Skip to main content
Top
Published in: NeuroMolecular Medicine 3/2015

01-09-2015 | Original Paper

Are Molecules Involved in Neuritogenesis and Axon Guidance Related to Autism Pathogenesis?

Authors: Jan Bakos, Zuzana Bacova, Stephen G. Grant, Ana M. Castejon, Daniela Ostatnikova

Published in: NeuroMolecular Medicine | Issue 3/2015

Login to get access

Abstract

Autism spectrum disorder is a heterogeneous disease, and numerous alterations of gene expression come into play to attempt to explain potential molecular and pathophysiological causes. Abnormalities of brain development and connectivity associated with alterations in cytoskeletal rearrangement, neuritogenesis and elongation of axons and dendrites might represent or contribute to the structural basis of autism pathology. Slit/Robo signaling regulates cytoskeletal remodeling related to axonal and dendritic branching. Components of its signaling pathway (ABL and Cdc42) are suspected to be molecular bases of alterations of normal development. The present review describes the most important mechanisms underlying neuritogenesis, axon pathfinding and the role of GTPases in neurite outgrowth, with special emphasis on alterations associated with autism spectrum disorders. On the basis of analysis of publicly available microarray data, potential biomarkers of autism are discussed.
Literature
go back to reference Alter, M. D., Kharkar, R., Ramsey, K. E., Craig, D. W., Melmed, R. D., Grebe, T. A., et al. (2011). Autism and increased paternal age related changes in global levels of gene expression regulation. PLoS One, 6(2), e16715.PubMedCentralCrossRefPubMed Alter, M. D., Kharkar, R., Ramsey, K. E., Craig, D. W., Melmed, R. D., Grebe, T. A., et al. (2011). Autism and increased paternal age related changes in global levels of gene expression regulation. PLoS One, 6(2), e16715.PubMedCentralCrossRefPubMed
go back to reference Auer, M., Schweigreiter, R., Hausott, B., Thongrong, S., Höltje, M., Just, I., et al. (2012). Rho-independent stimulation of axon outgrowth and activation of the ERK and Akt signaling pathways by C3 transferase in sensory neurons. Frontiers in Cellular Neuroscience, 6, 43.PubMedCentralCrossRefPubMed Auer, M., Schweigreiter, R., Hausott, B., Thongrong, S., Höltje, M., Just, I., et al. (2012). Rho-independent stimulation of axon outgrowth and activation of the ERK and Akt signaling pathways by C3 transferase in sensory neurons. Frontiers in Cellular Neuroscience, 6, 43.PubMedCentralCrossRefPubMed
go back to reference Billeci, L., Calderoni, S., Tosetti, M., Catani, M., & Muratori, F. (2012). White matter connectivity in children with autism spectrum disorders: A tract-based spatial statistics study. BMC Neurology, 12, 148.PubMedCentralCrossRefPubMed Billeci, L., Calderoni, S., Tosetti, M., Catani, M., & Muratori, F. (2012). White matter connectivity in children with autism spectrum disorders: A tract-based spatial statistics study. BMC Neurology, 12, 148.PubMedCentralCrossRefPubMed
go back to reference Birnbaum, R., Jaffe, A. E., Hyde, T. M., Kleinman, J. E., & Weinberger, D. R. (2014). Prenatal expression patterns of genes associated with neuropsychiatric disorders. American Journal of Psychiatry, 171(7), 758–767.PubMedCentralCrossRefPubMed Birnbaum, R., Jaffe, A. E., Hyde, T. M., Kleinman, J. E., & Weinberger, D. R. (2014). Prenatal expression patterns of genes associated with neuropsychiatric disorders. American Journal of Psychiatry, 171(7), 758–767.PubMedCentralCrossRefPubMed
go back to reference Burton, E. A., Oliver, T. N., & Pendergast, A. M. (2005). Abl kinases regulate actin comet tail elongation via an N-WASP-dependent pathway. Molecular and Cellular Biology, 25(20), 8834–8843.PubMedCentralCrossRefPubMed Burton, E. A., Oliver, T. N., & Pendergast, A. M. (2005). Abl kinases regulate actin comet tail elongation via an N-WASP-dependent pathway. Molecular and Cellular Biology, 25(20), 8834–8843.PubMedCentralCrossRefPubMed
go back to reference Carroll, D., Hallett, V., McDougle, C. J., Aman, M. G., McCracken, J. T., Tierney, E., et al. (2014). Examination of aggression and self-injury in children with autism spectrum disorders and serious behavioral problems. Child and Adolescent Psychiatric Clinics of North America, 23(1), 57–72.PubMedCentralCrossRefPubMed Carroll, D., Hallett, V., McDougle, C. J., Aman, M. G., McCracken, J. T., Tierney, E., et al. (2014). Examination of aggression and self-injury in children with autism spectrum disorders and serious behavioral problems. Child and Adolescent Psychiatric Clinics of North America, 23(1), 57–72.PubMedCentralCrossRefPubMed
go back to reference Castermans, D., Volders, K., Crepel, A., Backx, L., De Vos, R., Freson, K., et al. (2010). SCAMP5, NBEA and AMISYN: Three candidate genes for autism involved in secretion of large dense-core vesicles. Human Molecular Genetics, 19(7), 1368–1378.CrossRefPubMed Castermans, D., Volders, K., Crepel, A., Backx, L., De Vos, R., Freson, K., et al. (2010). SCAMP5, NBEA and AMISYN: Three candidate genes for autism involved in secretion of large dense-core vesicles. Human Molecular Genetics, 19(7), 1368–1378.CrossRefPubMed
go back to reference Chang, Y. C., Tien, S. C., Tien, H. F., Zhang, H., Bokoch, G. M., & Chang, Z. F. (2009). p210 (Bcr-Abl) desensitizes Cdc42 GTPase signaling for SDF-1alpha-directed migration in chronic myeloid leukemia cells. Oncogene, 28(46), 4105–4115.CrossRefPubMed Chang, Y. C., Tien, S. C., Tien, H. F., Zhang, H., Bokoch, G. M., & Chang, Z. F. (2009). p210 (Bcr-Abl) desensitizes Cdc42 GTPase signaling for SDF-1alpha-directed migration in chronic myeloid leukemia cells. Oncogene, 28(46), 4105–4115.CrossRefPubMed
go back to reference Corvin, A. P. (2010). Neuronal cell adhesion genes: Key players in risk for schizophrenia, bipolar disorder and other neurodevelopmental brain disorders?. Cell Adhesion and Migration, 4(4), 511–514.PubMedCentralCrossRefPubMed Corvin, A. P. (2010). Neuronal cell adhesion genes: Key players in risk for schizophrenia, bipolar disorder and other neurodevelopmental brain disorders?. Cell Adhesion and Migration, 4(4), 511–514.PubMedCentralCrossRefPubMed
go back to reference Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290(3), 337–344.CrossRefPubMed Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290(3), 337–344.CrossRefPubMed
go back to reference da Silva, J. S., & Dotti, C. G. (2002). Breaking the neuronal sphere: Regulation of the actin cytoskeleton in neuritogenesis. Nature Reviews Neuroscience, 3(9), 694–704.CrossRefPubMed da Silva, J. S., & Dotti, C. G. (2002). Breaking the neuronal sphere: Regulation of the actin cytoskeleton in neuritogenesis. Nature Reviews Neuroscience, 3(9), 694–704.CrossRefPubMed
go back to reference Dehmelt, L., & Halpain, S. (2004). Actin and microtubules in neurite initiation: Are MAPs the missing link? Journal of Neurobiology, 58(1), 18–33.CrossRefPubMed Dehmelt, L., & Halpain, S. (2004). Actin and microtubules in neurite initiation: Are MAPs the missing link? Journal of Neurobiology, 58(1), 18–33.CrossRefPubMed
go back to reference Dehmelt, L., Nalbant, P., Steffen, W., & Halpain, S. (2006). A microtubule-based, dynein-dependent force induces local cell protrusions: Implications for neurite initiation. Brain Cell Biology, 35(1), 39–56.CrossRefPubMed Dehmelt, L., Nalbant, P., Steffen, W., & Halpain, S. (2006). A microtubule-based, dynein-dependent force induces local cell protrusions: Implications for neurite initiation. Brain Cell Biology, 35(1), 39–56.CrossRefPubMed
go back to reference Dent, E. W., Gupton, S. L., & Gertler, F. B. (2011). The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harbor Perspectives in Biology, 3(3), a001800.PubMedCentralCrossRefPubMed Dent, E. W., Gupton, S. L., & Gertler, F. B. (2011). The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harbor Perspectives in Biology, 3(3), a001800.PubMedCentralCrossRefPubMed
go back to reference Dotti, C. G., Sullivan, C. A., & Banker, G. A. (1988). The establishment of polarity by hippocampal neurons in culture. Journal of Neuroscience, 8(4), 1454–1468.PubMed Dotti, C. G., Sullivan, C. A., & Banker, G. A. (1988). The establishment of polarity by hippocampal neurons in culture. Journal of Neuroscience, 8(4), 1454–1468.PubMed
go back to reference Edwards, T. J., Sherr, E. H., Barkovich, A. J., & Richards, L. J. (2014). Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. Brain, 137(6), 1579–1613.PubMedCentralCrossRefPubMed Edwards, T. J., Sherr, E. H., Barkovich, A. J., & Richards, L. J. (2014). Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. Brain, 137(6), 1579–1613.PubMedCentralCrossRefPubMed
go back to reference Goldberg, D., Borojevic, R., Anderson, M., Chen, J. J., Gershon, M. D., & Ratcliffe, E. M. (2013). Slit/Robo-mediated chemorepulsion of vagal sensory axons in the fetal gut. Developmental Dynamics, 242(1), 9–15.PubMedCentralCrossRefPubMed Goldberg, D., Borojevic, R., Anderson, M., Chen, J. J., Gershon, M. D., & Ratcliffe, E. M. (2013). Slit/Robo-mediated chemorepulsion of vagal sensory axons in the fetal gut. Developmental Dynamics, 242(1), 9–15.PubMedCentralCrossRefPubMed
go back to reference Govek, E. E., Newey, S. E., & Van Aelst, L. (2005). The role of the Rho GTPases in neuronal development. Genes and Development, 19(1), 1–49.CrossRefPubMed Govek, E. E., Newey, S. E., & Van Aelst, L. (2005). The role of the Rho GTPases in neuronal development. Genes and Development, 19(1), 1–49.CrossRefPubMed
go back to reference Gregg, J. P., Lit, L., Baron, C. A., Hertz-Picciotto, I., Walker, W., Davis, R. A., et al. (2008). Gene expression changes in children with autism. Genomics, 91(1), 22–29.CrossRefPubMed Gregg, J. P., Lit, L., Baron, C. A., Hertz-Picciotto, I., Walker, W., Davis, R. A., et al. (2008). Gene expression changes in children with autism. Genomics, 91(1), 22–29.CrossRefPubMed
go back to reference Grice, D. E., & Buxbaum, J. D. (2006). The genetics of autism spectrum disorders. NeuroMolecular Medicine, 8(4), 451–460.CrossRefPubMed Grice, D. E., & Buxbaum, J. D. (2006). The genetics of autism spectrum disorders. NeuroMolecular Medicine, 8(4), 451–460.CrossRefPubMed
go back to reference Grosshans, B. L., Ortiz, D., & Novick, P. (2006). Rabs and their effectors: achieving specificity in membrane traffic. Proceedings of the National Academy of Sciences of the United States of America, 103(32), 11821–11827.PubMedCentralCrossRefPubMed Grosshans, B. L., Ortiz, D., & Novick, P. (2006). Rabs and their effectors: achieving specificity in membrane traffic. Proceedings of the National Academy of Sciences of the United States of America, 103(32), 11821–11827.PubMedCentralCrossRefPubMed
go back to reference Hammond, R., Vivancos, V., Naeem, A., Chilton, J., Mambetisaeva, E., Andrews, W., et al. (2005). Slit-mediated repulsion is a key regulator of motor axon pathfinding in the hindbrain. Development, 132(20), 4483–4495.CrossRefPubMed Hammond, R., Vivancos, V., Naeem, A., Chilton, J., Mambetisaeva, E., Andrews, W., et al. (2005). Slit-mediated repulsion is a key regulator of motor axon pathfinding in the hindbrain. Development, 132(20), 4483–4495.CrossRefPubMed
go back to reference Hirokawa, N., Niwa, S., & Tanaka, Y. (2010). Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron, 68(4), 610–638.CrossRefPubMed Hirokawa, N., Niwa, S., & Tanaka, Y. (2010). Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron, 68(4), 610–638.CrossRefPubMed
go back to reference Horgan, C. P., & McCaffrey, M. W. (2011). Rab GTPases and microtubule motors. Biochemical Society Transactions, 39(5), 1202–1206.CrossRefPubMed Horgan, C. P., & McCaffrey, M. W. (2011). Rab GTPases and microtubule motors. Biochemical Society Transactions, 39(5), 1202–1206.CrossRefPubMed
go back to reference Jou, R. J., Mateljevic, N., Kaiser, M. D., Sugrue, D. R., Volkmar, F. R., & Pelphrey, K. A. (2011). Structural neural phenotype of autism: preliminary evidence from a diffusion tensor imaging study using tract-based spatial statistics. American Journal of Neuroradiology, 32(9), 1607–1613.CrossRefPubMed Jou, R. J., Mateljevic, N., Kaiser, M. D., Sugrue, D. R., Volkmar, F. R., & Pelphrey, K. A. (2011). Structural neural phenotype of autism: preliminary evidence from a diffusion tensor imaging study using tract-based spatial statistics. American Journal of Neuroradiology, 32(9), 1607–1613.CrossRefPubMed
go back to reference Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain, 127(8), 1811–1821.CrossRefPubMed Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain, 127(8), 1811–1821.CrossRefPubMed
go back to reference Kollins, K. M., Bell, R. L., Butts, M., & Withers, G. S. (2009). Dendrites differ from axons in patterns of microtubule stability and polymerization during development. Neural Development, 4, 26.PubMedCentralCrossRefPubMed Kollins, K. M., Bell, R. L., Butts, M., & Withers, G. S. (2009). Dendrites differ from axons in patterns of microtubule stability and polymerization during development. Neural Development, 4, 26.PubMedCentralCrossRefPubMed
go back to reference Korey, C. A., & Van Vactor, D. (2000). From the growth cone surface to the cytoskeleton: one journey, many paths. Journal of Neurobiology, 44(2), 184–193.CrossRefPubMed Korey, C. A., & Van Vactor, D. (2000). From the growth cone surface to the cytoskeleton: one journey, many paths. Journal of Neurobiology, 44(2), 184–193.CrossRefPubMed
go back to reference Kozma, R., Sarner, S., Ahmed, S., & Lim, L. (1997). Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Molecular and Cellular Biology, 17(3), 1201–1211.PubMedCentralPubMed Kozma, R., Sarner, S., Ahmed, S., & Lim, L. (1997). Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Molecular and Cellular Biology, 17(3), 1201–1211.PubMedCentralPubMed
go back to reference Krause, M., Leslie, J. D., Stewart, M., Lafuente, E. M., Valderrama, F., Jagannathan, R., et al. (2004). Lamellipodin, an Ena/VASP ligand, is implicated in the regulation of lamellipodial dynamics. Developmental Cell, 7(4), 571–583.CrossRefPubMed Krause, M., Leslie, J. D., Stewart, M., Lafuente, E. M., Valderrama, F., Jagannathan, R., et al. (2004). Lamellipodin, an Ena/VASP ligand, is implicated in the regulation of lamellipodial dynamics. Developmental Cell, 7(4), 571–583.CrossRefPubMed
go back to reference Kwiatkowski, A. V., Rubinson, D. A., Dent, E. W., Edward van Veen, J., Leslie, J. D., Zhang, J., et al. (2007). Ena/VASP Is Required for neuritogenesis in the developing cortex. Neuron, 56(3), 441–455.CrossRefPubMed Kwiatkowski, A. V., Rubinson, D. A., Dent, E. W., Edward van Veen, J., Leslie, J. D., Zhang, J., et al. (2007). Ena/VASP Is Required for neuritogenesis in the developing cortex. Neuron, 56(3), 441–455.CrossRefPubMed
go back to reference Lebrand, C., Dent, E. W., Strasser, G. A., Lanier, L. M., Krause, M., Svitkina, T. M., et al. (2004). Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron, 42(1), 37–49.CrossRefPubMed Lebrand, C., Dent, E. W., Strasser, G. A., Lanier, L. M., Krause, M., Svitkina, T. M., et al. (2004). Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron, 42(1), 37–49.CrossRefPubMed
go back to reference Lepagnol-Bestel, A. M., Maussion, G., Boda, B., Cardona, A., Iwayama, Y., Delezoide, A. L., et al. (2008). SLC25A12 expression is associated with neurite outgrowth and is upregulated in the prefrontal cortex of autistic subjects. Molecular Psychiatry, 13(4), 385–397.CrossRefPubMed Lepagnol-Bestel, A. M., Maussion, G., Boda, B., Cardona, A., Iwayama, Y., Delezoide, A. L., et al. (2008). SLC25A12 expression is associated with neurite outgrowth and is upregulated in the prefrontal cortex of autistic subjects. Molecular Psychiatry, 13(4), 385–397.CrossRefPubMed
go back to reference Major, D. L., & Brady-Kalnay, S. M. (2007). Rho GTPases regulate PTPµ-mediated nasal neurite outgrowth and temporal repulsion of retinal ganglion cell neurons. Molecular and Cellular Neuroscience, 34(3), 453–467.PubMedCentralCrossRefPubMed Major, D. L., & Brady-Kalnay, S. M. (2007). Rho GTPases regulate PTPµ-mediated nasal neurite outgrowth and temporal repulsion of retinal ganglion cell neurons. Molecular and Cellular Neuroscience, 34(3), 453–467.PubMedCentralCrossRefPubMed
go back to reference Márquez, C., Poirier, G. L., Cordero, M. I., Larsen, M. H., Groner, A., Marquis, J., et al. (2013). Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression. Translational Psychiatry, 3, e216.PubMedCentralCrossRefPubMed Márquez, C., Poirier, G. L., Cordero, M. I., Larsen, M. H., Groner, A., Marquis, J., et al. (2013). Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression. Translational Psychiatry, 3, e216.PubMedCentralCrossRefPubMed
go back to reference Maximo, J. O., Cadena, E. J., & Kana, R. K. (2014). The implications of brain connectivity in the neuropsychology of autism. Neuropsychology Review, 24(1), 16–31.PubMedCentralCrossRefPubMed Maximo, J. O., Cadena, E. J., & Kana, R. K. (2014). The implications of brain connectivity in the neuropsychology of autism. Neuropsychology Review, 24(1), 16–31.PubMedCentralCrossRefPubMed
go back to reference Mercati, O., Danckaert, A., André-Leroux, G., Bellinzoni, M., Gouder, L., Watanabe, K., et al. (2013). Contactin 4, -5 and -6 differentially regulate neuritogenesis while they display identical PTPRG binding sites. Biology Open, 2(3), 324–334.PubMedCentralCrossRefPubMed Mercati, O., Danckaert, A., André-Leroux, G., Bellinzoni, M., Gouder, L., Watanabe, K., et al. (2013). Contactin 4, -5 and -6 differentially regulate neuritogenesis while they display identical PTPRG binding sites. Biology Open, 2(3), 324–334.PubMedCentralCrossRefPubMed
go back to reference Millard, T. H., Sharp, S. J., & Machesky, L. M. (2004). Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochemical Journal, 380(1), 1–17.PubMedCentralCrossRefPubMed Millard, T. H., Sharp, S. J., & Machesky, L. M. (2004). Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochemical Journal, 380(1), 1–17.PubMedCentralCrossRefPubMed
go back to reference Moughamian, A. J., Osborn, G. E., Lazarus, J. E., Maday, S., & Holzbaur, E. L. (2013). Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport. Journal of Neuroscience, 33(32), 13190–13203.PubMedCentralCrossRefPubMed Moughamian, A. J., Osborn, G. E., Lazarus, J. E., Maday, S., & Holzbaur, E. L. (2013). Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport. Journal of Neuroscience, 33(32), 13190–13203.PubMedCentralCrossRefPubMed
go back to reference Murray, A., Naeem, A., Barnes, S. H., Drescher, U., & Guthrie, S. (2010). Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II. Neural Development, 5, 16.PubMedCentralCrossRefPubMed Murray, A., Naeem, A., Barnes, S. H., Drescher, U., & Guthrie, S. (2010). Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II. Neural Development, 5, 16.PubMedCentralCrossRefPubMed
go back to reference Oblander, S. A., & Brady-Kalnay, S. M. (2010). Distinct PTPµ-associated signaling molecules differentially regulate neurite outgrowth on E-, N-, and R-cadherin. Molecular and Cellular Neuroscience, 44(1), 78–93.PubMedCentralCrossRefPubMed Oblander, S. A., & Brady-Kalnay, S. M. (2010). Distinct PTPµ-associated signaling molecules differentially regulate neurite outgrowth on E-, N-, and R-cadherin. Molecular and Cellular Neuroscience, 44(1), 78–93.PubMedCentralCrossRefPubMed
go back to reference Paemka, L., Mahajan, V. B., Skeie, J. M., Sowers, L. P., Ehaideb, S. N., Gonzalez-Alegre, P., et al. (2013). PRICKLE1 interaction with SYNAPSIN I reveals a role in autism spectrum disorders. PLoS One, 8(12), e80737.PubMedCentralCrossRefPubMed Paemka, L., Mahajan, V. B., Skeie, J. M., Sowers, L. P., Ehaideb, S. N., Gonzalez-Alegre, P., et al. (2013). PRICKLE1 interaction with SYNAPSIN I reveals a role in autism spectrum disorders. PLoS One, 8(12), e80737.PubMedCentralCrossRefPubMed
go back to reference Peñagarikano, O., Abrahams, B. S., Herman, E. I., Winden, K. D., Gdalyahu, A., Dong, H., et al. (2011). Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell, 147(1), 235–246.PubMedCentralCrossRefPubMed Peñagarikano, O., Abrahams, B. S., Herman, E. I., Winden, K. D., Gdalyahu, A., Dong, H., et al. (2011). Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell, 147(1), 235–246.PubMedCentralCrossRefPubMed
go back to reference Piton, A., Gauthier, J., Hamdan, F. F., Lafrenière, R. G., Yang, Y., Henrion, E., et al. (2011). Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Molecular Psychiatry, 16(8), 867–880.PubMedCentralCrossRefPubMed Piton, A., Gauthier, J., Hamdan, F. F., Lafrenière, R. G., Yang, Y., Henrion, E., et al. (2011). Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Molecular Psychiatry, 16(8), 867–880.PubMedCentralCrossRefPubMed
go back to reference Pommereit, D., & Wouters, F. S. (2007). An NGF-induced Exo70-TC10 complex locally antagonizes Cdc42-mediated activation of N-WASP to modulate neurite outgrowth. Journal of Cell Science, 120(15), 2694–2705.CrossRefPubMed Pommereit, D., & Wouters, F. S. (2007). An NGF-induced Exo70-TC10 complex locally antagonizes Cdc42-mediated activation of N-WASP to modulate neurite outgrowth. Journal of Cell Science, 120(15), 2694–2705.CrossRefPubMed
go back to reference Prokop, A. (2013). The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance. Neural Development, 8, 17.PubMedCentralCrossRefPubMed Prokop, A. (2013). The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance. Neural Development, 8, 17.PubMedCentralCrossRefPubMed
go back to reference Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T., & Kirschner, M. W. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell, 97(2), 221–231.CrossRefPubMed Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T., & Kirschner, M. W. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell, 97(2), 221–231.CrossRefPubMed
go back to reference Schaer, M., Ottet, M. C., Scariati, E., Dukes, D., Franchini, M., Eliez, S., & Glaser, B. (2013). Decreased frontal gyrification correlates with altered connectivity in children with autism. Frontiers in Human Neuroscience, 7, 750.PubMedCentralCrossRefPubMed Schaer, M., Ottet, M. C., Scariati, E., Dukes, D., Franchini, M., Eliez, S., & Glaser, B. (2013). Decreased frontal gyrification correlates with altered connectivity in children with autism. Frontiers in Human Neuroscience, 7, 750.PubMedCentralCrossRefPubMed
go back to reference Smith, L. G., & Li, R. (2004). Actin polymerization: Riding the wave. Current Biology, 14(3), R109–R111.CrossRefPubMed Smith, L. G., & Li, R. (2004). Actin polymerization: Riding the wave. Current Biology, 14(3), R109–R111.CrossRefPubMed
go back to reference Su, Y. Y., Ye, M., Li, L., Liu, C., Pan, J., Liu, W. W., et al. (2013). KIF5B promotes the forward transport and axonal function of the voltage-gated sodium channel Nav1.8. Journal of Neuroscience, 33(45), 17884–17896.CrossRefPubMed Su, Y. Y., Ye, M., Li, L., Liu, C., Pan, J., Liu, W. W., et al. (2013). KIF5B promotes the forward transport and axonal function of the voltage-gated sodium channel Nav1.8. Journal of Neuroscience, 33(45), 17884–17896.CrossRefPubMed
go back to reference Tasaka, G., Negishi, M., & Oinuma, I. (2012). Semaphorin 4D/Plexin-B1-mediated M-Ras GAP activity regulates actin-based dendrite remodeling through Lamellipodin. Journal of Neuroscience, 32(24), 8293–8305.CrossRefPubMed Tasaka, G., Negishi, M., & Oinuma, I. (2012). Semaphorin 4D/Plexin-B1-mediated M-Ras GAP activity regulates actin-based dendrite remodeling through Lamellipodin. Journal of Neuroscience, 32(24), 8293–8305.CrossRefPubMed
go back to reference Thies, E., & Davenport, R. W. (2003). Independent roles of Rho-GTPases in growth cone and axonal behavior. Journal of Neurobiology, 54(2), 358–369.CrossRefPubMed Thies, E., & Davenport, R. W. (2003). Independent roles of Rho-GTPases in growth cone and axonal behavior. Journal of Neurobiology, 54(2), 358–369.CrossRefPubMed
go back to reference Van Maldergem, L., Hou, Q., Kalscheuer, V. M., Rio, M., Doco-Fenzy, M., Medeira, A., et al. (2013). Loss of function of KIAA2022 causes mild to severe intellectual disability with an autism spectrum disorder and impairs neurite outgrowth. Human Molecular Genetics, 22(16), 3306–3314.PubMedCentralCrossRefPubMed Van Maldergem, L., Hou, Q., Kalscheuer, V. M., Rio, M., Doco-Fenzy, M., Medeira, A., et al. (2013). Loss of function of KIAA2022 causes mild to severe intellectual disability with an autism spectrum disorder and impairs neurite outgrowth. Human Molecular Genetics, 22(16), 3306–3314.PubMedCentralCrossRefPubMed
go back to reference Villarroel-Campos, D., Gastaldi, L., Conde, C., Caceres, A., & Gonzalez-Billault, C. (2014). Rab-mediated trafficking role in neurite formation. Journal of Neurochemistry, 129(2), 240–248.CrossRefPubMed Villarroel-Campos, D., Gastaldi, L., Conde, C., Caceres, A., & Gonzalez-Billault, C. (2014). Rab-mediated trafficking role in neurite formation. Journal of Neurochemistry, 129(2), 240–248.CrossRefPubMed
go back to reference Volders, K., Nuytens, K., & Creemers, J. W. (2011). The autism candidate gene neurobeachin encodes a scaffolding protein implicated in membrane trafficking and signaling. Current Molecular Medicine, 11(3), 204–217.CrossRefPubMed Volders, K., Nuytens, K., & Creemers, J. W. (2011). The autism candidate gene neurobeachin encodes a scaffolding protein implicated in membrane trafficking and signaling. Current Molecular Medicine, 11(3), 204–217.CrossRefPubMed
go back to reference Wang, S. Z., Ibrahim, L. A., Kim, Y. J., Gibson, D. A., Leung, H. C., Yuan, W., et al. (2013). Slit/Robo signaling mediates spatial positioning of spiral ganglion neurons during development of cochlear innervation. Journal of Neuroscience, 33(30), 12242–12254.PubMedCentralCrossRefPubMed Wang, S. Z., Ibrahim, L. A., Kim, Y. J., Gibson, D. A., Leung, H. C., Yuan, W., et al. (2013). Slit/Robo signaling mediates spatial positioning of spiral ganglion neurons during development of cochlear innervation. Journal of Neuroscience, 33(30), 12242–12254.PubMedCentralCrossRefPubMed
go back to reference Wolff, J. J., & Piven, J. (2014). Neurodevelopmental disorders: Accelerating progress in autism through developmental research. Nature Reviews Neurology, 10(8), 431–432.CrossRefPubMed Wolff, J. J., & Piven, J. (2014). Neurodevelopmental disorders: Accelerating progress in autism through developmental research. Nature Reviews Neurology, 10(8), 431–432.CrossRefPubMed
go back to reference Ypsilanti, A. R., Zagar, Y., & Chédotal, A. (2010). Moving away from the midline: new developments for Slit and Robo. Development, 137(12), 1939–1952.CrossRefPubMed Ypsilanti, A. R., Zagar, Y., & Chédotal, A. (2010). Moving away from the midline: new developments for Slit and Robo. Development, 137(12), 1939–1952.CrossRefPubMed
go back to reference Zeidán-Chuliá, F., de Oliveira, B. H., Salmina, A. B., Casanova, M. F., Gelain, D. P., Noda, M., et al. (2014). Altered expression of Alzheimer’s disease-related genes in the cerebellum of autistic patients: a model for disrupted brain connectome and therapy. Cell Death and Disease, 5, e1250.PubMedCentralCrossRefPubMed Zeidán-Chuliá, F., de Oliveira, B. H., Salmina, A. B., Casanova, M. F., Gelain, D. P., Noda, M., et al. (2014). Altered expression of Alzheimer’s disease-related genes in the cerebellum of autistic patients: a model for disrupted brain connectome and therapy. Cell Death and Disease, 5, e1250.PubMedCentralCrossRefPubMed
go back to reference Zhan, Y., Paolicelli, R. C., Sforazzini, F., Weinhard, L., Bolasco, G., Pagani, F., et al. (2014). Deficient neuron–microglia signaling results in impaired functional brain connectivity and social behavior. Nature Neuroscience, 17(3), 400–406.CrossRefPubMed Zhan, Y., Paolicelli, R. C., Sforazzini, F., Weinhard, L., Bolasco, G., Pagani, F., et al. (2014). Deficient neuron–microglia signaling results in impaired functional brain connectivity and social behavior. Nature Neuroscience, 17(3), 400–406.CrossRefPubMed
Metadata
Title
Are Molecules Involved in Neuritogenesis and Axon Guidance Related to Autism Pathogenesis?
Authors
Jan Bakos
Zuzana Bacova
Stephen G. Grant
Ana M. Castejon
Daniela Ostatnikova
Publication date
01-09-2015
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 3/2015
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-015-8357-7

Other articles of this Issue 3/2015

NeuroMolecular Medicine 3/2015 Go to the issue