4), 579–584.PubMed
go back to reference Yao, P. J., Petralia, R. S., Bushlin, I., Wang, Y., & Furukawa, K. (2005). Synaptic distribution of the endocytic accessory proteins AP180 and CALM. Journal of Comparative Neurology, 481(1), 58–69. doi:10.1002/cne.20362.PubMed Yao, P. J., Petralia, R. S., Bushlin, I., Wang, Y., & Furukawa, K. (2005). Synaptic distribution of the endocytic accessory proteins AP180 and CALM. Journal of Comparative Neurology, 481(1), 58–69. doi:10.​1002/​cne.​20362.PubMed
go back to reference Yoshida, T., Uchigashima, M., Yamasaki, M., Katona, I., Yamazaki, M., Sakimura, K., et al. (2011). Unique inhibitory synapse with particularly rich endocannabinoid signaling machinery on pyramidal neurons in basal amygdaloid nucleus. Proceedings of the National Academy of Sciences of the USA, 108(7), 3059–3064. doi:10.1073/pnas.1012875108.PubMedCentralPubMed Yoshida, T., Uchigashima, M., Yamasaki, M., Katona, I., Yamazaki, M., Sakimura, K., et al. (2011). Unique inhibitory synapse with particularly rich endocannabinoid signaling machinery on pyramidal neurons in basal amygdaloid nucleus. Proceedings of the National Academy of Sciences of the USA, 108(7), 3059–3064. doi:10.​1073/​pnas.​1012875108.PubMedCentralPubMed
go back to reference Zhao, H. M., Wenthold, R. J., & Petralia, R. S. (1998). Glutamate receptor targeting to synaptic populations on Purkinje cells is developmentally regulated. Journal of Neuroscience, 18(14), 5517–5528.PubMed Zhao, H. M., Wenthold, R. J., & Petralia, R. S. (1998). Glutamate receptor targeting to synaptic populations on Purkinje cells is developmentally regulated. Journal of Neuroscience, 18(14), 5517–5528.PubMed
go back to reference Zimmer, J., Lawrence, J., & Raisman, G. (1982). A quantitative electron microscopic study of synaptic reorganization in the rat medial habenular nucleus after transection of the stria medullaris. Neuroscience, 7(8), 1905–1928.PubMed Zimmer, J., Lawrence, J., & Raisman, G. (1982). A quantitative electron microscopic study of synaptic reorganization in the rat medial habenular nucleus after transection of the stria medullaris. Neuroscience, 7(8), 1905–1928.PubMed
Metadata
Title
Structure, Distribution, and Function of Neuronal/Synaptic Spinules and Related Invaginating Projections
Authors
Ronald S. Petralia
Ya-Xian Wang
Mark P. Mattson
Pamela J. Yao
Publication date
01-09-2015
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 3/2015
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-015-8358-6

Other articles of this Issue 3/2015

NeuroMolecular Medicine 3/2015 Go to the issue