Skip to main content
Top
Published in: BMC Nephrology 1/2018

Open Access 01-12-2018 | Research article

Analysis of the differential urinary protein profile in IgA nephropathy patients of Uygur ethnicity

Authors: Zhengguang Guo, Zhao Wang, Chen Lu, Shufen Yang, Haidan Sun, Reziw, Yu Guo, Wei Sun, Hua Yue

Published in: BMC Nephrology | Issue 1/2018

Login to get access

Abstract

Background

IgA nephropathy (IgAN) is one of the most common forms of idiopathic glomerular diseases and might lead to end-stage kidney disease. Accurate and non-invasive biomarkers for early diagnosis are required for early intervention and consequent therapy for IgAN patients. Because variance in the disease incidence and predisposing genes of IgAN has been detected among different ethnicities, the ethnicity factor should be considered in IgAN biomarker discovery. The differences in the protein profiles and pathological mechanisms of IgAN in patients of Uygur ethnicity need to be clearly illustrated.

Methods

In this study, we used urinary proteomics to discover candidate biomarkers of IgAN in patients of Uygur ethnicity. The urinary proteins from Uygur normal control and Uygur IgAN patients were extracted and analyzed using 2D-LC-MS/MS and isobaric tags for relative and absolute quantitation (iTRAQ) analysis.

Results

A total of 277 proteins were found to be differentially represented in Uygur IgAN compared with the respective normal controls. The bioinformatics analysis revealed that the immune response, cell survival, and complement system were activated in Uygur IgAN. Many differentially expressed proteins were found to be related to nephropathy and kidney injuries. Four candidate biomarkers were validated by Western blot, and these results were consistent with the iTRAQ results. ICAM1, TIMP1, SERPINC1 and ADIPOQ were upregulated in Uygur IgAN. Bioinformatic analysis revealed that the increase of ICAM1 and TIMP1 might be caused by IgAN, but the increase of SERPINC1 and ADIPOQ might be caused by proteinuria. SERPINC1 and ICAM1 were identified as the candidate biomarkers with excellent area-under-the-curve (AUC) values (0.84) for distinguishing Uygur IgAN from normal controls.

Conclusions

Using urinary proteomic analysis, we identified several candidate biomarkers for IgAN in patients of Uygur ethnicity. These results will prove helpful for exploring the pathological mechanism of IgAN in patients of Uygur ethnicity and for developing better treatments for these patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rocchetti MT, Centra M, Papale M, Bortone G, Palermo C, et al. Urine protein profile of IgA nephropathy patients may predict the response to ACE-inhibitor therapy. Proteomics. 2008;8:206–16.CrossRef Rocchetti MT, Centra M, Papale M, Bortone G, Palermo C, et al. Urine protein profile of IgA nephropathy patients may predict the response to ACE-inhibitor therapy. Proteomics. 2008;8:206–16.CrossRef
2.
3.
go back to reference Appel GB, Waldman M. The IgA nephropathy treatment dilemma. Kidney Int. 2006;69:1939–44.CrossRef Appel GB, Waldman M. The IgA nephropathy treatment dilemma. Kidney Int. 2006;69:1939–44.CrossRef
4.
go back to reference Wu J, Wang N, Wang J, Xie Y, Li Y, et al. Identification of a uromodulin fragment for diagnosis of IgA nephropathy. Rapid Commun Mass Spectrom. 2010;24:1971–8.CrossRef Wu J, Wang N, Wang J, Xie Y, Li Y, et al. Identification of a uromodulin fragment for diagnosis of IgA nephropathy. Rapid Commun Mass Spectrom. 2010;24:1971–8.CrossRef
5.
go back to reference Eiro M, Katoh T, Watanabe T. Risk factors for bleeding complications in percutaneous renal biopsy. Clin Exp Nephrol. 2005;9:40–5.CrossRef Eiro M, Katoh T, Watanabe T. Risk factors for bleeding complications in percutaneous renal biopsy. Clin Exp Nephrol. 2005;9:40–5.CrossRef
6.
go back to reference Guo Z, Liu X, Li M, Shao C, Tao J, et al. Differential urinary glycoproteome analysis of type 2 diabetic nephropathy using 2D-LC-MS/MS and iTRAQ quantification. J Transl Med. 2015;13:371.CrossRef Guo Z, Liu X, Li M, Shao C, Tao J, et al. Differential urinary glycoproteome analysis of type 2 diabetic nephropathy using 2D-LC-MS/MS and iTRAQ quantification. J Transl Med. 2015;13:371.CrossRef
7.
go back to reference Park MR, Wang EH, Jin DC, Cha JH, Lee KH, et al. Establishment of a 2-D human urinary proteomic map in IgA nephropathy. Proteomics. 2006;6:1066–76.CrossRef Park MR, Wang EH, Jin DC, Cha JH, Lee KH, et al. Establishment of a 2-D human urinary proteomic map in IgA nephropathy. Proteomics. 2006;6:1066–76.CrossRef
8.
go back to reference Surin B, Sachon E, Rougier JP, Steverlynck C, Garreau C, et al. LG3 fragment of endorepellin is a possible biomarker of severity in IgA nephropathy. Proteomics. 2013;13:142–52.CrossRef Surin B, Sachon E, Rougier JP, Steverlynck C, Garreau C, et al. LG3 fragment of endorepellin is a possible biomarker of severity in IgA nephropathy. Proteomics. 2013;13:142–52.CrossRef
9.
go back to reference Sui W, Cui Z, Zhang R, Xue W, Ou M, et al. Comparative proteomic analysis of renal tissue in IgA nephropathy with iTRAQ quantitative proteomics. Biomed Rep. 2014;2:793–8.CrossRef Sui W, Cui Z, Zhang R, Xue W, Ou M, et al. Comparative proteomic analysis of renal tissue in IgA nephropathy with iTRAQ quantitative proteomics. Biomed Rep. 2014;2:793–8.CrossRef
10.
go back to reference Mucha K, Bakun M, Jazwiec R, Dadlez M, Florczak M, et al. Complement components, proteolysisrelated, and cell communicationrelated proteins detected in urine proteomics are associated with IgA nephropathy. Pol Arch Med Wewn. 2014;124:380–6.PubMed Mucha K, Bakun M, Jazwiec R, Dadlez M, Florczak M, et al. Complement components, proteolysisrelated, and cell communicationrelated proteins detected in urine proteomics are associated with IgA nephropathy. Pol Arch Med Wewn. 2014;124:380–6.PubMed
11.
go back to reference Zhao S, Li R, Cai X, Chen W, Li Q, et al. The application of SILAC mouse in human body fluid proteomics analysis reveals protein patterns associated with IgA nephropathy. Evid Based Complement Alternat Med. 2013;2013:275390.PubMedPubMedCentral Zhao S, Li R, Cai X, Chen W, Li Q, et al. The application of SILAC mouse in human body fluid proteomics analysis reveals protein patterns associated with IgA nephropathy. Evid Based Complement Alternat Med. 2013;2013:275390.PubMedPubMedCentral
12.
go back to reference Moon PG, Lee JE, You S, Kim TK, Cho JH, et al. Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. Proteomics. 2011;11:2459–75.CrossRef Moon PG, Lee JE, You S, Kim TK, Cho JH, et al. Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. Proteomics. 2011;11:2459–75.CrossRef
13.
go back to reference Kalantari S, Rutishauser D, Samavat S, Nafar M, Mahmudieh L, et al. Urinary prognostic biomarkers and classification of IgA nephropathy by high resolution mass spectrometry coupled with liquid chromatography. PLoS One. 2013;8:e80830.CrossRef Kalantari S, Rutishauser D, Samavat S, Nafar M, Mahmudieh L, et al. Urinary prognostic biomarkers and classification of IgA nephropathy by high resolution mass spectrometry coupled with liquid chromatography. PLoS One. 2013;8:e80830.CrossRef
14.
go back to reference Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H, et al. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet. 2012;8:e1002765.CrossRef Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H, et al. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet. 2012;8:e1002765.CrossRef
15.
go back to reference Li WL, Lu C. Association between C1GALT1 variants and genetic susceptibility to IgA nephropathy in Uygur. Genet Mol Res. 2015;14:5327–33.CrossRef Li WL, Lu C. Association between C1GALT1 variants and genetic susceptibility to IgA nephropathy in Uygur. Genet Mol Res. 2015;14:5327–33.CrossRef
16.
go back to reference Yue H, Zhou J, Adila, He W, Qiao LP, et al. Analysis of pathological and clinical data of renal biopsy in 237 Uygur patients in Xinjiang. Xinjiang Medical Journal. 2006;36:1–3. Yue H, Zhou J, Adila, He W, Qiao LP, et al. Analysis of pathological and clinical data of renal biopsy in 237 Uygur patients in Xinjiang. Xinjiang Medical Journal. 2006;36:1–3.
17.
go back to reference Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012;379(9818):815–22.CrossRef Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012;379(9818):815–22.CrossRef
18.
go back to reference Xu X, Ning Y, Shang W, et al. Analysis of 4931 renal biopsy data in Central China from 1994 to 2014. Ren Fail. 2016;38(7):1021–30.CrossRef Xu X, Ning Y, Shang W, et al. Analysis of 4931 renal biopsy data in Central China from 1994 to 2014. Ren Fail. 2016;38(7):1021–30.CrossRef
19.
go back to reference Zhou FD, Zhao MH, Zou WZ, et al. The changing spectrum of primary glomerular diseases within 15 years: a survey of 3331 patients in a single Chinese Centre. Nephrol Dial Transplant. 2009;24(3):870–6.CrossRef Zhou FD, Zhao MH, Zou WZ, et al. The changing spectrum of primary glomerular diseases within 15 years: a survey of 3331 patients in a single Chinese Centre. Nephrol Dial Transplant. 2009;24(3):870–6.CrossRef
20.
go back to reference Zhang X, S L, Tang L, et al. Analysis of pathological data of renal biopsy at one single center in China from 1987 to 2012. Chin Med J. 2014;127(9):1715–20.PubMed Zhang X, S L, Tang L, et al. Analysis of pathological data of renal biopsy at one single center in China from 1987 to 2012. Chin Med J. 2014;127(9):1715–20.PubMed
21.
go back to reference Lu C, Zhu K, Zhao H, Ji J, Mu G, et al. Correlation between TCRCalpha −560 C/T polymorphism and the clinical presentation of Uygur IgA nephropathy patients in XinJiang. Asian Pac J Allergy Immunol. 2011;29:236–9.PubMed Lu C, Zhu K, Zhao H, Ji J, Mu G, et al. Correlation between TCRCalpha −560 C/T polymorphism and the clinical presentation of Uygur IgA nephropathy patients in XinJiang. Asian Pac J Allergy Immunol. 2011;29:236–9.PubMed
22.
go back to reference Barratt J, Feehally J. IgA nephropathy. J Am Soc Nephrol. 2005;16:2088–97.CrossRef Barratt J, Feehally J. IgA nephropathy. J Am Soc Nephrol. 2005;16:2088–97.CrossRef
23.
go back to reference Moriyama T, Oshima Y, Tanaka K, Iwasaki C, Ochi A, et al. Statins stabilize the renal function of IgA nephropathy. Ren Fail. 2014;36:356–60.CrossRef Moriyama T, Oshima Y, Tanaka K, Iwasaki C, Ochi A, et al. Statins stabilize the renal function of IgA nephropathy. Ren Fail. 2014;36:356–60.CrossRef
24.
go back to reference Fukui H, Taniguchi A, Sakamoto S, Kawahara S, Matsunaga T, et al. Antithrombin III in children with various renal diseases. Pediatr Nephrol. 1989;3:144–8.CrossRef Fukui H, Taniguchi A, Sakamoto S, Kawahara S, Matsunaga T, et al. Antithrombin III in children with various renal diseases. Pediatr Nephrol. 1989;3:144–8.CrossRef
25.
go back to reference Ohashi K, Iwatani H, Kihara S, Nakagawa Y, Komura N, et al. Exacerbation of albuminuria and renal fibrosis in subtotal renal ablation model of adiponectin-knockout mice. Arterioscler Thromb Vasc Biol. 2007;27:1910–7.CrossRef Ohashi K, Iwatani H, Kihara S, Nakagawa Y, Komura N, et al. Exacerbation of albuminuria and renal fibrosis in subtotal renal ablation model of adiponectin-knockout mice. Arterioscler Thromb Vasc Biol. 2007;27:1910–7.CrossRef
26.
go back to reference Inoue T, Sugiyama H, Kitagawa M, Takiue K, Morinaga H, et al. Suppression of adiponectin by aberrantly glycosylated IgA1 in glomerular mesangial cells in vitro and in vivo. PLoS One. 2012;7:e33965.CrossRef Inoue T, Sugiyama H, Kitagawa M, Takiue K, Morinaga H, et al. Suppression of adiponectin by aberrantly glycosylated IgA1 in glomerular mesangial cells in vitro and in vivo. PLoS One. 2012;7:e33965.CrossRef
27.
go back to reference Jin X, Chen J, Hu Z, Chan L, Wang Y. Genetic deficiency of adiponectin protects against acute kidney injury. Kidney Int. 2013;83:604–14.CrossRef Jin X, Chen J, Hu Z, Chan L, Wang Y. Genetic deficiency of adiponectin protects against acute kidney injury. Kidney Int. 2013;83:604–14.CrossRef
28.
go back to reference Levitsky J, Baker TB, Jie C, Ahya S, Levin M, et al. Plasma protein biomarkers enhance the clinical prediction of kidney injury recovery in patients undergoing liver transplantation. Hepatology. 2014;60:2017–26.CrossRef Levitsky J, Baker TB, Jie C, Ahya S, Levin M, et al. Plasma protein biomarkers enhance the clinical prediction of kidney injury recovery in patients undergoing liver transplantation. Hepatology. 2014;60:2017–26.CrossRef
29.
go back to reference Dong J, Liu X, Liu S, Li M, Xu Y, Cui B. Effects of calcium dobesilate on glomerulus TIMP1 and collagen IV of diabetic rats. J Huazhong Univ Sci Technolog Med Sci. 2005;25(4):416–8 426.CrossRef Dong J, Liu X, Liu S, Li M, Xu Y, Cui B. Effects of calcium dobesilate on glomerulus TIMP1 and collagen IV of diabetic rats. J Huazhong Univ Sci Technolog Med Sci. 2005;25(4):416–8 426.CrossRef
30.
go back to reference Arrizabalaga P, Sole M, Abellana R, de las Cuevas X, Soler J, et al. Tubular and interstitial expression of ICAM-1 as a marker of renal injury in IgA nephropathy. Am J Nephrol. 2003;23:121–8.CrossRef Arrizabalaga P, Sole M, Abellana R, de las Cuevas X, Soler J, et al. Tubular and interstitial expression of ICAM-1 as a marker of renal injury in IgA nephropathy. Am J Nephrol. 2003;23:121–8.CrossRef
31.
go back to reference Roberti I, Reisman L. Serial evaluation of cell surface markers for immune activation after acute renal allograft rejection by urine flow cytometry--correlation with clinical outcome. Transplantation. 2001;71:1317–20.CrossRef Roberti I, Reisman L. Serial evaluation of cell surface markers for immune activation after acute renal allograft rejection by urine flow cytometry--correlation with clinical outcome. Transplantation. 2001;71:1317–20.CrossRef
32.
go back to reference Liu BC, Zhang L, Lv LL, Wang YL, Liu DG, et al. Application of antibody array technology in the analysis of urinary cytokine profiles in patients with chronic kidney disease. Am J Nephrol. 2006;26:483–90.CrossRef Liu BC, Zhang L, Lv LL, Wang YL, Liu DG, et al. Application of antibody array technology in the analysis of urinary cytokine profiles in patients with chronic kidney disease. Am J Nephrol. 2006;26:483–90.CrossRef
33.
go back to reference Abd-Elkareem MI, Al Tamimy HM, Khamis OA, Abdellatif SS, Hussein MR. Increased urinary levels of the leukocyte adhesion molecules ICAM-1 and VCAM-1 in human lupus nephritis with advanced renal histological changes: preliminary findings. Clin Exp Nephrol. 2010;14:548–57.CrossRef Abd-Elkareem MI, Al Tamimy HM, Khamis OA, Abdellatif SS, Hussein MR. Increased urinary levels of the leukocyte adhesion molecules ICAM-1 and VCAM-1 in human lupus nephritis with advanced renal histological changes: preliminary findings. Clin Exp Nephrol. 2010;14:548–57.CrossRef
34.
go back to reference Guan J, Wang G, Tam LS, Kwan BC, Li EK, et al. Urinary sediment ICAM-1 level in lupus nephritis. Lupus. 2012;21:1190–5.CrossRef Guan J, Wang G, Tam LS, Kwan BC, Li EK, et al. Urinary sediment ICAM-1 level in lupus nephritis. Lupus. 2012;21:1190–5.CrossRef
35.
go back to reference Shimotomai T, Kakei M, Narita T, Koshimura J, Hosoba M, et al. Enhanced urinary adiponectin excretion in IgA-nephropathy patients with proteinuria. Ren Fail. 2005;27:323–8.CrossRef Shimotomai T, Kakei M, Narita T, Koshimura J, Hosoba M, et al. Enhanced urinary adiponectin excretion in IgA-nephropathy patients with proteinuria. Ren Fail. 2005;27:323–8.CrossRef
36.
go back to reference Nagaraj N, Mann M. Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. J Proteome Res. 2011;10:637–45.CrossRef Nagaraj N, Mann M. Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. J Proteome Res. 2011;10:637–45.CrossRef
37.
go back to reference Guo Z, Zhang Y, Zou L, Wang D, Shao C, Wang Y, Sun W, Zhang L. A proteomic analysis of individual and gender variations in Normal human urine and cerebrospinal fluid using iTRAQ quantification. PLoS One. 2015;10(7):e0133270.CrossRef Guo Z, Zhang Y, Zou L, Wang D, Shao C, Wang Y, Sun W, Zhang L. A proteomic analysis of individual and gender variations in Normal human urine and cerebrospinal fluid using iTRAQ quantification. PLoS One. 2015;10(7):e0133270.CrossRef
38.
go back to reference Geyer PE, Kulak NA, Pichler G, Holdt LM, Teupser D, Mann M. Plasma proteome profiling to assess human health and disease. Cell Syst. 2016;2(3):185–95.CrossRef Geyer PE, Kulak NA, Pichler G, Holdt LM, Teupser D, Mann M. Plasma proteome profiling to assess human health and disease. Cell Syst. 2016;2(3):185–95.CrossRef
39.
go back to reference Jang HR, Kim SM, Lee YJ, Lee JE, Huh W, Kim DJ, Oh HY, Kim YG. The origin and the clinical significance of urinary angiotensinogen in proteinuric IgA nephropathy patients. Ann Med. 2012;44(5):448–57.CrossRef Jang HR, Kim SM, Lee YJ, Lee JE, Huh W, Kim DJ, Oh HY, Kim YG. The origin and the clinical significance of urinary angiotensinogen in proteinuric IgA nephropathy patients. Ann Med. 2012;44(5):448–57.CrossRef
40.
go back to reference Wasilewska A, Zoch-Zwierz W, Taranta-Janusz K, Kołodziejczyk Z. Urinary monocyte chemoattractant protein-1 excretion in children with glomerular proteinuria. Scand J Urol Nephrol. 2011;45(1):52–9.CrossRef Wasilewska A, Zoch-Zwierz W, Taranta-Janusz K, Kołodziejczyk Z. Urinary monocyte chemoattractant protein-1 excretion in children with glomerular proteinuria. Scand J Urol Nephrol. 2011;45(1):52–9.CrossRef
41.
go back to reference Longhi A, Ferrari S, Tamburini A, Luksch R, Fagioli F, Bacci G, Ferrari C. Late effects of chemotherapy and radiotherapy in osteosarcoma and Ewing sarcoma patients: the Italian sarcoma group experience (1983-2006). Cancer. 2012;118(20):5050–9.CrossRef Longhi A, Ferrari S, Tamburini A, Luksch R, Fagioli F, Bacci G, Ferrari C. Late effects of chemotherapy and radiotherapy in osteosarcoma and Ewing sarcoma patients: the Italian sarcoma group experience (1983-2006). Cancer. 2012;118(20):5050–9.CrossRef
42.
go back to reference Rocchetti MT, Papale M, d'Apollo AM, Suriano IV, Di Palma AM, Vocino G, et al. Association of urinary laminin G-like 3 and free K light chains with disease activity and histological injury in IgA nephropathy. Clin J Am Soc Nephrol. 2013;8(7):1115–25.CrossRef Rocchetti MT, Papale M, d'Apollo AM, Suriano IV, Di Palma AM, Vocino G, et al. Association of urinary laminin G-like 3 and free K light chains with disease activity and histological injury in IgA nephropathy. Clin J Am Soc Nephrol. 2013;8(7):1115–25.CrossRef
43.
go back to reference Shi B, Wang L, Mou S, Zhang M, Wang Q, Qi C, et al. Identification of mannose-binding lectin as a mechanism in progressive immunoglobulin a nephropathy. Int J Clin Exp Pathol. 2015;8(2):1889–99.PubMedPubMedCentral Shi B, Wang L, Mou S, Zhang M, Wang Q, Qi C, et al. Identification of mannose-binding lectin as a mechanism in progressive immunoglobulin a nephropathy. Int J Clin Exp Pathol. 2015;8(2):1889–99.PubMedPubMedCentral
Metadata
Title
Analysis of the differential urinary protein profile in IgA nephropathy patients of Uygur ethnicity
Authors
Zhengguang Guo
Zhao Wang
Chen Lu
Shufen Yang
Haidan Sun
Reziw
Yu Guo
Wei Sun
Hua Yue
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2018
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-018-1139-3

Other articles of this Issue 1/2018

BMC Nephrology 1/2018 Go to the issue