Skip to main content
Top
Published in: Current Treatment Options in Gastroenterology 1/2019

01-03-2019 | Probiotics | Inflammatory Bowel Disease (Gary Lichtenstein, Section Editor)

The Gut Microbiome as a Target for IBD Treatment: Are We There Yet?

Published in: Current Treatment Options in Gastroenterology | Issue 1/2019

Login to get access

Abstract

Purpose of review

This review aims to highlight recent research on the gut microbiome in IBD and the application of microbiome-modulating therapies for the treatment of IBD including the use of the microbiome as an indicator for disease severity and treatment response.

Recent findings

Despite the high number of gut microbiome studies and emerging evidence supporting the gut microbiome’s involvement in disease pathogenesis, no single microorganism has been identified as a pathogenic agent in IBD. Retrospective studies and meta-analyses on antibiotic use in ulcerative colitis and Crohn’s disease and long-term outcomes are conflicting. Similarly, the use of probiotics for the treatment of IBD remains inconclusive; however, some encouraging results are emerging as microbial concoctions are optimized to include beneficial bacterial strains. Fecal microbial transplantation (FMT) is currently emerging as one of the more promising microbiome-modulating IBD therapies. FMT studies in ulcerative colitis have shown improved remission rates compared to placebo; however, relatively small study sample sizes and varied treatment methods, limit definitive conclusions.

Summary

With clear evidence of an IBD gut dysbiosis, novel therapies to treat and prevent disease relapse will undoubtedly require a microbiome-modulating approach. The complexity and variability of IBD disease pathogenesis (disease phenotype, gut microbiome, host genetic susceptibility, and environmental factors) will likely require a personalized and multidimensional treatment approach where microbiome-modulating therapy is coupled with other therapies to target other IBD disease components.
Literature
1.
go back to reference • Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390:2769–78. This review updates current epidemiological data on IBD incidence and prevalence from around the world, highlighting the ongoing emergence of IBD in the developing world.CrossRefPubMed • Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390:2769–78. This review updates current epidemiological data on IBD incidence and prevalence from around the world, highlighting the ongoing emergence of IBD in the developing world.CrossRefPubMed
2.
go back to reference de Souza HSP, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol. 2016;13:13–27.CrossRefPubMed de Souza HSP, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol. 2016;13:13–27.CrossRefPubMed
3.
go back to reference Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naïve microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–92.CrossRefPubMedPubMedCentral Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naïve microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–92.CrossRefPubMedPubMedCentral
4.
go back to reference Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55:205–11.CrossRefPubMedPubMedCentral Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55:205–11.CrossRefPubMedPubMedCentral
5.
go back to reference Willing B, Halfvarson J, Dicksved J, Rosenquist M, Järnerot G, Engstrand L, et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn’s disease. Inflamm Bowel Dis. 2009;15:653–60.CrossRefPubMed Willing B, Halfvarson J, Dicksved J, Rosenquist M, Järnerot G, Engstrand L, et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn’s disease. Inflamm Bowel Dis. 2009;15:653–60.CrossRefPubMed
6.
go back to reference Moustafa A, Li W, Anderson EL, Wong EHM, Dulai PS, Sandborn WJ, et al. Genetic risk, dysbiosis, and treatment stratification using host genome and gut microbiome in inflammatory bowel disease. Clin Transl Gastroenterol. 2018;9:e132.CrossRefPubMedPubMedCentral Moustafa A, Li W, Anderson EL, Wong EHM, Dulai PS, Sandborn WJ, et al. Genetic risk, dysbiosis, and treatment stratification using host genome and gut microbiome in inflammatory bowel disease. Clin Transl Gastroenterol. 2018;9:e132.CrossRefPubMedPubMedCentral
7.
go back to reference Liguori G, Lamas B, Richard ML, Brandi G, da Costa G, Hoffmann TW, et al. Fungal dysbiosis in mucosa-associated microbiota of Crohn’s disease patients. J Crohns Col. 2016;10:296–305.CrossRef Liguori G, Lamas B, Richard ML, Brandi G, da Costa G, Hoffmann TW, et al. Fungal dysbiosis in mucosa-associated microbiota of Crohn’s disease patients. J Crohns Col. 2016;10:296–305.CrossRef
8.
go back to reference Takahashi K, Nishida A, Fujimoto T, Fujii M, Shioya M, Imaeda H, et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion. 2016;93:59–65.CrossRefPubMed Takahashi K, Nishida A, Fujimoto T, Fujii M, Shioya M, Imaeda H, et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion. 2016;93:59–65.CrossRefPubMed
9.
go back to reference Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M, Zheng Z, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010;139:1844–1854.e1.CrossRefPubMed Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M, Zheng Z, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010;139:1844–1854.e1.CrossRefPubMed
10.
go back to reference Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R, et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J. 2007;1:403–18.CrossRefPubMed Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R, et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J. 2007;1:403–18.CrossRefPubMed
11.
go back to reference Kotlowski R, Bernstein CN, Sepehri S, Krause DO. High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. Gut. 2007;56:669–75.CrossRefPubMed Kotlowski R, Bernstein CN, Sepehri S, Krause DO. High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. Gut. 2007;56:669–75.CrossRefPubMed
13.
go back to reference Tahara T, Shibata T, Kawamura T, Okubo M, Ichikawa Y, Sumi K, et al. Fusobacterium detected in colonic biopsy and clinicopathological features of ulcerative colitis in Japan. Dig Dis Sci. 2015;60:205–10.CrossRefPubMed Tahara T, Shibata T, Kawamura T, Okubo M, Ichikawa Y, Sumi K, et al. Fusobacterium detected in colonic biopsy and clinicopathological features of ulcerative colitis in Japan. Dig Dis Sci. 2015;60:205–10.CrossRefPubMed
14.
go back to reference Ohkusa T, Okayasu I, Ogihara T, Morita K, Ogawa M, Sato N. Induction of experimental ulcerative colitis by Fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis. Gut. 2003;52:79–83.CrossRefPubMedPubMedCentral Ohkusa T, Okayasu I, Ogihara T, Morita K, Ogawa M, Sato N. Induction of experimental ulcerative colitis by Fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis. Gut. 2003;52:79–83.CrossRefPubMedPubMedCentral
15.
go back to reference Strauss J, Kaplan GG, Beck PL, Rioux K, Panaccione R, DeVinney R, et al. Invasive potential of gut mucosa-derived fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis. 2011;17:1971–8.CrossRefPubMed Strauss J, Kaplan GG, Beck PL, Rioux K, Panaccione R, DeVinney R, et al. Invasive potential of gut mucosa-derived fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis. 2011;17:1971–8.CrossRefPubMed
16.
go back to reference • Imhann F, Vila AV, Bonder MJ, Fu J, Gevers D, Visschedijk MC, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut. 2018;67:108–19. This study investigated the link between the IBD host genotype and gut microbiome using 16S rRNA sequencing of stool samples and host genotyping data in comparison to healthy controls. A key finding from this study was evidence that a gut dysbiosis commonly associated with IBD may precede disease manifestation. Healthy controls with high IBD genetic susceptibility were significantly associated with a lower abundance of Roseburia.CrossRefPubMed • Imhann F, Vila AV, Bonder MJ, Fu J, Gevers D, Visschedijk MC, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut. 2018;67:108–19. This study investigated the link between the IBD host genotype and gut microbiome using 16S rRNA sequencing of stool samples and host genotyping data in comparison to healthy controls. A key finding from this study was evidence that a gut dysbiosis commonly associated with IBD may precede disease manifestation. Healthy controls with high IBD genetic susceptibility were significantly associated with a lower abundance of Roseburia.CrossRefPubMed
17.
go back to reference •• Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555:210–5. Using independent cohorts, this study provides evidence that the influence of host genetics on the gut microbiome is likely minimal and report that only a small proportion of the gut microbiome is heritable; environmental factors impart a much larger effect on the human gut microbiome composition.CrossRef •• Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555:210–5. Using independent cohorts, this study provides evidence that the influence of host genetics on the gut microbiome is likely minimal and report that only a small proportion of the gut microbiome is heritable; environmental factors impart a much larger effect on the human gut microbiome composition.CrossRef
18.
go back to reference •• Schirmer M, Franzosa EA, Lloyd-Price J, LJ MI, Schwager R, Poon TW, et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nature Microbiol. 2018;3:337–46. One of the first studies to combine both metagenomics and metatranscriptomics approaches on fecal samples taken from IBD patients and healthy controls. Their results highlight variability in the sequence data generated from both approaches suggesting that the transcriptional activity may unravel additional disease mechanisms not possible through microbial DNA sequence abundance data.CrossRef •• Schirmer M, Franzosa EA, Lloyd-Price J, LJ MI, Schwager R, Poon TW, et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nature Microbiol. 2018;3:337–46. One of the first studies to combine both metagenomics and metatranscriptomics approaches on fecal samples taken from IBD patients and healthy controls. Their results highlight variability in the sequence data generated from both approaches suggesting that the transcriptional activity may unravel additional disease mechanisms not possible through microbial DNA sequence abundance data.CrossRef
19.
go back to reference Rehman A, Lepage P, Nolte A, Hellmig S, Schreiber S, Ott SJ. Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients. J Med Microbiol. 2010;59:1114–22.CrossRefPubMed Rehman A, Lepage P, Nolte A, Hellmig S, Schreiber S, Ott SJ. Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients. J Med Microbiol. 2010;59:1114–22.CrossRefPubMed
20.
go back to reference Sokol H, Leducq V, Aschard H, Pham H-P, Jegou S, Landman C, et al. Fungal microbiota dysbiosis in IBD. Gut. 2017;66:1039–48.CrossRefPubMed Sokol H, Leducq V, Aschard H, Pham H-P, Jegou S, Landman C, et al. Fungal microbiota dysbiosis in IBD. Gut. 2017;66:1039–48.CrossRefPubMed
21.
go back to reference Chehoud C, Albenberg LG, Judge C, Hoffmann C, Grunberg S, Bittinger K, et al. A fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:1948–56.CrossRefPubMedPubMedCentral Chehoud C, Albenberg LG, Judge C, Hoffmann C, Grunberg S, Bittinger K, et al. A fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:1948–56.CrossRefPubMedPubMedCentral
22.
go back to reference Mukhopadhya I, Hansen R, Meharg C, Thomson JM, Russell RK, Berry SH, et al. The fungal microbiota of de-novo paediatric inflammatory bowel disease. Microbes Infect. 2015;17:304–10.CrossRefPubMedPubMedCentral Mukhopadhya I, Hansen R, Meharg C, Thomson JM, Russell RK, Berry SH, et al. The fungal microbiota of de-novo paediatric inflammatory bowel disease. Microbes Infect. 2015;17:304–10.CrossRefPubMedPubMedCentral
23.
go back to reference El Mouzan M, Wang F, Al Mofarreh M, Menon R, Al Barrag A, Korolev KS, et al. Fungal microbiota profile in newly diagnosed treatment-naïve children with Crohn’s disease. J Crohn Col. 2017;11:586–92. El Mouzan M, Wang F, Al Mofarreh M, Menon R, Al Barrag A, Korolev KS, et al. Fungal microbiota profile in newly diagnosed treatment-naïve children with Crohn’s disease. J Crohn Col. 2017;11:586–92.
24.
go back to reference Seider K, Gerwien F, Kasper L, Allert S, Brunke S, Jablonowski N, et al. Immune evasion, stress resistance, and efficient nutrient acquisition are crucial for intracellular survival of Candida glabrata within macrophages. Eukaryot Cell. 2014;13:170–83.CrossRefPubMedPubMedCentral Seider K, Gerwien F, Kasper L, Allert S, Brunke S, Jablonowski N, et al. Immune evasion, stress resistance, and efficient nutrient acquisition are crucial for intracellular survival of Candida glabrata within macrophages. Eukaryot Cell. 2014;13:170–83.CrossRefPubMedPubMedCentral
25.
go back to reference Dollive S, Chen Y-Y, Grunberg S, Bittinger K, Hoffmann C, Vandivier L, et al. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PLoS One. 2013;8:e71806.CrossRefPubMedPubMedCentral Dollive S, Chen Y-Y, Grunberg S, Bittinger K, Hoffmann C, Vandivier L, et al. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PLoS One. 2013;8:e71806.CrossRefPubMedPubMedCentral
26.
go back to reference Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160:447–60.CrossRefPubMedPubMedCentral Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160:447–60.CrossRefPubMedPubMedCentral
27.
go back to reference Ungaro F, Massimino L, Furfaro F, Rimoldi V, Peyrin-Biroulet L, D’Alessio S, et al. Metagenomic analysis of intestinal mucosa revealed a specific eukaryotic gut virome signature in early-diagnosed inflammatory bowel disease. Gut Microbes. 2018;0:1–10.CrossRef Ungaro F, Massimino L, Furfaro F, Rimoldi V, Peyrin-Biroulet L, D’Alessio S, et al. Metagenomic analysis of intestinal mucosa revealed a specific eukaryotic gut virome signature in early-diagnosed inflammatory bowel disease. Gut Microbes. 2018;0:1–10.CrossRef
28.
go back to reference Khan KJ, Ullman TA, Ford AC, Abreu MT, Abadir A, Marshall JK, et al. Antibiotic therapy in inflammatory bowel disease: a systematic review and Meta-analysis. Am J Gastroenterol. 2011;106:661–73.CrossRefPubMed Khan KJ, Ullman TA, Ford AC, Abreu MT, Abadir A, Marshall JK, et al. Antibiotic therapy in inflammatory bowel disease: a systematic review and Meta-analysis. Am J Gastroenterol. 2011;106:661–73.CrossRefPubMed
29.
go back to reference Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. PNAS. 2011;108:4554–61.CrossRefPubMed Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. PNAS. 2011;108:4554–61.CrossRefPubMed
30.
go back to reference •• Levine A, Kori M, Kierkus J, Boneh RS, Sladek M, Escher JC, et al. Azithromycin and metronidazole versus metronidazole-based therapy for the induction of remission in mild to moderate paediatric Crohn’s disease : a randomised controlled trial. Gut. 2018;68:gutjnl-2017–315199. This study was a randomized controlled trial of azithromycin plus metronidazole versus metronidazole alone in children with Crohn’s disease. The group randomized to azithromycin had a higher remission rate. The remission rate in the azithromycin group was sufficiently high to raise concerns about the impact of lack of blinding. •• Levine A, Kori M, Kierkus J, Boneh RS, Sladek M, Escher JC, et al. Azithromycin and metronidazole versus metronidazole-based therapy for the induction of remission in mild to moderate paediatric Crohn’s disease : a randomised controlled trial. Gut. 2018;68:gutjnl-2017–315199. This study was a randomized controlled trial of azithromycin plus metronidazole versus metronidazole alone in children with Crohn’s disease. The group randomized to azithromycin had a higher remission rate. The remission rate in the azithromycin group was sufficiently high to raise concerns about the impact of lack of blinding.
31.
go back to reference Gupta V, Rodrigues R, Nguyen D, Sauk J, Khalili H, Yajnik V, et al. Adjuvant use of antibiotics with corticosteroids in inflammatory bowel disease exacerbations requiring hospitalisation: a retrospective cohort study and meta-analysis. Aliment Pharmacol Therap. 2016;43:52–60.CrossRef Gupta V, Rodrigues R, Nguyen D, Sauk J, Khalili H, Yajnik V, et al. Adjuvant use of antibiotics with corticosteroids in inflammatory bowel disease exacerbations requiring hospitalisation: a retrospective cohort study and meta-analysis. Aliment Pharmacol Therap. 2016;43:52–60.CrossRef
32.
go back to reference Ledder O, Turner D. Antibiotics in IBD: still a role in the biological era? Inflamm Bowel Dis. 2018;24:1676–88.CrossRefPubMed Ledder O, Turner D. Antibiotics in IBD: still a role in the biological era? Inflamm Bowel Dis. 2018;24:1676–88.CrossRefPubMed
33.
go back to reference Bernstein CN. Antibiotics, Probiotics and Prebiotics in IBD. Nutrition, gut microbiota and immunity: therapeutic targets for IBD. Nestle Nutr Inst Workshop Ser. 2014;79:83–100.CrossRefPubMed Bernstein CN. Antibiotics, Probiotics and Prebiotics in IBD. Nutrition, gut microbiota and immunity: therapeutic targets for IBD. Nestle Nutr Inst Workshop Ser. 2014;79:83–100.CrossRefPubMed
34.
go back to reference Derwa Y, Gracie DJ, Hamlin PJ, Ford AC. Systematic review with meta-analysis: the efficacy of probiotics in inflammatory bowel disease. Aliment Pharmacol Therap. 2017;46:389–400.CrossRef Derwa Y, Gracie DJ, Hamlin PJ, Ford AC. Systematic review with meta-analysis: the efficacy of probiotics in inflammatory bowel disease. Aliment Pharmacol Therap. 2017;46:389–400.CrossRef
35.
go back to reference Sivignon A, de Vallée A, Barnich N, Denizot J, Darcha C, Pignède G, et al. Saccharomyces cerevisiae CNCM I-3856 prevents colitis induced by AIEC bacteria in the transgenic mouse model mimicking Crohn’s disease. Inflamm Bowel Dis. 2015;21:276–86.CrossRefPubMed Sivignon A, de Vallée A, Barnich N, Denizot J, Darcha C, Pignède G, et al. Saccharomyces cerevisiae CNCM I-3856 prevents colitis induced by AIEC bacteria in the transgenic mouse model mimicking Crohn’s disease. Inflamm Bowel Dis. 2015;21:276–86.CrossRefPubMed
36.
go back to reference •• Paramsothy S, Kamm MA, Kaakoush NO, Walsh AJ, van den Bogaerde J, Samuel D, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017;389:1218–28. This was the most recent published randomized placebo controlled trial of fecal microbial transplantation in the treatment of UC. It suggested a magnitude of benefit similar to that seen in the previously reported Canadian study.CrossRef •• Paramsothy S, Kamm MA, Kaakoush NO, Walsh AJ, van den Bogaerde J, Samuel D, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017;389:1218–28. This was the most recent published randomized placebo controlled trial of fecal microbial transplantation in the treatment of UC. It suggested a magnitude of benefit similar to that seen in the previously reported Canadian study.CrossRef
37.
go back to reference Moayyedi P, Surette MG, Kim PT, Libertucci J, Wolfe M, Onischi C, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 2015;149:102–9.CrossRefPubMed Moayyedi P, Surette MG, Kim PT, Libertucci J, Wolfe M, Onischi C, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 2015;149:102–9.CrossRefPubMed
38.
go back to reference Rossen NG, Fuentes S, van der Spek MJ, Tijssen JG, Hartman JHA, Duflou A, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology. 2015;149:110–118.e4.CrossRefPubMed Rossen NG, Fuentes S, van der Spek MJ, Tijssen JG, Hartman JHA, Duflou A, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology. 2015;149:110–118.e4.CrossRefPubMed
39.
go back to reference •• Kao D, Roach B, Silva M, Beck P, Rioux K, Kaplan GG, et al. Effect of oral capsule– vs colonoscopy-delivered fecal microbiota transplantation on recurrent Clostridium difficile infection: a randomized clinical trial. JAMA. 2017;318:1985–93. This randomized controlled trial showed that encapsulated stool was comparably effective at reducing recurrence of C difficile as colonoscopically administered fecal microbial transplantation.CrossRefPubMedPubMedCentral •• Kao D, Roach B, Silva M, Beck P, Rioux K, Kaplan GG, et al. Effect of oral capsule– vs colonoscopy-delivered fecal microbiota transplantation on recurrent Clostridium difficile infection: a randomized clinical trial. JAMA. 2017;318:1985–93. This randomized controlled trial showed that encapsulated stool was comparably effective at reducing recurrence of C difficile as colonoscopically administered fecal microbial transplantation.CrossRefPubMedPubMedCentral
40.
go back to reference Narula N, Kassam Z, Yuan Y, Colombel J-F, Ponsioen C, Reinisch W, et al. Systematic review and meta-analysis: fecal microbiota transplantation for treatment of active ulcerative colitis. Inflamm Bowel Dis. 2017;23:1702–9.CrossRefPubMed Narula N, Kassam Z, Yuan Y, Colombel J-F, Ponsioen C, Reinisch W, et al. Systematic review and meta-analysis: fecal microbiota transplantation for treatment of active ulcerative colitis. Inflamm Bowel Dis. 2017;23:1702–9.CrossRefPubMed
41.
go back to reference Paramsothy S, Paramsothy R, Rubin DT, Kamm MA, Kaakoush NO, Mitchell HM, et al. Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis. J Crohn Col. 2017;11:1180–99.CrossRef Paramsothy S, Paramsothy R, Rubin DT, Kamm MA, Kaakoush NO, Mitchell HM, et al. Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis. J Crohn Col. 2017;11:1180–99.CrossRef
42.
go back to reference Qazi T, Amaratunga T, Barnes EL, Fischer M, Kassam Z, Allegretti JR. The risk of inflammatory bowel disease flares after fecal microbiota transplantation: systematic review and meta-analysis. Gut Microbes. 2017;8:574–88.CrossRefPubMedPubMedCentral Qazi T, Amaratunga T, Barnes EL, Fischer M, Kassam Z, Allegretti JR. The risk of inflammatory bowel disease flares after fecal microbiota transplantation: systematic review and meta-analysis. Gut Microbes. 2017;8:574–88.CrossRefPubMedPubMedCentral
43.
go back to reference Goyal A, Yeh A, Bush BR, Firek BA, Siebold LM, Rogers MB, et al. Safety, clinical response, and microbiome findings following fecal microbiota transplant in children with inflammatory bowel disease. Inflamm Bowel Dis. 2018;24:410–21.CrossRefPubMed Goyal A, Yeh A, Bush BR, Firek BA, Siebold LM, Rogers MB, et al. Safety, clinical response, and microbiome findings following fecal microbiota transplant in children with inflammatory bowel disease. Inflamm Bowel Dis. 2018;24:410–21.CrossRefPubMed
44.
go back to reference Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15:630–8.CrossRefPubMed Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15:630–8.CrossRefPubMed
46.
47.
go back to reference Gevers D, Kugathasan S, Knights D, Kostic AD, Knight R, Xavier RJ. A microbiome foundation for the study of Crohn’s disease. Cell Host Microbe. 2017;21:301–4.CrossRefPubMedPubMedCentral Gevers D, Kugathasan S, Knights D, Kostic AD, Knight R, Xavier RJ. A microbiome foundation for the study of Crohn’s disease. Cell Host Microbe. 2017;21:301–4.CrossRefPubMedPubMedCentral
48.
49.
go back to reference Suskind DL, Cohen SA, Brittnacher MJ, Wahbeh G, Lee D, Shaffer ML, et al. Clinical and fecal microbial changes with diet therapy in active inflammatory bowel disease. J Clin Gastroenterol. 2018;52:155–63.PubMed Suskind DL, Cohen SA, Brittnacher MJ, Wahbeh G, Lee D, Shaffer ML, et al. Clinical and fecal microbial changes with diet therapy in active inflammatory bowel disease. J Clin Gastroenterol. 2018;52:155–63.PubMed
50.
go back to reference Gerasimidis K, Bertz M, Hanske L, Junick J, Biskou O, Aguilera M, et al. Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn’s disease during enteral nutrition. Inflamm Bowel Dis. 2014;20:861–71.CrossRefPubMed Gerasimidis K, Bertz M, Hanske L, Junick J, Biskou O, Aguilera M, et al. Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn’s disease during enteral nutrition. Inflamm Bowel Dis. 2014;20:861–71.CrossRefPubMed
51.
go back to reference Ashton JJ, Colquhoun CM, Cleary DW, Coelho T, Haggarty R, Mulder I, et al. 16S sequencing and functional analysis of the fecal microbiome during treatment of newly diagnosed pediatric inflammatory bowel disease. Medicine (Baltimore) [Internet]. 2017 [cited 2018 Oct 3];96. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500076/Accessed 1 Nov 2018. Ashton JJ, Colquhoun CM, Cleary DW, Coelho T, Haggarty R, Mulder I, et al. 16S sequencing and functional analysis of the fecal microbiome during treatment of newly diagnosed pediatric inflammatory bowel disease. Medicine (Baltimore) [Internet]. 2017 [cited 2018 Oct 3];96. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pmc/​articles/​PMC5500076/​Accessed 1 Nov 2018.
52.
go back to reference Ananthakrishnan AN, Luo C, Yajnik V, Khalili H, Garber JJ, Stevens BW, et al. Gut microbiome function predicts response to anti-integrin biologic therapy in Inflammatory bowel diseases. Cell Host Microbe. 2017;21:603–610.e3.CrossRefPubMedPubMedCentral Ananthakrishnan AN, Luo C, Yajnik V, Khalili H, Garber JJ, Stevens BW, et al. Gut microbiome function predicts response to anti-integrin biologic therapy in Inflammatory bowel diseases. Cell Host Microbe. 2017;21:603–610.e3.CrossRefPubMedPubMedCentral
Metadata
Title
The Gut Microbiome as a Target for IBD Treatment: Are We There Yet?
Publication date
01-03-2019
Published in
Current Treatment Options in Gastroenterology / Issue 1/2019
Print ISSN: 1092-8472
Electronic ISSN: 1534-309X
DOI
https://doi.org/10.1007/s11938-019-00221-w

Other articles of this Issue 1/2019

Current Treatment Options in Gastroenterology 1/2019 Go to the issue

Esophagus (PG Iyer, Section Editor)

Esophageal Third Space Endoscopy: Recent Advances

Colon (J Anderson, Section Editor)

Colorectal Cancer in Young Adults