Skip to main content
Top
Published in: BMC Nephrology 1/2023

Open Access 01-12-2023 | Chronic Kidney Disease | Research

Discovery of Fibrinogen γ-chain as a potential urinary biomarker for renal interstitial fibrosis in IgA nephropathy

Authors: Jie Guan, Meiling Wang, Man Zhao, Wentao Ni, Man Zhang

Published in: BMC Nephrology | Issue 1/2023

Login to get access

Abstract

Background

IgA nephropathy (IgAN) is a major cause of chronic kidney disease (CKD). Renal interstitial fibrosis is a hallmark of CKD progression. Non-invasive biomarkers are needed to dynamically evaluate renal fibrosis. Data independent acquisition (DIA)-based liquid chromatography-mass spectrometry (DIA-MS) was used to identify candidate urinary biomarkers in IgAN patients with different renal interstitial fibrosis degrees.

Methods

Eighteen biopsy-proven IgAN patients and six healthy controls were recruited in a discovery cohort. Interstitial fibrosis changes were evaluated according to Oxford MEST-C scores. Urinary samples were analyzed with DIA-MS to identify hub proteins. Hub proteins were then confirmed by enzyme-linked immunosorbent assay (ELISA) in a validation cohort and the associated gene mRNA expression was analyzed using public gene expression omnibus (GEO) datasets.

Results

Complement and coagulation cascades pathway was the main KEGG pathway related to the over-expressed proteins. Fibrinogen γ-Chain (FGG) was selected as the potential urinary marker for further validation. Urinary FGG to creatinine ratio (uFGG/Cr) levels were higher in both disease controls and IgAN group than in healthy controls, but were not significantly different between IgAN and disease groups. uFGG/Cr was confirmed to be increased with the extent of renal fibrosis and presented moderate correlations with T score (r = 0.614, p < 0.01) and eGFR (r = -0.682, p < 0.01), and a mild correlation with UTP (r = 0.497, p < 0.01) in IgAN group. In disease control group, uFGG/Cr was higher in patients with T1 + 2 compared to those with T0. uFGG/Cr had a good discriminatory power to distinguish different fibrosis stages in IgAN: interstitial fibrosis ≤ 5% (minimal fibrosis) vs. interstitial fibrosis (mild fibrosis) > 5%, AUC 0.743; T0 vs. T1 + 2, AUC 0.839; T0 + 1 vs. T2, AUC 0.854. In disease control group, uFGG/Cr showed better performance of AUC than UTP between minimal and mild fibrosis (p = 0.038 for Delong’s test). Moreover, GSE104954 dataset showed that FGG mRNA expression was up-regulated (fold change 1.20, p = 0.009) in tubulointerstitium of IgAN patients when compared to healthy living kidney donors.

Conclusion

Urinary FGG is associated with renal interstitial fibrosis and could be used as a noninvasive biomarker for renal fibrosis in IgAN.
Appendix
Available only for authorised users
Literature
1.
go back to reference Li L-S, Liu Z-H. Epidemiologic data of renal diseases from a single unit in China: analysis based on 13,519 renal biopsies. Kidney Int. 2004;66(3):920–3.CrossRefPubMed Li L-S, Liu Z-H. Epidemiologic data of renal diseases from a single unit in China: analysis based on 13,519 renal biopsies. Kidney Int. 2004;66(3):920–3.CrossRefPubMed
2.
go back to reference Pattrapornpisut P, Avila-Casado C, Reich HN. IgA Nephropathy: Core Curriculum 2021. Am J Kidney Dis. 2021;78(3):429–41.CrossRefPubMed Pattrapornpisut P, Avila-Casado C, Reich HN. IgA Nephropathy: Core Curriculum 2021. Am J Kidney Dis. 2021;78(3):429–41.CrossRefPubMed
3.
go back to reference Yang M, Liu JW, Zhang YT, Wu G. The role of renal macrophage, AIM, and TGF-beta1 expression in Renal Fibrosis Progression in IgAN Patients. Front Immunol. 2021;12:646650.CrossRefPubMedPubMedCentral Yang M, Liu JW, Zhang YT, Wu G. The role of renal macrophage, AIM, and TGF-beta1 expression in Renal Fibrosis Progression in IgAN Patients. Front Immunol. 2021;12:646650.CrossRefPubMedPubMedCentral
4.
go back to reference Zhang H, Barratt J. Is IgA nephropathy the same disease in different parts of the world? Semin Immunopathol. 2021;43(5):707–15.CrossRefPubMed Zhang H, Barratt J. Is IgA nephropathy the same disease in different parts of the world? Semin Immunopathol. 2021;43(5):707–15.CrossRefPubMed
5.
go back to reference Coppo R, D’Arrigo G, Tripepi G, Russo ML, Roberts ISD, Bellur S, et al. Is there long-term value of pathology scoring in immunoglobulin A nephropathy? A validation study of the Oxford classification for IgA Nephropathy (VALIGA) update. Nephrol Dial Transplant. 2020;35(6):1002–9.CrossRefPubMed Coppo R, D’Arrigo G, Tripepi G, Russo ML, Roberts ISD, Bellur S, et al. Is there long-term value of pathology scoring in immunoglobulin A nephropathy? A validation study of the Oxford classification for IgA Nephropathy (VALIGA) update. Nephrol Dial Transplant. 2020;35(6):1002–9.CrossRefPubMed
6.
go back to reference Xu R, Li Z, Cao T, Xu Y, Liao Y, Song H, et al. The Association of the Oxford classification score with longitudinal estimated glomerular filtration rate decline in patients with immunoglobulin A nephropathy: a mixed-method study. Int J Gen Med. 2021;14:2655–63.CrossRefPubMedPubMedCentral Xu R, Li Z, Cao T, Xu Y, Liao Y, Song H, et al. The Association of the Oxford classification score with longitudinal estimated glomerular filtration rate decline in patients with immunoglobulin A nephropathy: a mixed-method study. Int J Gen Med. 2021;14:2655–63.CrossRefPubMedPubMedCentral
7.
go back to reference Wu H, Xia Z, Gao C, Zhang P, Yang X, Wang R, et al. The correlation analysis between the Oxford classification of chinese IgA nephropathy children and renal outcome - a retrospective cohort study. BMC Nephrol. 2020;21(1):247.CrossRefPubMedPubMedCentral Wu H, Xia Z, Gao C, Zhang P, Yang X, Wang R, et al. The correlation analysis between the Oxford classification of chinese IgA nephropathy children and renal outcome - a retrospective cohort study. BMC Nephrol. 2020;21(1):247.CrossRefPubMedPubMedCentral
9.
go back to reference Mavrogeorgis E, Mischak H, Beige J, Latosinska A, Siwy J. Understanding glomerular diseases through proteomics. Expert Rev Proteomics. 2021;18(2):137–57.CrossRefPubMed Mavrogeorgis E, Mischak H, Beige J, Latosinska A, Siwy J. Understanding glomerular diseases through proteomics. Expert Rev Proteomics. 2021;18(2):137–57.CrossRefPubMed
10.
go back to reference Zhou LT, Lv LL, Liu BC. Urinary biomarkers of Renal Fibrosis. Adv Exp Med Biol. 2019;1165:607–23.CrossRefPubMed Zhou LT, Lv LL, Liu BC. Urinary biomarkers of Renal Fibrosis. Adv Exp Med Biol. 2019;1165:607–23.CrossRefPubMed
11.
go back to reference Chebotareva N, Vinogradov A, McDonnell V, Zakharova NV, Indeykina MI, Moiseev S, et al. Urinary protein and peptide markers in chronic kidney disease. Int J Mol Sci. 2021;22(22):12123.CrossRefPubMedPubMedCentral Chebotareva N, Vinogradov A, McDonnell V, Zakharova NV, Indeykina MI, Moiseev S, et al. Urinary protein and peptide markers in chronic kidney disease. Int J Mol Sci. 2021;22(22):12123.CrossRefPubMedPubMedCentral
12.
go back to reference Mejia-Vilet JM, Shapiro JP, Zhang XL, Cruz C, Zimmerman G, Mendez-Perez RA, et al. Association between urinary epidermal growth factor and renal prognosis in Lupus Nephritis. Arthritis Rheumatol. 2021;73(2):244–54.CrossRefPubMed Mejia-Vilet JM, Shapiro JP, Zhang XL, Cruz C, Zimmerman G, Mendez-Perez RA, et al. Association between urinary epidermal growth factor and renal prognosis in Lupus Nephritis. Arthritis Rheumatol. 2021;73(2):244–54.CrossRefPubMed
13.
go back to reference Magalhaes P, Pejchinovski M, Markoska K, Banasik M, Klinger M, Svec-Billa D, et al. Association of kidney fibrosis with urinary peptides: a path towards non-invasive liquid biopsies? Sci Rep. 2017;7(1):16915.CrossRefPubMedPubMedCentral Magalhaes P, Pejchinovski M, Markoska K, Banasik M, Klinger M, Svec-Billa D, et al. Association of kidney fibrosis with urinary peptides: a path towards non-invasive liquid biopsies? Sci Rep. 2017;7(1):16915.CrossRefPubMedPubMedCentral
14.
go back to reference Catanese L, Siwy J, Mavrogeorgis E, Amann K, Mischak H, Beige J, et al. A novel urinary proteomics classifier for non-invasive evaluation of interstitial fibrosis and tubular atrophy in chronic kidney disease. Proteomes. 2021;9(3):32.CrossRefPubMedPubMedCentral Catanese L, Siwy J, Mavrogeorgis E, Amann K, Mischak H, Beige J, et al. A novel urinary proteomics classifier for non-invasive evaluation of interstitial fibrosis and tubular atrophy in chronic kidney disease. Proteomes. 2021;9(3):32.CrossRefPubMedPubMedCentral
15.
go back to reference Tailliar M, Schanstra J, Dierckx T, Breuil B, Hanouna G, Charles N, et al. Urinary peptides as potential non-invasive biomarkers for Lupus Nephritis: results of the Peptidu-LUP Study. J Clin Med. 2021;10(8):1690.CrossRefPubMedPubMedCentral Tailliar M, Schanstra J, Dierckx T, Breuil B, Hanouna G, Charles N, et al. Urinary peptides as potential non-invasive biomarkers for Lupus Nephritis: results of the Peptidu-LUP Study. J Clin Med. 2021;10(8):1690.CrossRefPubMedPubMedCentral
16.
go back to reference Argiles A, Siwy J, Duranton F, Gayrard N, Dakna M, Lundin U, et al. CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS ONE. 2013;8(5):e62837.CrossRefPubMedPubMedCentral Argiles A, Siwy J, Duranton F, Gayrard N, Dakna M, Lundin U, et al. CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS ONE. 2013;8(5):e62837.CrossRefPubMedPubMedCentral
17.
go back to reference Schanstra JP, Zurbig P, Alkhalaf A, Argiles A, Bakker SJ, Beige J, et al. Diagnosis and prediction of CKD progression by Assessment of urinary peptides. J Am Soc Nephrol. 2015;26(8):1999–2010.CrossRefPubMedPubMedCentral Schanstra JP, Zurbig P, Alkhalaf A, Argiles A, Bakker SJ, Beige J, et al. Diagnosis and prediction of CKD progression by Assessment of urinary peptides. J Am Soc Nephrol. 2015;26(8):1999–2010.CrossRefPubMedPubMedCentral
18.
go back to reference Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.
19.
go back to reference Sparding N, Genovese F, Rasmussen DGK, Karsdal MA, Neprasova M, Maixnerova D, et al. Endotrophin, a collagen type VI-derived matrikine, reflects the degree of renal fibrosis in patients with IgA nephropathy and in patients with ANCA-associated vasculitis. Nephrol Dial Transplant. 2022;37(6):1099–108.CrossRefPubMed Sparding N, Genovese F, Rasmussen DGK, Karsdal MA, Neprasova M, Maixnerova D, et al. Endotrophin, a collagen type VI-derived matrikine, reflects the degree of renal fibrosis in patients with IgA nephropathy and in patients with ANCA-associated vasculitis. Nephrol Dial Transplant. 2022;37(6):1099–108.CrossRefPubMed
20.
go back to reference Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 2015;43(W1):W566–70.CrossRefPubMedPubMedCentral Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 2015;43(W1):W566–70.CrossRefPubMedPubMedCentral
21.
go back to reference Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov (Camb). 2021;2(3):100141. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov (Camb). 2021;2(3):100141.
22.
go back to reference Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–D92.CrossRefPubMed Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–D92.CrossRefPubMed
23.
go back to reference Trimarchi H, Barratt J, Cattran DC, Cook HT, Coppo R, Haas M, et al. Oxford classification of IgA nephropathy 2016: an update from the IgA nephropathy classification Working Group. Kidney Int. 2017;91(5):1014–21.CrossRefPubMed Trimarchi H, Barratt J, Cattran DC, Cook HT, Coppo R, Haas M, et al. Oxford classification of IgA nephropathy 2016: an update from the IgA nephropathy classification Working Group. Kidney Int. 2017;91(5):1014–21.CrossRefPubMed
24.
go back to reference Terrec F, Noble J, Naciri-Bennani H, Malvezzi P, Janbon B, Emprou C, et al. Protocol biopsies on de novo renal-transplants at 3 months after surgery: impact on 5-Year transplant survival. J Clin Med. 2021;10(16):3635.CrossRefPubMedPubMedCentral Terrec F, Noble J, Naciri-Bennani H, Malvezzi P, Janbon B, Emprou C, et al. Protocol biopsies on de novo renal-transplants at 3 months after surgery: impact on 5-Year transplant survival. J Clin Med. 2021;10(16):3635.CrossRefPubMedPubMedCentral
26.
go back to reference Fang X, Lu M, Xia Z, Gao C, Cao Y, Wang R, et al. Use of liquid chromatography-tandem mass spectrometry to perform urinary proteomic analysis of children with IgA nephropathy and Henoch-Schonlein purpura nephritis. J Proteom. 2021;230:103979.CrossRef Fang X, Lu M, Xia Z, Gao C, Cao Y, Wang R, et al. Use of liquid chromatography-tandem mass spectrometry to perform urinary proteomic analysis of children with IgA nephropathy and Henoch-Schonlein purpura nephritis. J Proteom. 2021;230:103979.CrossRef
27.
go back to reference Guo Z, Wang Z, Lu C, Yang S, Sun H, Reziw, et al. Analysis of the differential urinary protein profile in IgA nephropathy patients of Uygur ethnicity. BMC Nephrol. 2018;19(1):358.CrossRefPubMedPubMedCentral Guo Z, Wang Z, Lu C, Yang S, Sun H, Reziw, et al. Analysis of the differential urinary protein profile in IgA nephropathy patients of Uygur ethnicity. BMC Nephrol. 2018;19(1):358.CrossRefPubMedPubMedCentral
28.
go back to reference Samavat S, Kalantari S, Nafar M, Rutishauser D, Rezaei-Tavirani M, Parvin M, et al. Diagnostic urinary proteome profile for immunoglobulin a nephropathy. Iran J Kidney Dis. 2015;9(3):239–48.PubMed Samavat S, Kalantari S, Nafar M, Rutishauser D, Rezaei-Tavirani M, Parvin M, et al. Diagnostic urinary proteome profile for immunoglobulin a nephropathy. Iran J Kidney Dis. 2015;9(3):239–48.PubMed
29.
go back to reference Rudnicki M, Siwy J, Wendt R, Lipphardt M, Koziolek MJ, Maixnerova D, et al. Urine proteomics for prediction of disease progression in patients with IgA nephropathy. Nephrol Dial Transplant. 2021;37(1):42–52.CrossRefPubMed Rudnicki M, Siwy J, Wendt R, Lipphardt M, Koziolek MJ, Maixnerova D, et al. Urine proteomics for prediction of disease progression in patients with IgA nephropathy. Nephrol Dial Transplant. 2021;37(1):42–52.CrossRefPubMed
30.
go back to reference Wen L, Zhao Z, Wang Z, Xiao J, Birn H, Gregersen JW. High levels of urinary complement proteins are associated with chronic renal damage and proximal tubule dysfunction in immunoglobulin A nephropathy. Nephrol (Carlton). 2019;24(7):703–10.CrossRef Wen L, Zhao Z, Wang Z, Xiao J, Birn H, Gregersen JW. High levels of urinary complement proteins are associated with chronic renal damage and proximal tubule dysfunction in immunoglobulin A nephropathy. Nephrol (Carlton). 2019;24(7):703–10.CrossRef
31.
go back to reference Liu M, Chen Y, Zhou J, Liu Y, Wang F, Shi S, et al. Implication of urinary complement factor H in the progression of immunoglobulin A nephropathy. PLoS ONE. 2015;10(6):e0126812.CrossRefPubMedPubMedCentral Liu M, Chen Y, Zhou J, Liu Y, Wang F, Shi S, et al. Implication of urinary complement factor H in the progression of immunoglobulin A nephropathy. PLoS ONE. 2015;10(6):e0126812.CrossRefPubMedPubMedCentral
32.
go back to reference He S, Li A, Zhang W, Zhang L, Liu Y, Li K, et al. An integrated transcriptomics and network pharmacology approach to exploring the mechanism of adriamycin-induced kidney injury. Chem Biol Interact. 2020;325:109096.CrossRefPubMed He S, Li A, Zhang W, Zhang L, Liu Y, Li K, et al. An integrated transcriptomics and network pharmacology approach to exploring the mechanism of adriamycin-induced kidney injury. Chem Biol Interact. 2020;325:109096.CrossRefPubMed
33.
go back to reference Trimarchi H, Coppo R. Glomerular endothelial activation, C4d deposits and microangiopathy in immunoglobulin A nephropathy. Nephrol Dial Transplant. 2021;36(4):581–6.CrossRefPubMed Trimarchi H, Coppo R. Glomerular endothelial activation, C4d deposits and microangiopathy in immunoglobulin A nephropathy. Nephrol Dial Transplant. 2021;36(4):581–6.CrossRefPubMed
34.
go back to reference Peng HH, Wang JN, Xiao LF, Yan M, Chen SP, Wang L, et al. Elevated serum FGG levels Prognosticate and promote the Disease progression in prostate Cancer. Front Genet. 2021;12:651647.CrossRefPubMedPubMedCentral Peng HH, Wang JN, Xiao LF, Yan M, Chen SP, Wang L, et al. Elevated serum FGG levels Prognosticate and promote the Disease progression in prostate Cancer. Front Genet. 2021;12:651647.CrossRefPubMedPubMedCentral
35.
go back to reference Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3(8):1894–904.CrossRefPubMed Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3(8):1894–904.CrossRefPubMed
36.
go back to reference Craciun FL, Ajay AK, Hoffmann D, Saikumar J, Fabian SL, Bijol V, et al. Pharmacological and genetic depletion of fibrinogen protects from kidney fibrosis. Am J Physiol Renal Physiol. 2014;307(4):F471–84.CrossRefPubMedPubMedCentral Craciun FL, Ajay AK, Hoffmann D, Saikumar J, Fabian SL, Bijol V, et al. Pharmacological and genetic depletion of fibrinogen protects from kidney fibrosis. Am J Physiol Renal Physiol. 2014;307(4):F471–84.CrossRefPubMedPubMedCentral
37.
go back to reference Sorensen I, Susnik N, Inhester T, Degen JL, Melk A, Haller H, et al. Fibrinogen, acting as a mitogen for tubulointerstitial fibroblasts, promotes renal fibrosis. Kidney Int. 2011;80(10):1035–44.CrossRefPubMed Sorensen I, Susnik N, Inhester T, Degen JL, Melk A, Haller H, et al. Fibrinogen, acting as a mitogen for tubulointerstitial fibroblasts, promotes renal fibrosis. Kidney Int. 2011;80(10):1035–44.CrossRefPubMed
38.
go back to reference Wang H, Zheng C, Lu Y, Jiang Q, Yin R, Zhu P, et al. Urinary fibrinogen as a predictor of progression of CKD. Clin J Am Soc Nephrol. 2017;12(12):1922–9.CrossRefPubMedPubMedCentral Wang H, Zheng C, Lu Y, Jiang Q, Yin R, Zhu P, et al. Urinary fibrinogen as a predictor of progression of CKD. Clin J Am Soc Nephrol. 2017;12(12):1922–9.CrossRefPubMedPubMedCentral
39.
go back to reference Torban E, Braun F, Wanner N, Takano T, Goodyer PR, Lennon R, et al. From podocyte biology to novel cures for glomerular disease. Kidney Int. 2019;96(4):850–61.CrossRefPubMed Torban E, Braun F, Wanner N, Takano T, Goodyer PR, Lennon R, et al. From podocyte biology to novel cures for glomerular disease. Kidney Int. 2019;96(4):850–61.CrossRefPubMed
40.
go back to reference Habas E, Ali E, Farfar K, Errayes M, Alfitori J, Habas E, et al. IgA nephropathy pathogenesis and therapy: Review & updates. Med (Baltim). 2022;101(48):e31219.CrossRef Habas E, Ali E, Farfar K, Errayes M, Alfitori J, Habas E, et al. IgA nephropathy pathogenesis and therapy: Review & updates. Med (Baltim). 2022;101(48):e31219.CrossRef
41.
go back to reference Sun YB, Qu X, Caruana G, Li J. The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Differentiation. 2016;92(3):102–7.CrossRefPubMed Sun YB, Qu X, Caruana G, Li J. The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Differentiation. 2016;92(3):102–7.CrossRefPubMed
Metadata
Title
Discovery of Fibrinogen γ-chain as a potential urinary biomarker for renal interstitial fibrosis in IgA nephropathy
Authors
Jie Guan
Meiling Wang
Man Zhao
Wentao Ni
Man Zhang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2023
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-023-03103-7

Other articles of this Issue 1/2023

BMC Nephrology 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine