Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Central Nervous System Trauma | Review

Dysregulated brain-gut axis in the setting of traumatic brain injury: review of mechanisms and anti-inflammatory pharmacotherapies

Authors: Mahmoud G. El Baassiri, Zachariah Raouf, Sarah Badin, Alejandro Escobosa, Chhinder P. Sodhi, Isam W. Nasr

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Traumatic brain injury (TBI) is a chronic and debilitating disease, associated with a high risk of psychiatric and neurodegenerative diseases. Despite significant advancements in improving outcomes, the lack of effective treatments underscore the urgent need for innovative therapeutic strategies. The brain-gut axis has emerged as a crucial bidirectional pathway connecting the brain and the gastrointestinal (GI) system through an intricate network of neuronal, hormonal, and immunological pathways. Four main pathways are primarily implicated in this crosstalk, including the systemic immune system, autonomic and enteric nervous systems, neuroendocrine system, and microbiome. TBI induces profound changes in the gut, initiating an unrestrained vicious cycle that exacerbates brain injury through the brain-gut axis. Alterations in the gut include mucosal damage associated with the malabsorption of nutrients/electrolytes, disintegration of the intestinal barrier, increased infiltration of systemic immune cells, dysmotility, dysbiosis, enteroendocrine cell (EEC) dysfunction and disruption in the enteric nervous system (ENS) and autonomic nervous system (ANS). Collectively, these changes further contribute to brain neuroinflammation and neurodegeneration via the gut-brain axis. In this review article, we elucidate the roles of various anti-inflammatory pharmacotherapies capable of attenuating the dysregulated inflammatory response along the brain-gut axis in TBI. These agents include hormones such as serotonin, ghrelin, and progesterone, ANS regulators such as beta-blockers, lipid-lowering drugs like statins, and intestinal flora modulators such as probiotics and antibiotics. They attenuate neuroinflammation by targeting distinct inflammatory pathways in both the brain and the gut post-TBI. These therapeutic agents exhibit promising potential in mitigating inflammation along the brain-gut axis and enhancing neurocognitive outcomes for TBI patients.
Literature
2.
go back to reference Simon DW, McGeachy MJ, Bayır H, Clark RSB, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13(3):171–91.PubMedPubMedCentralCrossRef Simon DW, McGeachy MJ, Bayır H, Clark RSB, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13(3):171–91.PubMedPubMedCentralCrossRef
3.
go back to reference Brett BL, Gardner RC, Godbout J, Dams-O’Connor K, Keene CD. Traumatic brain injury and risk of neurodegenerative disorder. Biol Psychiatry. 2022;91(5):498–507.PubMedCrossRef Brett BL, Gardner RC, Godbout J, Dams-O’Connor K, Keene CD. Traumatic brain injury and risk of neurodegenerative disorder. Biol Psychiatry. 2022;91(5):498–507.PubMedCrossRef
4.
5.
go back to reference Nasr IW, Chun Y, Kannan S. Neuroimmune responses in the developing brain following traumatic brain injury. Exp Neurol. 2019;320: 112957.PubMedCrossRef Nasr IW, Chun Y, Kannan S. Neuroimmune responses in the developing brain following traumatic brain injury. Exp Neurol. 2019;320: 112957.PubMedCrossRef
6.
go back to reference Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience. 2004;129(4):1021–9.PubMedCrossRef Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience. 2004;129(4):1021–9.PubMedCrossRef
7.
go back to reference Chesnut RM, Gautille T, Blunt BA, Klauber MR, Marshall LF. Neurogenic hypotension in patients with severe head injuries. J Trauma. 1998;44(6):958–63 (discussion 63-4).PubMedCrossRef Chesnut RM, Gautille T, Blunt BA, Klauber MR, Marshall LF. Neurogenic hypotension in patients with severe head injuries. J Trauma. 1998;44(6):958–63 (discussion 63-4).PubMedCrossRef
8.
go back to reference Parikh U, Williams M, Jacobs A, Pineda JA, Brody DL, Friess SH. Delayed hypoxemia following traumatic brain injury exacerbates white matter injury. J Neuropathol Exp Neurol. 2016;75(8):731–47.PubMedPubMedCentralCrossRef Parikh U, Williams M, Jacobs A, Pineda JA, Brody DL, Friess SH. Delayed hypoxemia following traumatic brain injury exacerbates white matter injury. J Neuropathol Exp Neurol. 2016;75(8):731–47.PubMedPubMedCentralCrossRef
9.
go back to reference Davies M, Jacobs A, Brody DL, Friess SH. Delayed hypoxemia after traumatic brain injury exacerbates long-term behavioral deficits. J Neurotrauma. 2018;35(5):790–801.PubMedPubMedCentralCrossRef Davies M, Jacobs A, Brody DL, Friess SH. Delayed hypoxemia after traumatic brain injury exacerbates long-term behavioral deficits. J Neurotrauma. 2018;35(5):790–801.PubMedPubMedCentralCrossRef
10.
go back to reference Hermanides J, Hong YT, Trivedi M, Outtrim J, Aigbirhio F, Nestor PJ, et al. Metabolic derangements are associated with impaired glucose delivery following traumatic brain injury. Brain. 2021;144(11):3492–504.PubMedPubMedCentralCrossRef Hermanides J, Hong YT, Trivedi M, Outtrim J, Aigbirhio F, Nestor PJ, et al. Metabolic derangements are associated with impaired glucose delivery following traumatic brain injury. Brain. 2021;144(11):3492–504.PubMedPubMedCentralCrossRef
12.
go back to reference Lozano D, Gonzales-Portillo GS, Acosta S, de la Pena I, Tajiri N, Kaneko Y, Borlongan CV. Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences, and therapeutic opportunities. Neuropsychiatr Dis Treat. 2015;11:97–106.PubMedPubMedCentral Lozano D, Gonzales-Portillo GS, Acosta S, de la Pena I, Tajiri N, Kaneko Y, Borlongan CV. Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences, and therapeutic opportunities. Neuropsychiatr Dis Treat. 2015;11:97–106.PubMedPubMedCentral
13.
go back to reference Karve IP, Taylor JM, Crack PJ. The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol. 2016;173(4):692–702.PubMedCrossRef Karve IP, Taylor JM, Crack PJ. The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol. 2016;173(4):692–702.PubMedCrossRef
14.
go back to reference El Baassiri MG, Rahal SS, Fulton WB, Sodhi CP, Hackam DJ, Nasr IW. Pharmacologic Toll-like receptor 4 inhibition skews toward a favorable A1/A2 astrocytic ratio improving neurocognitive outcomes following traumatic brain injury. J Trauma Acute Care Surg. 2023;95(3):361–7.PubMedCrossRef El Baassiri MG, Rahal SS, Fulton WB, Sodhi CP, Hackam DJ, Nasr IW. Pharmacologic Toll-like receptor 4 inhibition skews toward a favorable A1/A2 astrocytic ratio improving neurocognitive outcomes following traumatic brain injury. J Trauma Acute Care Surg. 2023;95(3):361–7.PubMedCrossRef
16.
go back to reference El Baassiri MG, Chun YH, Rahal SS, Fulton WB, Sodhi CP, Hackam DJ, Nasr IW. Infiltrating anti-inflammatory monocytes modulate microglial activation through toll-like receptor 4/interferon-dependent pathways following traumatic brain injury. J Trauma Acute Care Surg. 2023;95(3):368–75.PubMedCrossRef El Baassiri MG, Chun YH, Rahal SS, Fulton WB, Sodhi CP, Hackam DJ, Nasr IW. Infiltrating anti-inflammatory monocytes modulate microglial activation through toll-like receptor 4/interferon-dependent pathways following traumatic brain injury. J Trauma Acute Care Surg. 2023;95(3):368–75.PubMedCrossRef
17.
go back to reference Wu Y, Wu H, Guo X, Pluimer B, Zhao Z. Blood-brain barrier dysfunction in mild traumatic brain injury: evidence from preclinical murine models. Front Physiol. 2020;11:1030.PubMedPubMedCentralCrossRef Wu Y, Wu H, Guo X, Pluimer B, Zhao Z. Blood-brain barrier dysfunction in mild traumatic brain injury: evidence from preclinical murine models. Front Physiol. 2020;11:1030.PubMedPubMedCentralCrossRef
18.
go back to reference Baracaldo-Santamaria D, Ariza-Salamanca DF, Corrales-Hernandez MG, Pachon-Londono MJ, Hernandez-Duarte I, Calderon-Ospina CA. Revisiting excitotoxicity in traumatic brain injury: from bench to bedside. Pharmaceutics. 2022;14(1):152.PubMedPubMedCentralCrossRef Baracaldo-Santamaria D, Ariza-Salamanca DF, Corrales-Hernandez MG, Pachon-Londono MJ, Hernandez-Duarte I, Calderon-Ospina CA. Revisiting excitotoxicity in traumatic brain injury: from bench to bedside. Pharmaceutics. 2022;14(1):152.PubMedPubMedCentralCrossRef
19.
go back to reference Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol. 2012;167(4):699–719.PubMedPubMedCentralCrossRef Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol. 2012;167(4):699–719.PubMedPubMedCentralCrossRef
20.
go back to reference Pilitsis JG, Coplin WM, O’Regan MH, Wellwood JM, Diaz FG, Fairfax MR, et al. Free fatty acids in cerebrospinal fluids from patients with traumatic brain injury. Neurosci Lett. 2003;349(2):136–8.PubMedCrossRef Pilitsis JG, Coplin WM, O’Regan MH, Wellwood JM, Diaz FG, Fairfax MR, et al. Free fatty acids in cerebrospinal fluids from patients with traumatic brain injury. Neurosci Lett. 2003;349(2):136–8.PubMedCrossRef
21.
go back to reference Sparvero LJ, Amoscato AA, Kochanek PM, Pitt BR, Kagan VE, Bayir H. Mass-spectrometry based oxidative lipidomics and lipid imaging: applications in traumatic brain injury. J Neurochem. 2010;115(6):1322–36.PubMedPubMedCentralCrossRef Sparvero LJ, Amoscato AA, Kochanek PM, Pitt BR, Kagan VE, Bayir H. Mass-spectrometry based oxidative lipidomics and lipid imaging: applications in traumatic brain injury. J Neurochem. 2010;115(6):1322–36.PubMedPubMedCentralCrossRef
22.
go back to reference Serhan CN, Haeggstrom J. Lipid mediators in acute inflammation and resolution: Eicosanoids, PAF, resolvins, and protectins. In: Serhan CN, Ward PA, Gilroy DW, Ayoub SS, editors. Fundamentals of Inflammation. Cambridge: Cambridge University Press; 2010. p. 153–74.CrossRef Serhan CN, Haeggstrom J. Lipid mediators in acute inflammation and resolution: Eicosanoids, PAF, resolvins, and protectins. In: Serhan CN, Ward PA, Gilroy DW, Ayoub SS, editors. Fundamentals of Inflammation. Cambridge: Cambridge University Press; 2010. p. 153–74.CrossRef
24.
go back to reference Loane DJ, Kumar A. Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp Neurol. 2016;275:316–27.PubMedCrossRef Loane DJ, Kumar A. Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp Neurol. 2016;275:316–27.PubMedCrossRef
26.
go back to reference Zhou Y, Shao A, Yao Y, Tu S, Deng Y, Zhang J. Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Commun Signal. 2020;18(1):62.PubMedPubMedCentralCrossRef Zhou Y, Shao A, Yao Y, Tu S, Deng Y, Zhang J. Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Commun Signal. 2020;18(1):62.PubMedPubMedCentralCrossRef
27.
go back to reference Burda JE, Bernstein AM, Sofroniew MV. Astrocyte roles in traumatic brain injury. Exp Neurol. 2016;275:305–15.PubMedCrossRef Burda JE, Bernstein AM, Sofroniew MV. Astrocyte roles in traumatic brain injury. Exp Neurol. 2016;275:305–15.PubMedCrossRef
28.
go back to reference Yu F, Wang Y, Stetler AR, Leak RK, Hu X, Chen J. Phagocytic microglia and macrophages in brain injury and repair. CNS Neurosci Ther. 2022;28(9):1279–93.PubMedPubMedCentralCrossRef Yu F, Wang Y, Stetler AR, Leak RK, Hu X, Chen J. Phagocytic microglia and macrophages in brain injury and repair. CNS Neurosci Ther. 2022;28(9):1279–93.PubMedPubMedCentralCrossRef
29.
go back to reference Xu H, Wang Z, Li J, Wu H, Peng Y, Fan L, et al. The polarization states of microglia in TBI: a new paradigm for pharmacological intervention. Neural Plast. 2017;2017:5405104.PubMedPubMedCentralCrossRef Xu H, Wang Z, Li J, Wu H, Peng Y, Fan L, et al. The polarization states of microglia in TBI: a new paradigm for pharmacological intervention. Neural Plast. 2017;2017:5405104.PubMedPubMedCentralCrossRef
30.
go back to reference Shao F, Wang X, Wu H, Wu Q, Zhang J. Microglia and neuroinflammation: crucial pathological mechanisms in traumatic brain injury-induced neurodegeneration. Front Aging Neurosci. 2022;14: 825086.PubMedPubMedCentralCrossRef Shao F, Wang X, Wu H, Wu Q, Zhang J. Microglia and neuroinflammation: crucial pathological mechanisms in traumatic brain injury-induced neurodegeneration. Front Aging Neurosci. 2022;14: 825086.PubMedPubMedCentralCrossRef
32.
33.
go back to reference Alam A, Thelin EP, Tajsic T, Khan DZ, Khellaf A, Patani R, Helmy A. Cellular infiltration in traumatic brain injury. J Neuroinflammation. 2020;17(1):1.CrossRef Alam A, Thelin EP, Tajsic T, Khan DZ, Khellaf A, Patani R, Helmy A. Cellular infiltration in traumatic brain injury. J Neuroinflammation. 2020;17(1):1.CrossRef
34.
go back to reference Anthony DC, Couch Y, Losey P, Evans MC. The systemic response to brain injury and disease. Brain Behav Immun. 2012;26(4):534–40.PubMedCrossRef Anthony DC, Couch Y, Losey P, Evans MC. The systemic response to brain injury and disease. Brain Behav Immun. 2012;26(4):534–40.PubMedCrossRef
35.
go back to reference Sabet N, Soltani Z, Khaksari M. Multipotential and systemic effects of traumatic brain injury. J Neuroimmunol. 2021;357: 577619.PubMedCrossRef Sabet N, Soltani Z, Khaksari M. Multipotential and systemic effects of traumatic brain injury. J Neuroimmunol. 2021;357: 577619.PubMedCrossRef
36.
go back to reference McDonald SJ, Sharkey JM, Sun M, Kaukas LM, Shultz SR, Turner RJ, et al. Beyond the brain: peripheral interactions after traumatic brain injury. J Neurotrauma. 2020;37(5):770–81.PubMedCrossRef McDonald SJ, Sharkey JM, Sun M, Kaukas LM, Shultz SR, Turner RJ, et al. Beyond the brain: peripheral interactions after traumatic brain injury. J Neurotrauma. 2020;37(5):770–81.PubMedCrossRef
37.
38.
go back to reference Anderson D, Kutsogiannis DJ, Sligl WI. Sepsis in traumatic brain injury: epidemiology and outcomes. Can J Neurol Sci. 2020;47(2):197–201.PubMedCrossRef Anderson D, Kutsogiannis DJ, Sligl WI. Sepsis in traumatic brain injury: epidemiology and outcomes. Can J Neurol Sci. 2020;47(2):197–201.PubMedCrossRef
39.
go back to reference Hu PJ, Pittet J-F, Kerby JD, Bosarge PL, Wagener BM. Acute brain trauma, lung injury, and pneumonia: more than just altered mental status and decreased airway protection. Am J Physiol Lung Cell Mol Physiol. 2017;313(1):L1–15.PubMedCrossRef Hu PJ, Pittet J-F, Kerby JD, Bosarge PL, Wagener BM. Acute brain trauma, lung injury, and pneumonia: more than just altered mental status and decreased airway protection. Am J Physiol Lung Cell Mol Physiol. 2017;313(1):L1–15.PubMedCrossRef
40.
go back to reference Iftikhar PM, Anwar A, Saleem S, Nasir S, Inayat A. Traumatic brain injury causing intestinal dysfunction: A review. J Clin Neurosci. 2020;79:237–40.PubMedCrossRef Iftikhar PM, Anwar A, Saleem S, Nasir S, Inayat A. Traumatic brain injury causing intestinal dysfunction: A review. J Clin Neurosci. 2020;79:237–40.PubMedCrossRef
41.
go back to reference Norton JA, Ott LG, McClain C, Adams L, Dempsey RJ, Haack D, et al. Intolerance to enteral feeding in the brain-injured patient. J Neurosurg. 1988;68(1):62–6.PubMedCrossRef Norton JA, Ott LG, McClain C, Adams L, Dempsey RJ, Haack D, et al. Intolerance to enteral feeding in the brain-injured patient. J Neurosurg. 1988;68(1):62–6.PubMedCrossRef
43.
go back to reference Harrison-Felix C, Whiteneck G, Devivo MJ, Hammond FM, Jha A. Causes of death following 1 year postinjury among individuals with traumatic brain injury. J Head Trauma Rehabil. 2006;21(1):22–33.PubMedCrossRef Harrison-Felix C, Whiteneck G, Devivo MJ, Hammond FM, Jha A. Causes of death following 1 year postinjury among individuals with traumatic brain injury. J Head Trauma Rehabil. 2006;21(1):22–33.PubMedCrossRef
44.
go back to reference Giraudo D, Gozzerino F, Antoniono E, Lamberti G. Anal incontinence and severe acquired brain injury: a retrospective study of 347 rehabilitation inpatients. Pelviperineology. 2017;36(1):14. Giraudo D, Gozzerino F, Antoniono E, Lamberti G. Anal incontinence and severe acquired brain injury: a retrospective study of 347 rehabilitation inpatients. Pelviperineology. 2017;36(1):14.
45.
go back to reference Pelizzari L, Antoniono E, Giraudo D, Ciardi G, Lamberti G. Fecal incontinence after severe brain injury: a barrier to discharge after inpatient rehabilitation? Neurol Int. 2023;15(4):1339–51.PubMedPubMedCentralCrossRef Pelizzari L, Antoniono E, Giraudo D, Ciardi G, Lamberti G. Fecal incontinence after severe brain injury: a barrier to discharge after inpatient rehabilitation? Neurol Int. 2023;15(4):1339–51.PubMedPubMedCentralCrossRef
46.
go back to reference Hidalgo JRH. Neurogenic bowel dysfunction in subjects with brain injury: prevalence, risk factors, clinical characterization and physiopathology: Universitat Pompeu Fabra; 2018. Hidalgo JRH. Neurogenic bowel dysfunction in subjects with brain injury: prevalence, risk factors, clinical characterization and physiopathology: Universitat Pompeu Fabra; 2018.
48.
go back to reference Schwulst SJ, Trahanas DM, Saber R, Perlman H. Traumatic brain injury–induced alterations in peripheral immunity. J Trauma Acute Care Surg. 2013;75(5):780–8.PubMedPubMedCentralCrossRef Schwulst SJ, Trahanas DM, Saber R, Perlman H. Traumatic brain injury–induced alterations in peripheral immunity. J Trauma Acute Care Surg. 2013;75(5):780–8.PubMedPubMedCentralCrossRef
50.
go back to reference Rodino-Janeiro BK, Alonso-Cotoner C, Pigrau M, Lobo B, Vicario M, Santos J. Role of corticotropin-releasing factor in gastrointestinal permeability. J Neurogastroenterol Motil. 2015;21(1):33–50.PubMedPubMedCentralCrossRef Rodino-Janeiro BK, Alonso-Cotoner C, Pigrau M, Lobo B, Vicario M, Santos J. Role of corticotropin-releasing factor in gastrointestinal permeability. J Neurogastroenterol Motil. 2015;21(1):33–50.PubMedPubMedCentralCrossRef
51.
go back to reference La Torre D, Van Oudenhove L, Vanuytsel T, Verbeke K. Psychosocial stress-induced intestinal permeability in healthy humans: what is the evidence? Neurobiol Stress. 2023;27: 100579.PubMedPubMedCentralCrossRef La Torre D, Van Oudenhove L, Vanuytsel T, Verbeke K. Psychosocial stress-induced intestinal permeability in healthy humans: what is the evidence? Neurobiol Stress. 2023;27: 100579.PubMedPubMedCentralCrossRef
52.
go back to reference Lu J, Goh SJ, Tng PY, Deng YY, Ling EA, Moochhala S. Systemic inflammatory response following acute traumatic brain injury. Front Biosci (Landmark Ed). 2009;14(10):3795–813.PubMedCrossRef Lu J, Goh SJ, Tng PY, Deng YY, Ling EA, Moochhala S. Systemic inflammatory response following acute traumatic brain injury. Front Biosci (Landmark Ed). 2009;14(10):3795–813.PubMedCrossRef
53.
go back to reference Milleville KA, Awan N, Disanto D, Kumar RG, Wagner AK. Early chronic systemic inflammation and associations with cognitive performance after moderate to severe TBI. Brain Behav Immun Health. 2021;11: 100185.PubMedCrossRef Milleville KA, Awan N, Disanto D, Kumar RG, Wagner AK. Early chronic systemic inflammation and associations with cognitive performance after moderate to severe TBI. Brain Behav Immun Health. 2021;11: 100185.PubMedCrossRef
54.
go back to reference Sun Y, Bai L, Niu X, Wang Z, Yin B, Bai G, et al. Elevated serum levels of inflammation-related cytokines in mild traumatic brain injury are associated with cognitive performance. Front Neurol. 2019;10:1120.PubMedPubMedCentralCrossRef Sun Y, Bai L, Niu X, Wang Z, Yin B, Bai G, et al. Elevated serum levels of inflammation-related cytokines in mild traumatic brain injury are associated with cognitive performance. Front Neurol. 2019;10:1120.PubMedPubMedCentralCrossRef
55.
go back to reference Kumar RG, Boles JA, Wagner AK. Chronic inflammation after severe traumatic brain injury: characterization and associations with outcome at 6 and 12 months postinjury. J Head Trauma Rehabil. 2015;30(6):369–81.PubMedCrossRef Kumar RG, Boles JA, Wagner AK. Chronic inflammation after severe traumatic brain injury: characterization and associations with outcome at 6 and 12 months postinjury. J Head Trauma Rehabil. 2015;30(6):369–81.PubMedCrossRef
56.
go back to reference Dong T, Zhi L, Bhayana B, Wu MX. Cortisol-induced immune suppression by a blockade of lymphocyte egress in traumatic brain injury. J Neuroinflammation. 2016;13(1):197.PubMedPubMedCentralCrossRef Dong T, Zhi L, Bhayana B, Wu MX. Cortisol-induced immune suppression by a blockade of lymphocyte egress in traumatic brain injury. J Neuroinflammation. 2016;13(1):197.PubMedPubMedCentralCrossRef
57.
go back to reference Bouras M, Asehnoune K, Roquilly A. Immune modulation after traumatic brain injury. Front Med (Lausanne). 2022;9: 995044.PubMedCrossRef Bouras M, Asehnoune K, Roquilly A. Immune modulation after traumatic brain injury. Front Med (Lausanne). 2022;9: 995044.PubMedCrossRef
59.
go back to reference Ritzel RM, Doran SJ, Barrett JP, Henry RJ, Ma EL, Faden AI, Loane DJ. Chronic alterations in systemic immune function after traumatic brain injury. J Neurotrauma. 2018;35(13):1419–36.PubMedPubMedCentralCrossRef Ritzel RM, Doran SJ, Barrett JP, Henry RJ, Ma EL, Faden AI, Loane DJ. Chronic alterations in systemic immune function after traumatic brain injury. J Neurotrauma. 2018;35(13):1419–36.PubMedPubMedCentralCrossRef
60.
go back to reference Sotosek Tokmadzic V, Laskarin G, Mahmutefendic H, Lucin P, Mrakovcic-Sutic I, Zupan Z, Sustic A. Expression of cytolytic protein-perforin in peripheral blood lymphocytes in severe traumatic brain injured patients. Injury. 2012;43(5):624–31.PubMedCrossRef Sotosek Tokmadzic V, Laskarin G, Mahmutefendic H, Lucin P, Mrakovcic-Sutic I, Zupan Z, Sustic A. Expression of cytolytic protein-perforin in peripheral blood lymphocytes in severe traumatic brain injured patients. Injury. 2012;43(5):624–31.PubMedCrossRef
62.
go back to reference Chaban V, Clarke GJB, Skandsen T, Islam R, Einarsen CE, Vik A, et al. Systemic inflammation persists the first year after mild traumatic brain injury: results from the prospective trondheim mild traumatic brain injury study. J Neurotrauma. 2020;37(19):2120–30.PubMedPubMedCentralCrossRef Chaban V, Clarke GJB, Skandsen T, Islam R, Einarsen CE, Vik A, et al. Systemic inflammation persists the first year after mild traumatic brain injury: results from the prospective trondheim mild traumatic brain injury study. J Neurotrauma. 2020;37(19):2120–30.PubMedPubMedCentralCrossRef
63.
go back to reference Krishnamoorthy V, Komisarow JM, Laskowitz DT, Vavilala MS. Multiorgan dysfunction after severe traumatic brain injury: epidemiology, mechanisms, and clinical management. Chest. 2021;160(3):956–64.PubMedPubMedCentralCrossRef Krishnamoorthy V, Komisarow JM, Laskowitz DT, Vavilala MS. Multiorgan dysfunction after severe traumatic brain injury: epidemiology, mechanisms, and clinical management. Chest. 2021;160(3):956–64.PubMedPubMedCentralCrossRef
64.
go back to reference Ritzel RM, Li Y, Jiao Y, Lei Z, Doran SJ, He J, et al. Brain injury accelerates the onset of a reversible age-related microglial phenotype associated with inflammatory neurodegeneration. Sci Adv. 2023;9(10):eadd1101.PubMedPubMedCentralCrossRef Ritzel RM, Li Y, Jiao Y, Lei Z, Doran SJ, He J, et al. Brain injury accelerates the onset of a reversible age-related microglial phenotype associated with inflammatory neurodegeneration. Sci Adv. 2023;9(10):eadd1101.PubMedPubMedCentralCrossRef
65.
67.
go back to reference Needham EJ, Helmy A, Zanier ER, Jones JL, Coles AJ, Menon DK. The immunological response to traumatic brain injury. J Neuroimmunol. 2019;332:112–25.PubMedCrossRef Needham EJ, Helmy A, Zanier ER, Jones JL, Coles AJ, Menon DK. The immunological response to traumatic brain injury. J Neuroimmunol. 2019;332:112–25.PubMedCrossRef
68.
go back to reference Holmin S, Soderlund J, Biberfeld P, Mathiesen T. Intracerebral inflammation after human brain contusion. Neurosurgery. 1998;42(2):291–8 (discussion 8-9).PubMedCrossRef Holmin S, Soderlund J, Biberfeld P, Mathiesen T. Intracerebral inflammation after human brain contusion. Neurosurgery. 1998;42(2):291–8 (discussion 8-9).PubMedCrossRef
69.
go back to reference Daglas M, Draxler DF, Ho H, McCutcheon F, Galle A, Au AE, et al. Activated CD8(+) T cells cause long-term neurological impairment after traumatic brain injury in mice. Cell Rep. 2019;29(5):1178-91 e6.PubMedCrossRef Daglas M, Draxler DF, Ho H, McCutcheon F, Galle A, Au AE, et al. Activated CD8(+) T cells cause long-term neurological impairment after traumatic brain injury in mice. Cell Rep. 2019;29(5):1178-91 e6.PubMedCrossRef
70.
go back to reference Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med. 2016;22(5):516–23.PubMedPubMedCentralCrossRef Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med. 2016;22(5):516–23.PubMedPubMedCentralCrossRef
71.
go back to reference Celorrio M, Shumilov K, Rodgers R, Schriefer L, Li Y, Baldridge MT, Friess SH. Innate and peripheral immune alterations after traumatic brain injury are regulated in a gut microbiota-dependent manner in mice. J Neurotrauma. 2023;40(7–8):772–87.PubMedPubMedCentralCrossRef Celorrio M, Shumilov K, Rodgers R, Schriefer L, Li Y, Baldridge MT, Friess SH. Innate and peripheral immune alterations after traumatic brain injury are regulated in a gut microbiota-dependent manner in mice. J Neurotrauma. 2023;40(7–8):772–87.PubMedPubMedCentralCrossRef
72.
go back to reference Furness JB, Callaghan BP, Rivera LR, Cho H-J. The enteric nervous system and gastrointestinal innervation: integrated local and central control. New York: Springer; 2014. p. 39–71. Furness JB, Callaghan BP, Rivera LR, Cho H-J. The enteric nervous system and gastrointestinal innervation: integrated local and central control. New York: Springer; 2014. p. 39–71.
73.
go back to reference Rizoli SB, Jaja BN, Di Battista AP, Rhind SG, Neto AC, da Costa L, et al. Catecholamines as outcome markers in isolated traumatic brain injury: the COMA-TBI study. Crit Care. 2017;21(1):37.PubMedPubMedCentralCrossRef Rizoli SB, Jaja BN, Di Battista AP, Rhind SG, Neto AC, da Costa L, et al. Catecholamines as outcome markers in isolated traumatic brain injury: the COMA-TBI study. Crit Care. 2017;21(1):37.PubMedPubMedCentralCrossRef
74.
go back to reference Schroeppel TJ, Sharpe JP, Shahan CP, Clement LP, Magnotti LJ, Lee M, et al. Beta-adrenergic blockade for attenuation of catecholamine surge after traumatic brain injury: a randomized pilot trial. Trauma Surg Acute Care Open. 2019;4(1): e000307.PubMedPubMedCentralCrossRef Schroeppel TJ, Sharpe JP, Shahan CP, Clement LP, Magnotti LJ, Lee M, et al. Beta-adrenergic blockade for attenuation of catecholamine surge after traumatic brain injury: a randomized pilot trial. Trauma Surg Acute Care Open. 2019;4(1): e000307.PubMedPubMedCentralCrossRef
75.
go back to reference Montgomery LE, Tansey EA, Johnson CD, Roe SM, Quinn JG. Autonomic modification of intestinal smooth muscle contractility. Adv Physiol Educ. 2016;40(1):104–9.PubMedCrossRef Montgomery LE, Tansey EA, Johnson CD, Roe SM, Quinn JG. Autonomic modification of intestinal smooth muscle contractility. Adv Physiol Educ. 2016;40(1):104–9.PubMedCrossRef
76.
go back to reference Natale G, Ryskalin L, Busceti CL, Biagioni F, Fornai F. The nature of catecholamine-containing neurons in the enteric nervous system in relationship with organogenesis, normal human anatomy and neurodegeneration. Arch Ital Biol. 2017;155(3):118–30.PubMed Natale G, Ryskalin L, Busceti CL, Biagioni F, Fornai F. The nature of catecholamine-containing neurons in the enteric nervous system in relationship with organogenesis, normal human anatomy and neurodegeneration. Arch Ital Biol. 2017;155(3):118–30.PubMed
77.
go back to reference Ma EL, Smith AD, Desai N, Cheung L, Hanscom M, Stoica BA, et al. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice. Brain Behav Immun. 2017;66:56–69.PubMedPubMedCentralCrossRef Ma EL, Smith AD, Desai N, Cheung L, Hanscom M, Stoica BA, et al. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice. Brain Behav Immun. 2017;66:56–69.PubMedPubMedCentralCrossRef
78.
go back to reference Breit S, Kupferberg A, Rogler G, Hasler G. Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Front Psychiatry. 2018;9:44.PubMedPubMedCentralCrossRef Breit S, Kupferberg A, Rogler G, Hasler G. Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Front Psychiatry. 2018;9:44.PubMedPubMedCentralCrossRef
79.
go back to reference Chen JD. Parasympathetic control of gastrointestinal motility and cross-branch actions of parasympathetic neuromodulation. Chin Med J (Engl). 2023;136(1):53–5.PubMedCrossRef Chen JD. Parasympathetic control of gastrointestinal motility and cross-branch actions of parasympathetic neuromodulation. Chin Med J (Engl). 2023;136(1):53–5.PubMedCrossRef
80.
go back to reference Keever KR, Cui K, Casteel JL, Singh S, Hoover DB, Williams DL, et al. Cholinergic signaling via the alpha7 nicotinic acetylcholine receptor regulates the migration of monocyte-derived macrophages during acute inflammation. J Neuroinflammation. 2024;21(1):3.PubMedPubMedCentralCrossRef Keever KR, Cui K, Casteel JL, Singh S, Hoover DB, Williams DL, et al. Cholinergic signaling via the alpha7 nicotinic acetylcholine receptor regulates the migration of monocyte-derived macrophages during acute inflammation. J Neuroinflammation. 2024;21(1):3.PubMedPubMedCentralCrossRef
81.
go back to reference Gabalski AH, Tynan A, Tsaava T, Li JH, Lee D, Hepler TD, et al. Circulating extracellular choline acetyltransferase regulates inflammation. J Intern Med. 2024;295(3):346–56.PubMedCrossRef Gabalski AH, Tynan A, Tsaava T, Li JH, Lee D, Hepler TD, et al. Circulating extracellular choline acetyltransferase regulates inflammation. J Intern Med. 2024;295(3):346–56.PubMedCrossRef
82.
go back to reference Ueno H, Nakazato M. Mechanistic relationship between the vagal afferent pathway, central nervous system and peripheral organs in appetite regulation. J Diabetes Investig. 2016;7(6):812–8.PubMedPubMedCentralCrossRef Ueno H, Nakazato M. Mechanistic relationship between the vagal afferent pathway, central nervous system and peripheral organs in appetite regulation. J Diabetes Investig. 2016;7(6):812–8.PubMedPubMedCentralCrossRef
83.
go back to reference Siopi E, Galerne M, Rivagorda M, Saha S, Moigneu C, Moriceau S, et al. Gut microbiota changes require vagus nerve integrity to promote depressive-like behaviors in mice. Mol Psychiatry. 2023;28(7):3002–12.PubMedPubMedCentralCrossRef Siopi E, Galerne M, Rivagorda M, Saha S, Moigneu C, Moriceau S, et al. Gut microbiota changes require vagus nerve integrity to promote depressive-like behaviors in mice. Mol Psychiatry. 2023;28(7):3002–12.PubMedPubMedCentralCrossRef
84.
go back to reference Ye L, Bae M, Cassilly CD, Jabba SV, Thorpe DW, Martin AM, et al. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe. 2021;29(2):179-96 e9.PubMedCrossRef Ye L, Bae M, Cassilly CD, Jabba SV, Thorpe DW, Martin AM, et al. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe. 2021;29(2):179-96 e9.PubMedCrossRef
85.
go back to reference Pruitt DT, Schmid AN, Kim LJ, Abe CM, Trieu JL, Choua C, et al. Vagus nerve stimulation delivered with motor training enhances recovery of function after traumatic brain injury. J Neurotrauma. 2016;33(9):871–9.PubMedPubMedCentralCrossRef Pruitt DT, Schmid AN, Kim LJ, Abe CM, Trieu JL, Choua C, et al. Vagus nerve stimulation delivered with motor training enhances recovery of function after traumatic brain injury. J Neurotrauma. 2016;33(9):871–9.PubMedPubMedCentralCrossRef
86.
87.
go back to reference Taraskina A, Ignatyeva O, Lisovaya D, Ivanov M, Ivanova L, Golovicheva V, et al. Effects of traumatic brain injury on the gut microbiota composition and serum amino acid profile in rats. Cells. 2022;11(9):1409.PubMedPubMedCentralCrossRef Taraskina A, Ignatyeva O, Lisovaya D, Ivanov M, Ivanova L, Golovicheva V, et al. Effects of traumatic brain injury on the gut microbiota composition and serum amino acid profile in rats. Cells. 2022;11(9):1409.PubMedPubMedCentralCrossRef
88.
go back to reference Treangen TJ, Wagner J, Burns MP, Villapol S. Traumatic brain injury in mice induces acute bacterial dysbiosis within the fecal microbiome. Front Immunol. 2018;9:2757.PubMedPubMedCentralCrossRef Treangen TJ, Wagner J, Burns MP, Villapol S. Traumatic brain injury in mice induces acute bacterial dysbiosis within the fecal microbiome. Front Immunol. 2018;9:2757.PubMedPubMedCentralCrossRef
89.
go back to reference Urban RJ, Pyles RB, Stewart CJ, Ajami N, Randolph KM, Durham WJ, et al. Altered fecal microbiome years after traumatic brain injury. J Neurotrauma. 2020;37(8):1037–51.PubMedCrossRef Urban RJ, Pyles RB, Stewart CJ, Ajami N, Randolph KM, Durham WJ, et al. Altered fecal microbiome years after traumatic brain injury. J Neurotrauma. 2020;37(8):1037–51.PubMedCrossRef
90.
go back to reference Munley JA, Kirkpatrick SL, Gillies GS, Bible LE, Efron PA, Nagpal R, Mohr AM. The intestinal microbiome after traumatic injury. Microorganisms. 2023;11(8):1990.PubMedPubMedCentralCrossRef Munley JA, Kirkpatrick SL, Gillies GS, Bible LE, Efron PA, Nagpal R, Mohr AM. The intestinal microbiome after traumatic injury. Microorganisms. 2023;11(8):1990.PubMedPubMedCentralCrossRef
91.
go back to reference Pyles RB, Miller AL, Urban RJ, Sheffield-Moore M, Wright TJ, Maxwell CA, et al. The altered TBI fecal microbiome is stable and functionally distinct. Front Mol Neurosci. 2024;17:1341808.PubMedPubMedCentralCrossRef Pyles RB, Miller AL, Urban RJ, Sheffield-Moore M, Wright TJ, Maxwell CA, et al. The altered TBI fecal microbiome is stable and functionally distinct. Front Mol Neurosci. 2024;17:1341808.PubMedPubMedCentralCrossRef
92.
go back to reference Nicholson SE, Watts LT, Burmeister DM, Merrill D, Scroggins S, Zou Y, et al. Moderate traumatic brain injury alters the gastrointestinal microbiome in a time-dependent manner. Shock. 2019;52(2):240–8.PubMedCrossRef Nicholson SE, Watts LT, Burmeister DM, Merrill D, Scroggins S, Zou Y, et al. Moderate traumatic brain injury alters the gastrointestinal microbiome in a time-dependent manner. Shock. 2019;52(2):240–8.PubMedCrossRef
93.
go back to reference Singh R, Zogg H, Wei L, Bartlett A, Ghoshal UC, Rajender S, Ro S. Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders. J Neurogastroenterol Motil. 2021;27(1):19–34.PubMedPubMedCentralCrossRef Singh R, Zogg H, Wei L, Bartlett A, Ghoshal UC, Rajender S, Ro S. Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders. J Neurogastroenterol Motil. 2021;27(1):19–34.PubMedPubMedCentralCrossRef
94.
go back to reference Bel S, Pendse M, Wang Y, Li Y, Ruhn KA, Hassell B, et al. Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine. Science. 2017;357(6355):1047–52.PubMedPubMedCentralCrossRef Bel S, Pendse M, Wang Y, Li Y, Ruhn KA, Hassell B, et al. Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine. Science. 2017;357(6355):1047–52.PubMedPubMedCentralCrossRef
95.
go back to reference Yang E, Shen J. The roles and functions of Paneth cells in Crohn’s disease: a critical review. Cell Prolif. 2021;54(1): e12958.PubMedCrossRef Yang E, Shen J. The roles and functions of Paneth cells in Crohn’s disease: a critical review. Cell Prolif. 2021;54(1): e12958.PubMedCrossRef
96.
go back to reference Yang W, Yuan Q, Li Z, Du Z, Wu G, Yu J, Hu J. Translocation and dissemination of gut bacteria after severe traumatic brain injury. Microorganisms. 2022;10(10):2082.PubMedPubMedCentralCrossRef Yang W, Yuan Q, Li Z, Du Z, Wu G, Yu J, Hu J. Translocation and dissemination of gut bacteria after severe traumatic brain injury. Microorganisms. 2022;10(10):2082.PubMedPubMedCentralCrossRef
97.
go back to reference Zeng H, Umar S, Rust B, Lazarova D, Bordonaro M. Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer. Int J Mol Sci. 2019;20(5):1214.PubMedPubMedCentralCrossRef Zeng H, Umar S, Rust B, Lazarova D, Bordonaro M. Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer. Int J Mol Sci. 2019;20(5):1214.PubMedPubMedCentralCrossRef
98.
go back to reference Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–9.PubMedPubMedCentral Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–9.PubMedPubMedCentral
99.
go back to reference Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci. 2018;12: 336468.CrossRef Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci. 2018;12: 336468.CrossRef
101.
103.
go back to reference Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, Shen X, Bohorquez DV. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018;361(6408):eaat5236.PubMedPubMedCentralCrossRef Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, Shen X, Bohorquez DV. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018;361(6408):eaat5236.PubMedPubMedCentralCrossRef
104.
go back to reference Latorre R, Sternini C, De Giorgio R, Greenwood-Van MB. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil. 2016;28(5):620–30.PubMedCrossRef Latorre R, Sternini C, De Giorgio R, Greenwood-Van MB. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil. 2016;28(5):620–30.PubMedCrossRef
105.
go back to reference Uellendahl-Werth F, Maj C, Borisov O, Juzenas S, Wacker EM, Jorgensen IF, et al. Cross-tissue transcriptome-wide association studies identify susceptibility genes shared between schizophrenia and inflammatory bowel disease. Commun Biol. 2022;5(1):80.PubMedPubMedCentralCrossRef Uellendahl-Werth F, Maj C, Borisov O, Juzenas S, Wacker EM, Jorgensen IF, et al. Cross-tissue transcriptome-wide association studies identify susceptibility genes shared between schizophrenia and inflammatory bowel disease. Commun Biol. 2022;5(1):80.PubMedPubMedCentralCrossRef
106.
go back to reference Chandra R, Hiniker A, Kuo YM, Nussbaum RL, Liddle RA. alpha-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight. 2017;2(12):e92295.PubMedPubMedCentralCrossRef Chandra R, Hiniker A, Kuo YM, Nussbaum RL, Liddle RA. alpha-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight. 2017;2(12):e92295.PubMedPubMedCentralCrossRef
108.
go back to reference Werner JK, Stevens RD. Traumatic brain injury: recent advances in plasticity and regeneration. Curr Opin Neurol. 2015;28(6):565–73.PubMedCrossRef Werner JK, Stevens RD. Traumatic brain injury: recent advances in plasticity and regeneration. Curr Opin Neurol. 2015;28(6):565–73.PubMedCrossRef
109.
go back to reference Zhang Z, Rasmussen L, Saraswati M, Koehler RC, Robertson C, Kannan S. Traumatic injury leads to inflammation and altered tryptophan metabolism in the juvenile rabbit brain. J Neurotrauma. 2019;36(1):74–86.CrossRef Zhang Z, Rasmussen L, Saraswati M, Koehler RC, Robertson C, Kannan S. Traumatic injury leads to inflammation and altered tryptophan metabolism in the juvenile rabbit brain. J Neurotrauma. 2019;36(1):74–86.CrossRef
110.
go back to reference Aaldijk E, Vermeiren Y. The role of serotonin within the microbiota-gut-brain axis in the development of Alzheimer’s disease: a narrative review. Ageing Res Rev. 2022;75: 101556.PubMedCrossRef Aaldijk E, Vermeiren Y. The role of serotonin within the microbiota-gut-brain axis in the development of Alzheimer’s disease: a narrative review. Ageing Res Rev. 2022;75: 101556.PubMedCrossRef
111.
go back to reference Craine TJ, Race NS, Kutash LA, Iouchmanov AL, Moschonas EH, O’Neil DA, et al. Milnacipran ameliorates executive function impairments following frontal lobe traumatic brain injury in male rats: a multimodal behavioral assessment. J Neurotrauma. 2023;40(1–2):112–24.PubMedCrossRef Craine TJ, Race NS, Kutash LA, Iouchmanov AL, Moschonas EH, O’Neil DA, et al. Milnacipran ameliorates executive function impairments following frontal lobe traumatic brain injury in male rats: a multimodal behavioral assessment. J Neurotrauma. 2023;40(1–2):112–24.PubMedCrossRef
112.
go back to reference Jenkins T, Nguyen J, Polglaze K, Bertrand P. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients. 2016;8(1):56.PubMedPubMedCentralCrossRef Jenkins T, Nguyen J, Polglaze K, Bertrand P. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients. 2016;8(1):56.PubMedPubMedCentralCrossRef
113.
go back to reference Mittal R, Debs LH, Patel AP, Nguyen D, Patel K, O’Connor G, et al. Neurotransmitters: the critical modulators regulating gut-brain axis. J Cell Physiol. 2017;232(9):2359–72.PubMedPubMedCentralCrossRef Mittal R, Debs LH, Patel AP, Nguyen D, Patel K, O’Connor G, et al. Neurotransmitters: the critical modulators regulating gut-brain axis. J Cell Physiol. 2017;232(9):2359–72.PubMedPubMedCentralCrossRef
114.
go back to reference Banskota S, Khan WI. Gut-derived serotonin and its emerging roles in immune function, inflammation, metabolism and the gut-brain axis. Curr Opin Endocrinol Diabetes Obes. 2022;29(2):177–82.PubMedCrossRef Banskota S, Khan WI. Gut-derived serotonin and its emerging roles in immune function, inflammation, metabolism and the gut-brain axis. Curr Opin Endocrinol Diabetes Obes. 2022;29(2):177–82.PubMedCrossRef
116.
go back to reference Mercado NM, Zhang G, Ying Z, Gomez-Pinilla F. Traumatic brain injury alters the gut-derived serotonergic system and associated peripheral organs. Biochim Biophys Acta Mol Basis Dis. 2022;1868(11): 166491.PubMedPubMedCentralCrossRef Mercado NM, Zhang G, Ying Z, Gomez-Pinilla F. Traumatic brain injury alters the gut-derived serotonergic system and associated peripheral organs. Biochim Biophys Acta Mol Basis Dis. 2022;1868(11): 166491.PubMedPubMedCentralCrossRef
117.
go back to reference Weaver JL, Eliceiri B, Costantini TW. Fluoxetine reduces organ injury and improves motor function after traumatic brain injury in mice. J Trauma Acute Care Surg. 2022;93(1):38–42.PubMedCrossRef Weaver JL, Eliceiri B, Costantini TW. Fluoxetine reduces organ injury and improves motor function after traumatic brain injury in mice. J Trauma Acute Care Surg. 2022;93(1):38–42.PubMedCrossRef
118.
go back to reference Yue JK, Burke JF, Upadhyayula PS, Winkler EA, Deng H, Robinson CK, et al. Selective serotonin reuptake inhibitors for treating neurocognitive and neuropsychiatric disorders following traumatic brain injury: an evaluation of current evidence. Brain Sci. 2017;7(8):93.PubMedPubMedCentralCrossRef Yue JK, Burke JF, Upadhyayula PS, Winkler EA, Deng H, Robinson CK, et al. Selective serotonin reuptake inhibitors for treating neurocognitive and neuropsychiatric disorders following traumatic brain injury: an evaluation of current evidence. Brain Sci. 2017;7(8):93.PubMedPubMedCentralCrossRef
119.
go back to reference Ansari A, Jain A, Sharma A, Mittal RS, Gupta ID. Role of sertraline in posttraumatic brain injury depression and quality-of-life in TBI. Asian J Neurosurg. 2014;9(4):182–8.PubMedPubMedCentralCrossRef Ansari A, Jain A, Sharma A, Mittal RS, Gupta ID. Role of sertraline in posttraumatic brain injury depression and quality-of-life in TBI. Asian J Neurosurg. 2014;9(4):182–8.PubMedPubMedCentralCrossRef
120.
go back to reference Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Bloom SR, Corsellis JA. Serotonin receptor changes in dementia of the Alzheimer type. J Neurochem. 1984;43(6):1574–81.PubMedCrossRef Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Bloom SR, Corsellis JA. Serotonin receptor changes in dementia of the Alzheimer type. J Neurochem. 1984;43(6):1574–81.PubMedCrossRef
121.
go back to reference Tohgi H, Abe T, Takahashi S, Kimura M, Takahashi J, Kikuchi T. Concentrations of serotonin and its related substances in the cerebrospinal fluid in patients with Alzheimer type dementia. Neurosci Lett. 1992;141(1):9–12.PubMedCrossRef Tohgi H, Abe T, Takahashi S, Kimura M, Takahashi J, Kikuchi T. Concentrations of serotonin and its related substances in the cerebrospinal fluid in patients with Alzheimer type dementia. Neurosci Lett. 1992;141(1):9–12.PubMedCrossRef
122.
go back to reference Vermeiren Y, Van Dam D, Aerts T, Engelborghs S, De Deyn PP. Brain region-specific monoaminergic correlates of neuropsychiatric symptoms in Alzheimer’s disease. J Alzheimers Dis. 2014;41(3):819–33.PubMedCrossRef Vermeiren Y, Van Dam D, Aerts T, Engelborghs S, De Deyn PP. Brain region-specific monoaminergic correlates of neuropsychiatric symptoms in Alzheimer’s disease. J Alzheimers Dis. 2014;41(3):819–33.PubMedCrossRef
123.
go back to reference Liang Y, Xie S, He Y, Xu M, Qiao X, Zhu Y, Wu W. Kynurenine pathway metabolites as biomarkers in Alzheimer’s disease. Dis Markers. 2022;2022:9484217.PubMedPubMedCentralCrossRef Liang Y, Xie S, He Y, Xu M, Qiao X, Zhu Y, Wu W. Kynurenine pathway metabolites as biomarkers in Alzheimer’s disease. Dis Markers. 2022;2022:9484217.PubMedPubMedCentralCrossRef
124.
go back to reference Mace JL, Porter RJ, Dalrymple-Alford JC, Wesnes KA, Anderson TJ. Effects of acute tryptophan depletion on neuropsychological and motor function in Parkinson’s disease. J Psychopharmacol. 2010;24(10):1465–72.PubMedCrossRef Mace JL, Porter RJ, Dalrymple-Alford JC, Wesnes KA, Anderson TJ. Effects of acute tryptophan depletion on neuropsychological and motor function in Parkinson’s disease. J Psychopharmacol. 2010;24(10):1465–72.PubMedCrossRef
125.
go back to reference Politis M, Loane C. Serotonergic dysfunction in Parkinson’s disease and its relevance to disability. Sci World J. 2011;11:1726–34.CrossRef Politis M, Loane C. Serotonergic dysfunction in Parkinson’s disease and its relevance to disability. Sci World J. 2011;11:1726–34.CrossRef
126.
go back to reference Porter RJ, Lunn BS, O’Brien JT. Effects of acute tryptophan depletion on cognitive function in Alzheimer’s disease and in the healthy elderly. Psychol Med. 2003;33(1):41–9.PubMedCrossRef Porter RJ, Lunn BS, O’Brien JT. Effects of acute tryptophan depletion on cognitive function in Alzheimer’s disease and in the healthy elderly. Psychol Med. 2003;33(1):41–9.PubMedCrossRef
127.
go back to reference Feder A, Skipper J, Blair JR, Buchholz K, Mathew SJ, Schwarz M, et al. Tryptophan depletion and emotional processing in healthy volunteers at high risk for depression. Biol Psychiatry. 2011;69(8):804–7.PubMedPubMedCentralCrossRef Feder A, Skipper J, Blair JR, Buchholz K, Mathew SJ, Schwarz M, et al. Tryptophan depletion and emotional processing in healthy volunteers at high risk for depression. Biol Psychiatry. 2011;69(8):804–7.PubMedPubMedCentralCrossRef
128.
go back to reference van der Veen FM, Evers EA, Deutz NE, Schmitt JA. Effects of acute tryptophan depletion on mood and facial emotion perception related brain activation and performance in healthy women with and without a family history of depression. Neuropsychopharmacology. 2007;32(1):216–24.PubMedCrossRef van der Veen FM, Evers EA, Deutz NE, Schmitt JA. Effects of acute tryptophan depletion on mood and facial emotion perception related brain activation and performance in healthy women with and without a family history of depression. Neuropsychopharmacology. 2007;32(1):216–24.PubMedCrossRef
129.
go back to reference Cirrito JR, Disabato BM, Restivo JL, Verges DK, Goebel WD, Sathyan A, et al. Serotonin signaling is associated with lower amyloid-beta levels and plaques in transgenic mice and humans. Proc Natl Acad Sci USA. 2011;108(36):14968–73.PubMedPubMedCentralCrossRef Cirrito JR, Disabato BM, Restivo JL, Verges DK, Goebel WD, Sathyan A, et al. Serotonin signaling is associated with lower amyloid-beta levels and plaques in transgenic mice and humans. Proc Natl Acad Sci USA. 2011;108(36):14968–73.PubMedPubMedCentralCrossRef
130.
go back to reference Kessing LV, Forman JL, Andersen PK. Do continued antidepressants protect against dementia in patients with severe depressive disorder? Int Clin Psychopharmacol. 2011;26(6):316–22.PubMedCrossRef Kessing LV, Forman JL, Andersen PK. Do continued antidepressants protect against dementia in patients with severe depressive disorder? Int Clin Psychopharmacol. 2011;26(6):316–22.PubMedCrossRef
131.
go back to reference Kessing LV, Sondergard L, Forman JL, Andersen PK. Antidepressants and dementia. J Affect Disord. 2009;117(1–2):24–9.PubMedCrossRef Kessing LV, Sondergard L, Forman JL, Andersen PK. Antidepressants and dementia. J Affect Disord. 2009;117(1–2):24–9.PubMedCrossRef
133.
go back to reference Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, et al. International union of pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev. 1994;46(2):157–203.PubMed Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, et al. International union of pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev. 1994;46(2):157–203.PubMed
134.
go back to reference Weaver JL. The brain-gut axis: a prime therapeutic target in traumatic brain injury. Brain Res. 2021;1753: 147225.PubMedCrossRef Weaver JL. The brain-gut axis: a prime therapeutic target in traumatic brain injury. Brain Res. 2021;1753: 147225.PubMedCrossRef
135.
go back to reference Gao J, Xiong T, Grabauskas G, Owyang C. Mucosal serotonin reuptake transporter expression in irritable bowel syndrome is modulated by gut microbiota via mast cell-prostaglandin E2. Gastroenterology. 2022;162(7):1962–74.PubMedCrossRef Gao J, Xiong T, Grabauskas G, Owyang C. Mucosal serotonin reuptake transporter expression in irritable bowel syndrome is modulated by gut microbiota via mast cell-prostaglandin E2. Gastroenterology. 2022;162(7):1962–74.PubMedCrossRef
136.
go back to reference Mishima Y, Ishihara S. Enteric microbiota-mediated serotonergic signaling in pathogenesis of irritable bowel syndrome. Int J Mol Sci. 2021;22(19):10235.PubMedPubMedCentralCrossRef Mishima Y, Ishihara S. Enteric microbiota-mediated serotonergic signaling in pathogenesis of irritable bowel syndrome. Int J Mol Sci. 2021;22(19):10235.PubMedPubMedCentralCrossRef
137.
go back to reference Menees S, Chey W. The gut microbiome and irritable bowel syndrome. F1000 Res. 2018;7:1029.CrossRef Menees S, Chey W. The gut microbiome and irritable bowel syndrome. F1000 Res. 2018;7:1029.CrossRef
139.
go back to reference Ma J, Wang R, Chen Y, Wang Z, Dong Y. 5-HT attenuates chronic stress-induced cognitive impairment in mice through intestinal flora disruption. J Neuroinflammation. 2023;20(1):23.PubMedPubMedCentralCrossRef Ma J, Wang R, Chen Y, Wang Z, Dong Y. 5-HT attenuates chronic stress-induced cognitive impairment in mice through intestinal flora disruption. J Neuroinflammation. 2023;20(1):23.PubMedPubMedCentralCrossRef
140.
go back to reference Yang C, Lin X, Wang X, Liu H, Huang J, Wang S. The schizophrenia and gut microbiota: a bibliometric and visual analysis. Front Psychiatry. 2022;13:1022472.PubMedPubMedCentralCrossRef Yang C, Lin X, Wang X, Liu H, Huang J, Wang S. The schizophrenia and gut microbiota: a bibliometric and visual analysis. Front Psychiatry. 2022;13:1022472.PubMedPubMedCentralCrossRef
141.
go back to reference Appleton J. The gut-brain axis: influence of microbiota on mood and mental health. Integr Med (Encinitas). 2018;17(4):28–32.PubMed Appleton J. The gut-brain axis: influence of microbiota on mood and mental health. Integr Med (Encinitas). 2018;17(4):28–32.PubMed
142.
go back to reference Pergolizzi S, Alesci A, Centofanti A, Aragona M, Pallio S, Magaudda L, et al. Role of serotonin in the maintenance of inflammatory state in Crohn’s disease. Biomedicines. 2022;10(4):765.PubMedPubMedCentralCrossRef Pergolizzi S, Alesci A, Centofanti A, Aragona M, Pallio S, Magaudda L, et al. Role of serotonin in the maintenance of inflammatory state in Crohn’s disease. Biomedicines. 2022;10(4):765.PubMedPubMedCentralCrossRef
143.
go back to reference Khan WI. The role of 5-HT dysregulation in inflammatory bowel disease. Gastroenterol Hepatol (N Y). 2013;9(4):259–61.PubMed Khan WI. The role of 5-HT dysregulation in inflammatory bowel disease. Gastroenterol Hepatol (N Y). 2013;9(4):259–61.PubMed
144.
go back to reference Makhlouf S, Messelmani M, Zaouali J, Mrissa R. Cognitive impairment in celiac disease and non-celiac gluten sensitivity: review of literature on the main cognitive impairments, the imaging and the effect of gluten free diet. Acta Neurol Belg. 2018;118(1):21–7.PubMedCrossRef Makhlouf S, Messelmani M, Zaouali J, Mrissa R. Cognitive impairment in celiac disease and non-celiac gluten sensitivity: review of literature on the main cognitive impairments, the imaging and the effect of gluten free diet. Acta Neurol Belg. 2018;118(1):21–7.PubMedCrossRef
145.
go back to reference Coleman NS, Foley S, Dunlop SP, Wheatcroft J, Blackshaw E, Perkins AC, et al. Abnormalities of serotonin metabolism and their relation to symptoms in untreated celiac disease. Clin Gastroenterol Hepatol. 2006;4(7):874–81.PubMedCrossRef Coleman NS, Foley S, Dunlop SP, Wheatcroft J, Blackshaw E, Perkins AC, et al. Abnormalities of serotonin metabolism and their relation to symptoms in untreated celiac disease. Clin Gastroenterol Hepatol. 2006;4(7):874–81.PubMedCrossRef
146.
go back to reference Ghia JE, Li N, Wang H, Collins M, Deng Y, El-Sharkawy RT, et al. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology. 2009;137(5):1649–60.PubMedCrossRef Ghia JE, Li N, Wang H, Collins M, Deng Y, El-Sharkawy RT, et al. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology. 2009;137(5):1649–60.PubMedCrossRef
147.
go back to reference Costedio MM, Coates MD, Danielson AB, Buttolph TR, Blaszyk HJ, Mawe GM, Hyman NH. Serotonin signaling in diverticular disease. J Gastrointest Surg. 2008;12(8):1439–45.PubMedPubMedCentralCrossRef Costedio MM, Coates MD, Danielson AB, Buttolph TR, Blaszyk HJ, Mawe GM, Hyman NH. Serotonin signaling in diverticular disease. J Gastrointest Surg. 2008;12(8):1439–45.PubMedPubMedCentralCrossRef
148.
149.
go back to reference Thomas RH, Luthin DR. Current and emerging treatments for irritable bowel syndrome with constipation and chronic idiopathic constipation: focus on prosecretory agents. Pharmacotherapy. 2015;35(6):613–30.PubMedCrossRef Thomas RH, Luthin DR. Current and emerging treatments for irritable bowel syndrome with constipation and chronic idiopathic constipation: focus on prosecretory agents. Pharmacotherapy. 2015;35(6):613–30.PubMedCrossRef
150.
go back to reference Coates MD, Johnson AC, Greenwood-Van Meerveld B, Mawe GM. Effects of serotonin transporter inhibition on gastrointestinal motility and colonic sensitivity in the mouse. Neurogastroenterol Motil. 2006;18(6):464–71.PubMedCrossRef Coates MD, Johnson AC, Greenwood-Van Meerveld B, Mawe GM. Effects of serotonin transporter inhibition on gastrointestinal motility and colonic sensitivity in the mouse. Neurogastroenterol Motil. 2006;18(6):464–71.PubMedCrossRef
151.
go back to reference Kohen R, Jarrett ME, Cain KC, Jun SE, Navaja GP, Symonds S, Heitkemper MM. The serotonin transporter polymorphism rs25531 is associated with irritable bowel syndrome. Dig Dis Sci. 2009;54(12):2663–70.PubMedPubMedCentralCrossRef Kohen R, Jarrett ME, Cain KC, Jun SE, Navaja GP, Symonds S, Heitkemper MM. The serotonin transporter polymorphism rs25531 is associated with irritable bowel syndrome. Dig Dis Sci. 2009;54(12):2663–70.PubMedPubMedCentralCrossRef
153.
go back to reference Gill RK, Pant N, Saksena S, Singla A, Nazir TM, Vohwinkel L, et al. Function, expression, and characterization of the serotonin transporter in the native human intestine. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G254–62.PubMedCrossRef Gill RK, Pant N, Saksena S, Singla A, Nazir TM, Vohwinkel L, et al. Function, expression, and characterization of the serotonin transporter in the native human intestine. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G254–62.PubMedCrossRef
154.
go back to reference Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60.PubMedCrossRef Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60.PubMedCrossRef
155.
go back to reference Murray CDR, Kamm MA, Bloom SR, Emmanuel AV. Ghrelin for the gastroenterologist: history and potential. Gastroenterology. 2003;125(5):1492–502.PubMedCrossRef Murray CDR, Kamm MA, Bloom SR, Emmanuel AV. Ghrelin for the gastroenterologist: history and potential. Gastroenterology. 2003;125(5):1492–502.PubMedCrossRef
157.
go back to reference Wu R, Dong W, Cui X, Zhou M, Simms HH, Ravikumar TS, Wang P. Ghrelin down-regulates proinflammatory cytokines in sepsis through activation of the vagus nerve. Ann Surg. 2007;245(3):480–6.PubMedPubMedCentralCrossRef Wu R, Dong W, Cui X, Zhou M, Simms HH, Ravikumar TS, Wang P. Ghrelin down-regulates proinflammatory cytokines in sepsis through activation of the vagus nerve. Ann Surg. 2007;245(3):480–6.PubMedPubMedCentralCrossRef
158.
go back to reference Waseem T, Duxbury M, Ito H, Ashley SW, Robinson MK. Exogenous ghrelin modulates release of pro-inflammatory and anti-inflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways. Surgery. 2008;143(3):334–42.PubMedCrossRef Waseem T, Duxbury M, Ito H, Ashley SW, Robinson MK. Exogenous ghrelin modulates release of pro-inflammatory and anti-inflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways. Surgery. 2008;143(3):334–42.PubMedCrossRef
159.
go back to reference Lopez NE, Krzyzaniak MJ, Blow C, Putnam J, Ortiz-Pomales Y, Hageny A-M, et al. Ghrelin prevents disruption of the blood-brain barrier after traumatic brain injury. J Neurotrauma. 2012;29(2):385–93.PubMedPubMedCentralCrossRef Lopez NE, Krzyzaniak MJ, Blow C, Putnam J, Ortiz-Pomales Y, Hageny A-M, et al. Ghrelin prevents disruption of the blood-brain barrier after traumatic brain injury. J Neurotrauma. 2012;29(2):385–93.PubMedPubMedCentralCrossRef
160.
go back to reference Zhang C, Chen J, Lu H. Expression of aquaporin-4 and pathological characteristics of brain injury in a rat model of traumatic brain injury. Mol Med Rep. 2015;12(5):7351–7.PubMedPubMedCentralCrossRef Zhang C, Chen J, Lu H. Expression of aquaporin-4 and pathological characteristics of brain injury in a rat model of traumatic brain injury. Mol Med Rep. 2015;12(5):7351–7.PubMedPubMedCentralCrossRef
161.
go back to reference Kleindienst A, Hesse F, Bullock MR, Buchfelder M. The neurotrophic protein S100B: value as a marker of brain damage and possible therapeutic implications. Prog Brain Res. 2007;161:317–25.PubMedCrossRef Kleindienst A, Hesse F, Bullock MR, Buchfelder M. The neurotrophic protein S100B: value as a marker of brain damage and possible therapeutic implications. Prog Brain Res. 2007;161:317–25.PubMedCrossRef
162.
go back to reference Shao X, Hu Q, Chen S, Wang Q, Xu P, Jiang X. Ghrelin ameliorates traumatic brain injury by down-regulating bFGF and FGF-BP. Front Neurosci. 2018;12:445.PubMedPubMedCentralCrossRef Shao X, Hu Q, Chen S, Wang Q, Xu P, Jiang X. Ghrelin ameliorates traumatic brain injury by down-regulating bFGF and FGF-BP. Front Neurosci. 2018;12:445.PubMedPubMedCentralCrossRef
163.
go back to reference Sun N, Wang H, Ma L, Lei P, Zhang Q. Ghrelin attenuates brain injury in septic mice via PI3K/Akt signaling activation. Brain Res Bull. 2016;124:278–85.PubMedCrossRef Sun N, Wang H, Ma L, Lei P, Zhang Q. Ghrelin attenuates brain injury in septic mice via PI3K/Akt signaling activation. Brain Res Bull. 2016;124:278–85.PubMedCrossRef
164.
go back to reference Chen L, Wei X, Hou Y, Liu X, Li S, Sun B, et al. Tetramethylpyrazine analogue CXC195 protects against cerebral ischemia/reperfusion-induced apoptosis through PI3K/Akt/GSK3beta pathway in rats. Neurochem Int. 2014;66:27–32.PubMedCrossRef Chen L, Wei X, Hou Y, Liu X, Li S, Sun B, et al. Tetramethylpyrazine analogue CXC195 protects against cerebral ischemia/reperfusion-induced apoptosis through PI3K/Akt/GSK3beta pathway in rats. Neurochem Int. 2014;66:27–32.PubMedCrossRef
165.
go back to reference Hong Y, Shao A, Wang J, Chen S, Wu H, McBride DW, et al. Neuroprotective effect of hydrogen-rich saline against neurologic damage and apoptosis in early brain injury following subarachnoid hemorrhage: possible role of the Akt/GSK3β signaling pathway. PLoS ONE. 2014;9(4): e96212.PubMedPubMedCentralCrossRef Hong Y, Shao A, Wang J, Chen S, Wu H, McBride DW, et al. Neuroprotective effect of hydrogen-rich saline against neurologic damage and apoptosis in early brain injury following subarachnoid hemorrhage: possible role of the Akt/GSK3β signaling pathway. PLoS ONE. 2014;9(4): e96212.PubMedPubMedCentralCrossRef
166.
go back to reference Raghay K, Akki R, Bensaid D, Errami M. Ghrelin as an anti-inflammatory and protective agent in ischemia/reperfusion injury. Peptides. 2020;124: 170226.PubMedCrossRef Raghay K, Akki R, Bensaid D, Errami M. Ghrelin as an anti-inflammatory and protective agent in ischemia/reperfusion injury. Peptides. 2020;124: 170226.PubMedCrossRef
167.
go back to reference Ku JM, Taher M, Chin KY, Barsby T, Austin V, Wong CH, et al. Protective actions of des-acylated ghrelin on brain injury and blood-brain barrier disruption after stroke in mice. Clin Sci (Lond). 2016;130(17):1545–58.PubMedCrossRef Ku JM, Taher M, Chin KY, Barsby T, Austin V, Wong CH, et al. Protective actions of des-acylated ghrelin on brain injury and blood-brain barrier disruption after stroke in mice. Clin Sci (Lond). 2016;130(17):1545–58.PubMedCrossRef
168.
go back to reference Miao Y, Xia Q, Hou Z, Zheng Y, Pan H, Zhu S. Ghrelin protects cortical neuron against focal ischemia/reperfusion in rats. Biochem Biophys Res Commun. 2007;359(3):795–800.PubMedCrossRef Miao Y, Xia Q, Hou Z, Zheng Y, Pan H, Zhu S. Ghrelin protects cortical neuron against focal ischemia/reperfusion in rats. Biochem Biophys Res Commun. 2007;359(3):795–800.PubMedCrossRef
169.
go back to reference Ersahin M, Toklu HZ, Erzik C, Akakin D, Tetik S, Sener G, Yegen BC. Ghrelin alleviates spinal cord injury in rats via its anti-inflammatory effects. Turk Neurosurg. 2011;21(4):599–605.PubMed Ersahin M, Toklu HZ, Erzik C, Akakin D, Tetik S, Sener G, Yegen BC. Ghrelin alleviates spinal cord injury in rats via its anti-inflammatory effects. Turk Neurosurg. 2011;21(4):599–605.PubMed
170.
go back to reference Lee JY, Chung H, Yoo YS, Oh YJ, Oh TH, Park S, Yune TY. Inhibition of apoptotic cell death by ghrelin improves functional recovery after spinal cord injury. Endocrinology. 2010;151(8):3815–26.PubMedCrossRef Lee JY, Chung H, Yoo YS, Oh YJ, Oh TH, Park S, Yune TY. Inhibition of apoptotic cell death by ghrelin improves functional recovery after spinal cord injury. Endocrinology. 2010;151(8):3815–26.PubMedCrossRef
171.
go back to reference Bansal V, Ryu SY, Blow C, Costantini T, Loomis W, Eliceiri B, et al. The hormone ghrelin prevents traumatic brain injury induced intestinal dysfunction. J Neurotrauma. 2010;27(12):2255–60.PubMedPubMedCentralCrossRef Bansal V, Ryu SY, Blow C, Costantini T, Loomis W, Eliceiri B, et al. The hormone ghrelin prevents traumatic brain injury induced intestinal dysfunction. J Neurotrauma. 2010;27(12):2255–60.PubMedPubMedCentralCrossRef
172.
go back to reference Bansal V, Costantini T, Ryu SY, Peterson C, Loomis W, Putnam J, et al. Stimulating the central nervous system to prevent intestinal dysfunction after traumatic brain injury. J Trauma Inj Infect Criti Care. 2010;68(5):1059–64. Bansal V, Costantini T, Ryu SY, Peterson C, Loomis W, Putnam J, et al. Stimulating the central nervous system to prevent intestinal dysfunction after traumatic brain injury. J Trauma Inj Infect Criti Care. 2010;68(5):1059–64.
173.
go back to reference Bansal V, Ryu SY, Lopez N, Allexan S, Krzyzaniak M, Eliceiri B, et al. Vagal stimulation modulates inflammation through a ghrelin mediated mechanism in traumatic brain injury. Inflammation. 2012;35(1):214–20.PubMedCrossRef Bansal V, Ryu SY, Lopez N, Allexan S, Krzyzaniak M, Eliceiri B, et al. Vagal stimulation modulates inflammation through a ghrelin mediated mechanism in traumatic brain injury. Inflammation. 2012;35(1):214–20.PubMedCrossRef
174.
go back to reference Zhang W, Lin TR, Hu Y, Fan Y, Zhao L, Stuenkel EL, Mulholland MW. Ghrelin stimulates neurogenesis in the dorsal motor nucleus of the vagus. J Physiol. 2004;559(3):729–37.PubMedPubMedCentralCrossRef Zhang W, Lin TR, Hu Y, Fan Y, Zhao L, Stuenkel EL, Mulholland MW. Ghrelin stimulates neurogenesis in the dorsal motor nucleus of the vagus. J Physiol. 2004;559(3):729–37.PubMedPubMedCentralCrossRef
175.
go back to reference Shao X, Cheng S-X, Tu Y. Effect of Ghrelin on gastrointestinal motility after traumatic brain injury. Chin J Trauma. 2018;34:370–6. Shao X, Cheng S-X, Tu Y. Effect of Ghrelin on gastrointestinal motility after traumatic brain injury. Chin J Trauma. 2018;34:370–6.
176.
go back to reference Cheng Y, Wei Y, Yang W, Cai Y, Chen B, Yang G, et al. Ghrelin attenuates intestinal barrier dysfunction following intracerebral hemorrhage in mice. Int J Mol Sci. 2016;17(12):2032.PubMedPubMedCentralCrossRef Cheng Y, Wei Y, Yang W, Cai Y, Chen B, Yang G, et al. Ghrelin attenuates intestinal barrier dysfunction following intracerebral hemorrhage in mice. Int J Mol Sci. 2016;17(12):2032.PubMedPubMedCentralCrossRef
177.
go back to reference Zhang H, Cui Z, Luo G, Zhang J, Ma T, Hu N, Cui T. Ghrelin attenuates intestinal ischemia/reperfusion injury in mice by activating the mTOR signaling pathway. Int J Mol Med. 2013;32(4):851–9.PubMedCrossRef Zhang H, Cui Z, Luo G, Zhang J, Ma T, Hu N, Cui T. Ghrelin attenuates intestinal ischemia/reperfusion injury in mice by activating the mTOR signaling pathway. Int J Mol Med. 2013;32(4):851–9.PubMedCrossRef
178.
go back to reference Nagy B, Szekeres-Barthó J, Kovács GL, Sulyok E, Farkas B, Várnagy Á, et al. Key to life: physiological role and clinical implications of progesterone. Int J Mol Sci. 2021;22(20):11039.PubMedPubMedCentralCrossRef Nagy B, Szekeres-Barthó J, Kovács GL, Sulyok E, Farkas B, Várnagy Á, et al. Key to life: physiological role and clinical implications of progesterone. Int J Mol Sci. 2021;22(20):11039.PubMedPubMedCentralCrossRef
179.
go back to reference González-Orozco JC, Camacho-Arroyo I. Progesterone actions during central nervous system development. Front Neurosci. 2019;13:431027.CrossRef González-Orozco JC, Camacho-Arroyo I. Progesterone actions during central nervous system development. Front Neurosci. 2019;13:431027.CrossRef
180.
go back to reference Fedotcheva TA, Fedotcheva NI, Shimanovsky NL. Progesterone as an anti-inflammatory drug and immunomodulator: new aspects in hormonal regulation of the inflammation. Biomolecules. 2022;12(9):1299.PubMedPubMedCentralCrossRef Fedotcheva TA, Fedotcheva NI, Shimanovsky NL. Progesterone as an anti-inflammatory drug and immunomodulator: new aspects in hormonal regulation of the inflammation. Biomolecules. 2022;12(9):1299.PubMedPubMedCentralCrossRef
181.
go back to reference Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, et al. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol. 2014;113:6–39.PubMedCrossRef Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, et al. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol. 2014;113:6–39.PubMedCrossRef
182.
go back to reference Gibson CL, Coomber B, Rathbone J. Is progesterone a candidate neuroprotective factor for treatment following ischemic stroke? Neuroscientist. 2009;15(4):324–32.PubMedCrossRef Gibson CL, Coomber B, Rathbone J. Is progesterone a candidate neuroprotective factor for treatment following ischemic stroke? Neuroscientist. 2009;15(4):324–32.PubMedCrossRef
183.
go back to reference Irwin RW, Wang JM, Chen S, Brinton RD. Neuroregenerative mechanisms of allopregnanolone in Alzheimer’s disease. Front Endocrinol. 2012;2:117.CrossRef Irwin RW, Wang JM, Chen S, Brinton RD. Neuroregenerative mechanisms of allopregnanolone in Alzheimer’s disease. Front Endocrinol. 2012;2:117.CrossRef
184.
go back to reference De Nicola AF, Labombarda F, Gonzalez Deniselle MC, Gonzalez SL, Garay L, Meyer M, et al. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol. 2009;30(2):173–87.PubMedCrossRef De Nicola AF, Labombarda F, Gonzalez Deniselle MC, Gonzalez SL, Garay L, Meyer M, et al. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol. 2009;30(2):173–87.PubMedCrossRef
185.
go back to reference He J, Evans CO, Hoffman SW, Oyesiku NM, Stein DG. Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury. Exp Neurol. 2004;189(2):404–12.PubMedCrossRef He J, Evans CO, Hoffman SW, Oyesiku NM, Stein DG. Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury. Exp Neurol. 2004;189(2):404–12.PubMedCrossRef
186.
go back to reference Guo Q, Sayeed I, Baronne LM, Hoffman SW, Guennoun R, Stein DG. Progesterone administration modulates AQP4 expression and edema after traumatic brain injury in male rats. Exp Neurol. 2006;198(2):469–78.PubMedCrossRef Guo Q, Sayeed I, Baronne LM, Hoffman SW, Guennoun R, Stein DG. Progesterone administration modulates AQP4 expression and edema after traumatic brain injury in male rats. Exp Neurol. 2006;198(2):469–78.PubMedCrossRef
187.
go back to reference Li Z, Wang B, Kan Z, Zhang B, Yang Z, Chen J, et al. Progesterone increases circulating endothelial progenitor cells and induces neural regeneration after traumatic brain injury in aged rats. J Neurotrauma. 2012;29(2):343–53.PubMedPubMedCentralCrossRef Li Z, Wang B, Kan Z, Zhang B, Yang Z, Chen J, et al. Progesterone increases circulating endothelial progenitor cells and induces neural regeneration after traumatic brain injury in aged rats. J Neurotrauma. 2012;29(2):343–53.PubMedPubMedCentralCrossRef
188.
go back to reference Irwin RW, Yao J, Hamilton RT, Cadenas E, Brinton RD, Nilsen J. Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinology. 2008;149(6):3167–75.PubMedPubMedCentralCrossRef Irwin RW, Yao J, Hamilton RT, Cadenas E, Brinton RD, Nilsen J. Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinology. 2008;149(6):3167–75.PubMedPubMedCentralCrossRef
189.
go back to reference Garcia-Ovejero D, González S, Paniagua-Torija B, Lima A, Molina-Holgado E, De Nicola AF, Labombarda F. Progesterone reduces secondary damage, preserves white matter, and improves locomotor outcome after spinal cord contusion. J Neurotrauma. 2014;31(9):857–71.PubMedPubMedCentralCrossRef Garcia-Ovejero D, González S, Paniagua-Torija B, Lima A, Molina-Holgado E, De Nicola AF, Labombarda F. Progesterone reduces secondary damage, preserves white matter, and improves locomotor outcome after spinal cord contusion. J Neurotrauma. 2014;31(9):857–71.PubMedPubMedCentralCrossRef
190.
go back to reference Coughlan T, Gibson C, Murphy S. Progesterone, BDNF and neuroprotection in the injured CNS. Int J Neurosci. 2009;119(10):1718–40.PubMedCrossRef Coughlan T, Gibson C, Murphy S. Progesterone, BDNF and neuroprotection in the injured CNS. Int J Neurosci. 2009;119(10):1718–40.PubMedCrossRef
191.
go back to reference Pan DS, Liu WG, Yang XF, Cao F. Inhibitory effect of progesterone on inflammatory factors after experimental traumatic brain injury. Biomed Environ Sci. 2007;20(5):432–8.PubMed Pan DS, Liu WG, Yang XF, Cao F. Inhibitory effect of progesterone on inflammatory factors after experimental traumatic brain injury. Biomed Environ Sci. 2007;20(5):432–8.PubMed
192.
go back to reference Hermann GE, Rogers RC, Bresnahan JC, Beattie MS. Tumor necrosis factor-alpha induces cFOS and strongly potentiates glutamate-mediated cell death in the rat spinal cord. Neurobiol Dis. 2001;8(4):590–9.PubMedCrossRef Hermann GE, Rogers RC, Bresnahan JC, Beattie MS. Tumor necrosis factor-alpha induces cFOS and strongly potentiates glutamate-mediated cell death in the rat spinal cord. Neurobiol Dis. 2001;8(4):590–9.PubMedCrossRef
193.
go back to reference Cutler SM, Pettus EH, Hoffman SW, Stein DG. Tapered progesterone withdrawal enhances behavioral and molecular recovery after traumatic brain injury. Exp Neurol. 2005;195(2):423–9.PubMedCrossRef Cutler SM, Pettus EH, Hoffman SW, Stein DG. Tapered progesterone withdrawal enhances behavioral and molecular recovery after traumatic brain injury. Exp Neurol. 2005;195(2):423–9.PubMedCrossRef
194.
go back to reference Yao X-L, Liu J, Lee E, Ling GSF, McCabe JT. Progesterone differentially regulates pro- and anti-apoptotic gene expression in cerebral cortex following traumatic brain injury in rats. J Neurotrauma. 2005;22(6):656–68.PubMedCrossRef Yao X-L, Liu J, Lee E, Ling GSF, McCabe JT. Progesterone differentially regulates pro- and anti-apoptotic gene expression in cerebral cortex following traumatic brain injury in rats. J Neurotrauma. 2005;22(6):656–68.PubMedCrossRef
195.
go back to reference Pettus EH, Wright DW, Stein DG, Hoffman SW. Progesterone treatment inhibits the inflammatory agents that accompany traumatic brain injury. Brain Res. 2005;1049(1):112–9.PubMedCrossRef Pettus EH, Wright DW, Stein DG, Hoffman SW. Progesterone treatment inhibits the inflammatory agents that accompany traumatic brain injury. Brain Res. 2005;1049(1):112–9.PubMedCrossRef
196.
go back to reference Gibson CL, Gray LJ, Bath PMW, Murphy SP. Progesterone for the treatment of experimental brain injury; a systematic review. Brain. 2008;131(2):318–28.PubMedCrossRef Gibson CL, Gray LJ, Bath PMW, Murphy SP. Progesterone for the treatment of experimental brain injury; a systematic review. Brain. 2008;131(2):318–28.PubMedCrossRef
197.
go back to reference Zeng Y, Zhang Y, Ma J, Xu J. Progesterone for acute traumatic brain injury: a systematic review of randomized controlled trials. PLoS ONE. 2015;10(10): e0140624.PubMedPubMedCentralCrossRef Zeng Y, Zhang Y, Ma J, Xu J. Progesterone for acute traumatic brain injury: a systematic review of randomized controlled trials. PLoS ONE. 2015;10(10): e0140624.PubMedPubMedCentralCrossRef
198.
go back to reference Wright DW, Kellermann AL, Hertzberg VS, Clark PL, Frankel M, Goldstein FC, et al. ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med. 2007;49(4):391-402 e1-2.PubMedCrossRef Wright DW, Kellermann AL, Hertzberg VS, Clark PL, Frankel M, Goldstein FC, et al. ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med. 2007;49(4):391-402 e1-2.PubMedCrossRef
199.
go back to reference Xiao GM, Wei J, Wu ZH, Wang WM, Jiang QZ, Cheng J, et al. Clinical study on the therapeutic effects and mechanism of progesterone in the treatment for acute severe head injury. Zhonghua Wai Ke Za Zhi. 2007;45(2):106–8.PubMed Xiao GM, Wei J, Wu ZH, Wang WM, Jiang QZ, Cheng J, et al. Clinical study on the therapeutic effects and mechanism of progesterone in the treatment for acute severe head injury. Zhonghua Wai Ke Za Zhi. 2007;45(2):106–8.PubMed
200.
201.
202.
go back to reference Celorrio M, Abellanas MA, Rhodes J, Goodwin V, Moritz J, Vadivelu S, et al. Gut microbial dysbiosis after traumatic brain injury modulates the immune response and impairs neurogenesis. Acta Neuropathol Commun. 2021;9(1):1.CrossRef Celorrio M, Abellanas MA, Rhodes J, Goodwin V, Moritz J, Vadivelu S, et al. Gut microbial dysbiosis after traumatic brain injury modulates the immune response and impairs neurogenesis. Acta Neuropathol Commun. 2021;9(1):1.CrossRef
203.
go back to reference Chen G, Shi JX, Qi M, Wang HX, Hang CH. Effects of progesterone on intestinal inflammatory response, mucosa structure alterations, and apoptosis following traumatic brain injury in male rats. J Surg Res. 2008;147(1):92–8.PubMedCrossRef Chen G, Shi JX, Qi M, Wang HX, Hang CH. Effects of progesterone on intestinal inflammatory response, mucosa structure alterations, and apoptosis following traumatic brain injury in male rats. J Surg Res. 2008;147(1):92–8.PubMedCrossRef
204.
go back to reference Chen G, Shi J, Ding Y, Yin H, Hang C. Progesterone prevents traumatic brain injury-induced intestinal nuclear factor kappa B activation and proinflammatory cytokines expression in male rats. Mediat Inflamm. 2007;2007:1–7. Chen G, Shi J, Ding Y, Yin H, Hang C. Progesterone prevents traumatic brain injury-induced intestinal nuclear factor kappa B activation and proinflammatory cytokines expression in male rats. Mediat Inflamm. 2007;2007:1–7.
205.
go back to reference Jin W, Wang H, Ji Y, Hu Q, Yan W, Chen G, Yin H. Increased intestinal inflammatory response and gut barrier dysfunction in Nrf2-deficient mice after traumatic brain injury. Cytokine. 2008;44(1):135–40.PubMedCrossRef Jin W, Wang H, Ji Y, Hu Q, Yan W, Chen G, Yin H. Increased intestinal inflammatory response and gut barrier dysfunction in Nrf2-deficient mice after traumatic brain injury. Cytokine. 2008;44(1):135–40.PubMedCrossRef
206.
go back to reference Jin W, Wang HD, Hu ZG, Yan W, Chen G, Yin HX. Transcription factor Nrf2 plays a pivotal role in protection against traumatic brain injury-induced acute intestinal mucosal injury in mice. J Surg Res. 2009;157(2):251–60.PubMedCrossRef Jin W, Wang HD, Hu ZG, Yan W, Chen G, Yin HX. Transcription factor Nrf2 plays a pivotal role in protection against traumatic brain injury-induced acute intestinal mucosal injury in mice. J Surg Res. 2009;157(2):251–60.PubMedCrossRef
207.
go back to reference Zhou Z, Bian C, Luo Z, Guille C, Ogunrinde E, Wu J, et al. Progesterone decreases gut permeability through upregulating occludin expression in primary human gut tissues and Caco-2 cells. Sci Rep. 2019;9(1):8367.PubMedPubMedCentralCrossRef Zhou Z, Bian C, Luo Z, Guille C, Ogunrinde E, Wu J, et al. Progesterone decreases gut permeability through upregulating occludin expression in primary human gut tissues and Caco-2 cells. Sci Rep. 2019;9(1):8367.PubMedPubMedCentralCrossRef
208.
go back to reference Zhao XD, Zhou YT. Effects of progesterone on intestinal inflammatory response and mucosa structure alterations following SAH in male rats. J Surg Res. 2011;171(1):e47-53.PubMedCrossRef Zhao XD, Zhou YT. Effects of progesterone on intestinal inflammatory response and mucosa structure alterations following SAH in male rats. J Surg Res. 2011;171(1):e47-53.PubMedCrossRef
209.
go back to reference Jarras H, Bourque M, Poirier AA, Morissette M, Coulombe K, Di Paolo T, Soulet D. Neuroprotection and immunomodulation of progesterone in the gut of a mouse model of Parkinson’s disease. J Neuroendocrinol. 2020;32(1): e12782.PubMedCrossRef Jarras H, Bourque M, Poirier AA, Morissette M, Coulombe K, Di Paolo T, Soulet D. Neuroprotection and immunomodulation of progesterone in the gut of a mouse model of Parkinson’s disease. J Neuroendocrinol. 2020;32(1): e12782.PubMedCrossRef
210.
211.
go back to reference Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, et al. International union of pharmacology nomenclature of adrenoceptors. Pharmacol Rev. 1994;46(2):121–36.PubMed Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, et al. International union of pharmacology nomenclature of adrenoceptors. Pharmacol Rev. 1994;46(2):121–36.PubMed
213.
go back to reference Alali AS, Mukherjee K, McCredie VA, Golan E, Shah PS, Bardes JM, et al. Beta-blockers and traumatic brain injury. Ann Surg. 2017;266(6):952–61.PubMedCrossRef Alali AS, Mukherjee K, McCredie VA, Golan E, Shah PS, Bardes JM, et al. Beta-blockers and traumatic brain injury. Ann Surg. 2017;266(6):952–61.PubMedCrossRef
214.
go back to reference Chen Z, Tang L, Xu X, Wei X, Wen L, Xie Q. Therapeutic effect of beta-blocker in patients with traumatic brain injury: a systematic review and meta-analysis. J Crit Care. 2017;41:240–6.PubMedCrossRef Chen Z, Tang L, Xu X, Wei X, Wen L, Xie Q. Therapeutic effect of beta-blocker in patients with traumatic brain injury: a systematic review and meta-analysis. J Crit Care. 2017;41:240–6.PubMedCrossRef
215.
go back to reference Ding H, Liao L, Zheng X, Wang Q, Liu Z, Xu G, et al. beta-Blockers for traumatic brain injury: a systematic review and meta-analysis. J Trauma Acute Care Surg. 2021;90(6):1077–85.PubMedCrossRef Ding H, Liao L, Zheng X, Wang Q, Liu Z, Xu G, et al. beta-Blockers for traumatic brain injury: a systematic review and meta-analysis. J Trauma Acute Care Surg. 2021;90(6):1077–85.PubMedCrossRef
216.
go back to reference Zagales I, Selvakumar S, Ngatuvai M, Fanfan D, Kornblith L, Santos RG, et al. Beta-blocker therapy in patients with severe traumatic brain injury: a systematic review and meta-analysis. Am Surg. 2023;89(5):2020–9.PubMedCrossRef Zagales I, Selvakumar S, Ngatuvai M, Fanfan D, Kornblith L, Santos RG, et al. Beta-blocker therapy in patients with severe traumatic brain injury: a systematic review and meta-analysis. Am Surg. 2023;89(5):2020–9.PubMedCrossRef
217.
go back to reference Armstead WM, Vavilala MS. Propranolol protects cerebral autoregulation and reduces hippocampal neuronal cell death through inhibition of interleukin-6 upregulation after traumatic brain injury in pigs. Br J Anaesth. 2019;123(5):610–7.PubMedPubMedCentralCrossRef Armstead WM, Vavilala MS. Propranolol protects cerebral autoregulation and reduces hippocampal neuronal cell death through inhibition of interleukin-6 upregulation after traumatic brain injury in pigs. Br J Anaesth. 2019;123(5):610–7.PubMedPubMedCentralCrossRef
218.
go back to reference Asmar S, Bible L, Chehab M, Tang A, Khurrum M, Castanon L, et al. Traumatic brain injury induced temperature dysregulation: what is the role of beta blockers? J Trauma Acute Care Surg. 2021;90(1):177–84.PubMedCrossRef Asmar S, Bible L, Chehab M, Tang A, Khurrum M, Castanon L, et al. Traumatic brain injury induced temperature dysregulation: what is the role of beta blockers? J Trauma Acute Care Surg. 2021;90(1):177–84.PubMedCrossRef
219.
go back to reference Lopez AJ, ElSaadani M, Jacovides CL, Georges A, Culkin MC, Ahmed S, et al. Beta blockade in TBI: Dose-dependent reductions in BBB leukocyte mobilization and permeability in vivo. J Trauma Acute Care Surg. 2022;92(5):781–91.PubMedPubMedCentralCrossRef Lopez AJ, ElSaadani M, Jacovides CL, Georges A, Culkin MC, Ahmed S, et al. Beta blockade in TBI: Dose-dependent reductions in BBB leukocyte mobilization and permeability in vivo. J Trauma Acute Care Surg. 2022;92(5):781–91.PubMedPubMedCentralCrossRef
220.
go back to reference Lopez AJ, ElSaadani M, Culkin MC, Jacovides CL, Georges AP, Song H, et al. Persistent blunting of penumbral leukocyte mobilization by beta blockade administered for two weeks after traumatic brain injury. J Surg Res. 2022;280:196–203.PubMedCrossRef Lopez AJ, ElSaadani M, Culkin MC, Jacovides CL, Georges AP, Song H, et al. Persistent blunting of penumbral leukocyte mobilization by beta blockade administered for two weeks after traumatic brain injury. J Surg Res. 2022;280:196–203.PubMedCrossRef
222.
go back to reference Singer KE, McGlone ED, Collins SM, Wallen TE, Morris MC, Schuster RM, et al. Propranolol reduces p-tau accumulation and improves behavior outcomes in a polytrauma murine model. J Surg Res. 2023;282:183–90.PubMedCrossRef Singer KE, McGlone ED, Collins SM, Wallen TE, Morris MC, Schuster RM, et al. Propranolol reduces p-tau accumulation and improves behavior outcomes in a polytrauma murine model. J Surg Res. 2023;282:183–90.PubMedCrossRef
223.
go back to reference Zeeshan M, Hamidi M, O’Keeffe T, Bae EH, Hanna K, Friese RS, et al. Propranolol attenuates cognitive, learning, and memory deficits in a murine model of traumatic brain injury. J Trauma Acute Care Surg. 2019;87(5):1140–7.PubMedCrossRef Zeeshan M, Hamidi M, O’Keeffe T, Bae EH, Hanna K, Friese RS, et al. Propranolol attenuates cognitive, learning, and memory deficits in a murine model of traumatic brain injury. J Trauma Acute Care Surg. 2019;87(5):1140–7.PubMedCrossRef
224.
go back to reference Stowell RD, Sipe GO, Dawes RP, Batchelor HN, Lordy KA, Whitelaw BS, et al. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat Neurosci. 2019;22(11):1782–92.PubMedPubMedCentralCrossRef Stowell RD, Sipe GO, Dawes RP, Batchelor HN, Lordy KA, Whitelaw BS, et al. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat Neurosci. 2019;22(11):1782–92.PubMedPubMedCentralCrossRef
225.
go back to reference Ley EJ, Leonard SD, Barmparas G, Dhillon NK, Inaba K, Salim A, et al. Beta blockers in critically ill patients with traumatic brain injury: results from a multicenter, prospective, observational American Association for the Surgery of Trauma study. J Trauma Acute Care Surg. 2018;84(2):234–44.PubMedCrossRef Ley EJ, Leonard SD, Barmparas G, Dhillon NK, Inaba K, Salim A, et al. Beta blockers in critically ill patients with traumatic brain injury: results from a multicenter, prospective, observational American Association for the Surgery of Trauma study. J Trauma Acute Care Surg. 2018;84(2):234–44.PubMedCrossRef
226.
go back to reference Khalili H, Ahl R, Paydar S, Sjolin G, Cao Y, Abdolrahimzadeh Fard H, et al. Beta-blocker therapy in severe traumatic brain injury: a prospective randomized controlled trial. World J Surg. 2020;44(6):1844–53.PubMedCrossRef Khalili H, Ahl R, Paydar S, Sjolin G, Cao Y, Abdolrahimzadeh Fard H, et al. Beta-blocker therapy in severe traumatic brain injury: a prospective randomized controlled trial. World J Surg. 2020;44(6):1844–53.PubMedCrossRef
227.
228.
go back to reference Ide S, Yamamoto R, Takeda H, Minami M. Bidirectional brain-gut interactions: involvement of noradrenergic transmission within the ventral part of the bed nucleus of the stria terminalis. Neuropsychopharmacol Rep. 2018;38(1):37–43.PubMedPubMedCentralCrossRef Ide S, Yamamoto R, Takeda H, Minami M. Bidirectional brain-gut interactions: involvement of noradrenergic transmission within the ventral part of the bed nucleus of the stria terminalis. Neuropsychopharmacol Rep. 2018;38(1):37–43.PubMedPubMedCentralCrossRef
229.
go back to reference Dunn-Meynell AA, Yarlagadda Y, Levin BE. Alpha 1-adrenoceptor blockade increases behavioral deficits in traumatic brain injury. J Neurotrauma. 1997;14(1):43–52.PubMedCrossRef Dunn-Meynell AA, Yarlagadda Y, Levin BE. Alpha 1-adrenoceptor blockade increases behavioral deficits in traumatic brain injury. J Neurotrauma. 1997;14(1):43–52.PubMedCrossRef
230.
go back to reference Zimering MB. Repeated traumatic brain injury is associated with neurotoxic plasma autoantibodies directed against the serotonin 2A and alpha 1 adrenergic receptors. Endocrinol Diabetes Metab J. 2023;7(2):1–12.PubMedPubMedCentral Zimering MB. Repeated traumatic brain injury is associated with neurotoxic plasma autoantibodies directed against the serotonin 2A and alpha 1 adrenergic receptors. Endocrinol Diabetes Metab J. 2023;7(2):1–12.PubMedPubMedCentral
231.
go back to reference Sysoev YI, Prikhodko VA, Chernyakov RT, Idiyatullin RD, Musienko PE, Okovityi SV. Effects of alpha-2 adrenergic agonist mafedine on brain electrical activity in rats after traumatic brain injury. Brain Sci. 2021;11(8):981.PubMedPubMedCentralCrossRef Sysoev YI, Prikhodko VA, Chernyakov RT, Idiyatullin RD, Musienko PE, Okovityi SV. Effects of alpha-2 adrenergic agonist mafedine on brain electrical activity in rats after traumatic brain injury. Brain Sci. 2021;11(8):981.PubMedPubMedCentralCrossRef
232.
go back to reference Kobori N, Hu B, Dash PK. Altered adrenergic receptor signaling following traumatic brain injury contributes to working memory dysfunction. Neuroscience. 2011;172:293–302.PubMedCrossRef Kobori N, Hu B, Dash PK. Altered adrenergic receptor signaling following traumatic brain injury contributes to working memory dysfunction. Neuroscience. 2011;172:293–302.PubMedCrossRef
233.
go back to reference Singh A, Prajapati HP, Kumar R, Singh NP, Kumar A. Prognostic role of catecholamine in moderate-to-severe traumatic brain injury: a prospective observational cohort study. Asian J Neurosurg. 2022;17(3):435–41.PubMedPubMedCentralCrossRef Singh A, Prajapati HP, Kumar R, Singh NP, Kumar A. Prognostic role of catecholamine in moderate-to-severe traumatic brain injury: a prospective observational cohort study. Asian J Neurosurg. 2022;17(3):435–41.PubMedPubMedCentralCrossRef
234.
go back to reference Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21(5):375–8.PubMedCrossRef Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21(5):375–8.PubMedCrossRef
235.
go back to reference Asgeirsson B, Grande PO, Nordstrom CH, Berntman L, Messeter K, Ryding E. Effects of hypotensive treatment with alpha 2-agonist and beta 1-antagonist on cerebral haemodynamics in severely head injured patients. Acta Anaesthesiol Scand. 1995;39(3):347–51.PubMedCrossRef Asgeirsson B, Grande PO, Nordstrom CH, Berntman L, Messeter K, Ryding E. Effects of hypotensive treatment with alpha 2-agonist and beta 1-antagonist on cerebral haemodynamics in severely head injured patients. Acta Anaesthesiol Scand. 1995;39(3):347–51.PubMedCrossRef
236.
go back to reference Patel MB, McKenna JW, Alvarez JM, Sugiura A, Jenkins JM, Guillamondegui OD, Pandharipande PP. Decreasing adrenergic or sympathetic hyperactivity after severe traumatic brain injury using propranolol and clonidine (DASH After TBI Study): study protocol for a randomized controlled trial. Trials. 2012;13:177.PubMedPubMedCentralCrossRef Patel MB, McKenna JW, Alvarez JM, Sugiura A, Jenkins JM, Guillamondegui OD, Pandharipande PP. Decreasing adrenergic or sympathetic hyperactivity after severe traumatic brain injury using propranolol and clonidine (DASH After TBI Study): study protocol for a randomized controlled trial. Trials. 2012;13:177.PubMedPubMedCentralCrossRef
237.
go back to reference Nordness MF, Maiga AW, Wilson LD, Koyama T, Rivera EL, Rakhit S, et al. Effect of propranolol and clonidine after severe traumatic brain injury: a pilot randomized clinical trial. Crit Care. 2023;27(1):228.PubMedPubMedCentralCrossRef Nordness MF, Maiga AW, Wilson LD, Koyama T, Rivera EL, Rakhit S, et al. Effect of propranolol and clonidine after severe traumatic brain injury: a pilot randomized clinical trial. Crit Care. 2023;27(1):228.PubMedPubMedCentralCrossRef
238.
go back to reference Endo A. The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res. 1992;33(11):1569–82.PubMedCrossRef Endo A. The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res. 1992;33(11):1569–82.PubMedCrossRef
239.
go back to reference Diamantis E, Kyriakos G, Quiles-Sanchez LV, Farmaki P, Troupis T. The anti-inflammatory effects of statins on coronary artery disease: an updated review of the literature. Curr Cardiol Rev. 2017;13(3):1.CrossRef Diamantis E, Kyriakos G, Quiles-Sanchez LV, Farmaki P, Troupis T. The anti-inflammatory effects of statins on coronary artery disease: an updated review of the literature. Curr Cardiol Rev. 2017;13(3):1.CrossRef
240.
go back to reference Heidari B, Babaei M, Yosefghahri B. Prevention of osteoarthritis progression by statins, targeting metabolic and inflammatory aspects: a review. Mediterr J Rheumatol. 2021;32(3):227–36.PubMedPubMedCentralCrossRef Heidari B, Babaei M, Yosefghahri B. Prevention of osteoarthritis progression by statins, targeting metabolic and inflammatory aspects: a review. Mediterr J Rheumatol. 2021;32(3):227–36.PubMedPubMedCentralCrossRef
241.
go back to reference Fracassi A, Marangoni M, Rosso P, Pallottini V, Fioramonti M, Siteni S, Segatto M. Statins and the brain: more than lipid lowering agents? Curr Neuropharmacol. 2018;17(1):59–83.CrossRef Fracassi A, Marangoni M, Rosso P, Pallottini V, Fioramonti M, Siteni S, Segatto M. Statins and the brain: more than lipid lowering agents? Curr Neuropharmacol. 2018;17(1):59–83.CrossRef
242.
go back to reference Côté-Daigneault J, Mehandru S, Ungaro R, Atreja A, Colombel J-F. Potential immunomodulatory effects of statins in inflammatory bowel disease. Inflamm Bowel Dis. 2016;22(3):724–32.PubMedCrossRef Côté-Daigneault J, Mehandru S, Ungaro R, Atreja A, Colombel J-F. Potential immunomodulatory effects of statins in inflammatory bowel disease. Inflamm Bowel Dis. 2016;22(3):724–32.PubMedCrossRef
244.
go back to reference Susanto M, Pangihutan Siahaan AM, Wirjomartani BA, Setiawan H, Aryanti C, Michael. The neuroprotective effect of statin in traumatic brain injury: a systematic review. World Neurosurg X. 2023;19:100211.PubMedPubMedCentralCrossRef Susanto M, Pangihutan Siahaan AM, Wirjomartani BA, Setiawan H, Aryanti C, Michael. The neuroprotective effect of statin in traumatic brain injury: a systematic review. World Neurosurg X. 2023;19:100211.PubMedPubMedCentralCrossRef
246.
go back to reference Lerouet D, Marchand-Leroux C, Besson VC. Neuropharmacology in traumatic brain injury: from preclinical to clinical neuroprotection? Fundam Clin Pharmacol. 2021;35(3):524–38.PubMedPubMedCentralCrossRef Lerouet D, Marchand-Leroux C, Besson VC. Neuropharmacology in traumatic brain injury: from preclinical to clinical neuroprotection? Fundam Clin Pharmacol. 2021;35(3):524–38.PubMedPubMedCentralCrossRef
247.
go back to reference Lu D, Goussev A, Chen J, Pannu P, Li Y, Mahmood A, Chopp M. Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. J Neurotrauma. 2004;21(1):21–32.PubMedCrossRef Lu D, Goussev A, Chen J, Pannu P, Li Y, Mahmood A, Chopp M. Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. J Neurotrauma. 2004;21(1):21–32.PubMedCrossRef
248.
go back to reference Schneider EB, Efron DT, MacKenzie EJ, Rivara FP, Nathens AB, Jurkovich GJ. Premorbid statin use is associated with improved survival and functional outcomes in older head-injured individuals. J Trauma. 2011;71(4):815–9.PubMed Schneider EB, Efron DT, MacKenzie EJ, Rivara FP, Nathens AB, Jurkovich GJ. Premorbid statin use is associated with improved survival and functional outcomes in older head-injured individuals. J Trauma. 2011;71(4):815–9.PubMed
249.
go back to reference Farzanegan GR, Derakhshan N, Khalili H, Ghaffarpasand F, Paydar S. Effects of atorvastatin on brain contusion volume and functional outcome of patients with moderate and severe traumatic brain injury; a randomized double-blind placebo-controlled clinical trial. J Clin Neurosci. 2017;44:143–7.PubMedCrossRef Farzanegan GR, Derakhshan N, Khalili H, Ghaffarpasand F, Paydar S. Effects of atorvastatin on brain contusion volume and functional outcome of patients with moderate and severe traumatic brain injury; a randomized double-blind placebo-controlled clinical trial. J Clin Neurosci. 2017;44:143–7.PubMedCrossRef
250.
go back to reference Lu D, Mahmood A, Goussev A, Schallert T, Qu C, Zhang ZG, et al. Atorvastatin reduction of intravascular thrombosis, increase in cerebral microvascular patency and integrity, and enhancement of spatial learning in rats subjected to traumatic brain injury. J Neurosurg. 2004;101(5):813–21.PubMedCrossRef Lu D, Mahmood A, Goussev A, Schallert T, Qu C, Zhang ZG, et al. Atorvastatin reduction of intravascular thrombosis, increase in cerebral microvascular patency and integrity, and enhancement of spatial learning in rats subjected to traumatic brain injury. J Neurosurg. 2004;101(5):813–21.PubMedCrossRef
251.
go back to reference Qu C, Lu D, Goussev A, Schallert T, Mahmood A, Chopp M. Effect of atorvastatin on spatial memory, neuronal survival, and vascular density in female rats after traumatic brain injury. J Neurosurg. 2005;103(4):695–701.PubMedCrossRef Qu C, Lu D, Goussev A, Schallert T, Mahmood A, Chopp M. Effect of atorvastatin on spatial memory, neuronal survival, and vascular density in female rats after traumatic brain injury. J Neurosurg. 2005;103(4):695–701.PubMedCrossRef
252.
go back to reference Abrahamson EE, Ikonomovic MD, Dixon CE, Dekosky ST. Simvastatin therapy prevents brain trauma-induced increases in β-amyloid peptide levels. Ann Neurol. 2009;66(3):407–14.PubMedCrossRef Abrahamson EE, Ikonomovic MD, Dixon CE, Dekosky ST. Simvastatin therapy prevents brain trauma-induced increases in β-amyloid peptide levels. Ann Neurol. 2009;66(3):407–14.PubMedCrossRef
253.
go back to reference Li B, Mahmood A, Lu D, Wu H, Xiong Y, Qu C, Chopp M. Simvastatin attenuates microglial cells and astrocyte activation and decreases interleukin-1b level after traumatic brain injury. Neurosurgery. 2009;65(1):179–86.PubMedCrossRef Li B, Mahmood A, Lu D, Wu H, Xiong Y, Qu C, Chopp M. Simvastatin attenuates microglial cells and astrocyte activation and decreases interleukin-1b level after traumatic brain injury. Neurosurgery. 2009;65(1):179–86.PubMedCrossRef
254.
go back to reference Sanchez-Aguilar M, Tapia-Perez JH, Sanchez-Rodriguez JJ, Vinas-Rios JM, Martinez-Perez P, de la Cruz-Mendoza E, et al. Effect of rosuvastatin on cytokines after traumatic head injury. J Neurosurg. 2013;118(3):669–75.PubMedCrossRef Sanchez-Aguilar M, Tapia-Perez JH, Sanchez-Rodriguez JJ, Vinas-Rios JM, Martinez-Perez P, de la Cruz-Mendoza E, et al. Effect of rosuvastatin on cytokines after traumatic head injury. J Neurosurg. 2013;118(3):669–75.PubMedCrossRef
255.
go back to reference Wu H, Mahmood A, Lu D, Jiang H, Xiong Y, Zhou D, Chopp M. Attenuation of astrogliosis and modulation of endothelial growth factor receptor in lipid rafts by simvastatin after traumatic brain injury. J Neurosurg. 2010;113(3):591–7.PubMedPubMedCentralCrossRef Wu H, Mahmood A, Lu D, Jiang H, Xiong Y, Zhou D, Chopp M. Attenuation of astrogliosis and modulation of endothelial growth factor receptor in lipid rafts by simvastatin after traumatic brain injury. J Neurosurg. 2010;113(3):591–7.PubMedPubMedCentralCrossRef
256.
go back to reference Wu H, Lu D, Jiang H, Xiong Y, Qu C, Li B, et al. Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J Neurotrauma. 2008;25(2):130–9.PubMedCrossRef Wu H, Lu D, Jiang H, Xiong Y, Qu C, Li B, et al. Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J Neurotrauma. 2008;25(2):130–9.PubMedCrossRef
257.
go back to reference Wu H, Lu D, Jiang H, Xiong Y, Qu C, Li B, et al. Increase in phosphorylation of Akt and its downstream signaling targets and suppression of apoptosis by simvastatin after traumatic brain injury. J Neurosurg. 2008;109(4):691–8.PubMedPubMedCentralCrossRef Wu H, Lu D, Jiang H, Xiong Y, Qu C, Li B, et al. Increase in phosphorylation of Akt and its downstream signaling targets and suppression of apoptosis by simvastatin after traumatic brain injury. J Neurosurg. 2008;109(4):691–8.PubMedPubMedCentralCrossRef
258.
go back to reference Beziaud T, Ru Chen X, El Shafey N, Frechou M, Teng F, Palmier B, et al. Simvastatin in traumatic brain injury: effect on brain edema mechanisms. Crit Care Med. 2011;39(10):2300–7.PubMedCrossRef Beziaud T, Ru Chen X, El Shafey N, Frechou M, Teng F, Palmier B, et al. Simvastatin in traumatic brain injury: effect on brain edema mechanisms. Crit Care Med. 2011;39(10):2300–7.PubMedCrossRef
259.
go back to reference Senhaji N, Kojok K, Darif Y, Fadainia C, Zaid Y. The contribution of CD40/CD40L axis in inflammatory bowel disease: an update. Front Immunol. 2015;6:164586.CrossRef Senhaji N, Kojok K, Darif Y, Fadainia C, Zaid Y. The contribution of CD40/CD40L axis in inflammatory bowel disease: an update. Front Immunol. 2015;6:164586.CrossRef
260.
go back to reference Hu YC, Wang F, Zhang DD, Sun Q, Li W, Dai YX, et al. Expression of intestinal CD40 after experimental traumatic brain injury in rats. J Surg Res. 2013;184(2):1022–7.PubMedCrossRef Hu YC, Wang F, Zhang DD, Sun Q, Li W, Dai YX, et al. Expression of intestinal CD40 after experimental traumatic brain injury in rats. J Surg Res. 2013;184(2):1022–7.PubMedCrossRef
261.
go back to reference Hu Y, Wang X, Ye L, Li C, Chen W, Cheng H. Rosuvastatin alleviates intestinal injury by down-regulating the CD40 pathway in the intestines of rats following traumatic brain injury. Front Neurol. 2020;11:816.PubMedPubMedCentralCrossRef Hu Y, Wang X, Ye L, Li C, Chen W, Cheng H. Rosuvastatin alleviates intestinal injury by down-regulating the CD40 pathway in the intestines of rats following traumatic brain injury. Front Neurol. 2020;11:816.PubMedPubMedCentralCrossRef
262.
go back to reference Lee JY, Kim JS, Kim JM, Kim N, Jung HC, Song IS. Simvastatin inhibits NF-kappaB signaling in intestinal epithelial cells and ameliorates acute murine colitis. Int Immunopharmacol. 2007;7(2):241–8.PubMedCrossRef Lee JY, Kim JS, Kim JM, Kim N, Jung HC, Song IS. Simvastatin inhibits NF-kappaB signaling in intestinal epithelial cells and ameliorates acute murine colitis. Int Immunopharmacol. 2007;7(2):241–8.PubMedCrossRef
263.
go back to reference Mulhaupt F. Statins (HMG-CoA reductase inhibitors) reduce CD40 expression in human vascular cells. Cardiovasc Res. 2003;59(3):755–66.PubMedCrossRef Mulhaupt F. Statins (HMG-CoA reductase inhibitors) reduce CD40 expression in human vascular cells. Cardiovasc Res. 2003;59(3):755–66.PubMedCrossRef
264.
go back to reference Ozacmak VH, Sayan H, Igdem AA, Cetin A, Ozacmak ID. Attenuation of contractile dysfunction by atorvastatin after intestinal ischemia reperfusion injury in rats. Eur J Pharmacol. 2007;562(1–2):138–47.PubMedCrossRef Ozacmak VH, Sayan H, Igdem AA, Cetin A, Ozacmak ID. Attenuation of contractile dysfunction by atorvastatin after intestinal ischemia reperfusion injury in rats. Eur J Pharmacol. 2007;562(1–2):138–47.PubMedCrossRef
265.
go back to reference Vieira-Silva S, Falony G, Belda E, Nielsen T, Aron-Wisnewsky J, Chakaroun R, et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature. 2020;581(7808):310–5.PubMedCrossRef Vieira-Silva S, Falony G, Belda E, Nielsen T, Aron-Wisnewsky J, Chakaroun R, et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature. 2020;581(7808):310–5.PubMedCrossRef
266.
go back to reference Crockett SD, Hansen RA, Stürmer T, Schectman R, Darter J, Sandler RS, Kappelman MD. Statins are associated with reduced use of steroids in inflammatory bowel disease: a retrospective cohort study*. Inflamm Bowel Dis. 2012;18(6):1048–56.PubMedCrossRef Crockett SD, Hansen RA, Stürmer T, Schectman R, Darter J, Sandler RS, Kappelman MD. Statins are associated with reduced use of steroids in inflammatory bowel disease: a retrospective cohort study*. Inflamm Bowel Dis. 2012;18(6):1048–56.PubMedCrossRef
267.
go back to reference Santana PT, Rosas SLB, Ribeiro BE, Marinho Y, De Souza HSP. Dysbiosis in inflammatory bowel disease: pathogenic role and potential therapeutic targets. Int J Mol Sci. 2022;23(7):3464.PubMedPubMedCentralCrossRef Santana PT, Rosas SLB, Ribeiro BE, Marinho Y, De Souza HSP. Dysbiosis in inflammatory bowel disease: pathogenic role and potential therapeutic targets. Int J Mol Sci. 2022;23(7):3464.PubMedPubMedCentralCrossRef
268.
go back to reference You W, Zhu Y, Wei A, Du J, Wang Y, Zheng P, et al. Traumatic brain injury induces gastrointestinal dysfunction and dysbiosis of gut microbiota accompanied by alterations of bile acid profile. J Neurotrauma. 2022;39(1–2):227–37.PubMedCrossRef You W, Zhu Y, Wei A, Du J, Wang Y, Zheng P, et al. Traumatic brain injury induces gastrointestinal dysfunction and dysbiosis of gut microbiota accompanied by alterations of bile acid profile. J Neurotrauma. 2022;39(1–2):227–37.PubMedCrossRef
269.
go back to reference Simon DW, Rogers MB, Gao Y, Vincent G, Firek BA, Janesko-Feldman K, et al. Depletion of gut microbiota is associated with improved neurologic outcome following traumatic brain injury. Brain Res. 2020;1747: 147056.PubMedPubMedCentralCrossRef Simon DW, Rogers MB, Gao Y, Vincent G, Firek BA, Janesko-Feldman K, et al. Depletion of gut microbiota is associated with improved neurologic outcome following traumatic brain injury. Brain Res. 2020;1747: 147056.PubMedPubMedCentralCrossRef
270.
go back to reference McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM, et al. The effects of captivity on the mammalian gut microbiome. Integr Comp Biol. 2017;57(4):690–704.PubMedPubMedCentralCrossRef McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM, et al. The effects of captivity on the mammalian gut microbiome. Integr Comp Biol. 2017;57(4):690–704.PubMedPubMedCentralCrossRef
271.
go back to reference Horn J, Mayer DE, Chen S, Mayer EA. Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Transl Psychiatry. 2022;12(1):164.PubMedPubMedCentralCrossRef Horn J, Mayer DE, Chen S, Mayer EA. Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Transl Psychiatry. 2022;12(1):164.PubMedPubMedCentralCrossRef
272.
go back to reference George AK, Behera J, Homme RP, Tyagi N, Tyagi SC, Singh M. Rebuilding microbiome for mitigating traumatic brain injury: importance of restructuring the gut-microbiome-brain axis. Mol Neurobiol. 2021;58(8):3614–27.PubMedPubMedCentralCrossRef George AK, Behera J, Homme RP, Tyagi N, Tyagi SC, Singh M. Rebuilding microbiome for mitigating traumatic brain injury: importance of restructuring the gut-microbiome-brain axis. Mol Neurobiol. 2021;58(8):3614–27.PubMedPubMedCentralCrossRef
273.
274.
go back to reference Yu XY, Yin HH, Zhu JC. Increased gut absorptive capacity in rats with severe head injury after feeding with probiotics. Nutrition. 2011;27(1):100–7.PubMedCrossRef Yu XY, Yin HH, Zhu JC. Increased gut absorptive capacity in rats with severe head injury after feeding with probiotics. Nutrition. 2011;27(1):100–7.PubMedCrossRef
275.
go back to reference Ma Y, Liu T, Fu J, Fu S, Hu C, Sun B, et al. Lactobacillus acidophilus exerts neuroprotective effects in mice with traumatic brain injury. J Nutr. 2019;149(9):1543–52.PubMedCrossRef Ma Y, Liu T, Fu J, Fu S, Hu C, Sun B, et al. Lactobacillus acidophilus exerts neuroprotective effects in mice with traumatic brain injury. J Nutr. 2019;149(9):1543–52.PubMedCrossRef
276.
go back to reference Sun B, Hu C, Fang H, Zhu L, Gao N, Zhu J. The effects of Lactobacillus acidophilus on the intestinal smooth muscle contraction through PKC/MLCK/MLC signaling pathway in TBI mouse model. PLoS ONE. 2015;10(6): e0128214.PubMedPubMedCentralCrossRef Sun B, Hu C, Fang H, Zhu L, Gao N, Zhu J. The effects of Lactobacillus acidophilus on the intestinal smooth muscle contraction through PKC/MLCK/MLC signaling pathway in TBI mouse model. PLoS ONE. 2015;10(6): e0128214.PubMedPubMedCentralCrossRef
277.
go back to reference Brenner LA, Forster JE, Stearns-Yoder KA, Stamper CE, Hoisington AJ, Brostow DP, et al. Evaluation of an immunomodulatory probiotic intervention for veterans with co-occurring mild traumatic brain injury and posttraumatic stress disorder: a pilot study. Front Neurol. 2020;11:546517.CrossRef Brenner LA, Forster JE, Stearns-Yoder KA, Stamper CE, Hoisington AJ, Brostow DP, et al. Evaluation of an immunomodulatory probiotic intervention for veterans with co-occurring mild traumatic brain injury and posttraumatic stress disorder: a pilot study. Front Neurol. 2020;11:546517.CrossRef
278.
go back to reference Du T, Jing X, Song S, Lu S, Xu L, Tong X, Yan H. Therapeutic effect of enteral nutrition supplemented with probiotics in the treatment of severe craniocerebral injury: a systematic review and meta-analysis. World Neurosurg. 2020;139:e553–71.PubMedCrossRef Du T, Jing X, Song S, Lu S, Xu L, Tong X, Yan H. Therapeutic effect of enteral nutrition supplemented with probiotics in the treatment of severe craniocerebral injury: a systematic review and meta-analysis. World Neurosurg. 2020;139:e553–71.PubMedCrossRef
279.
go back to reference Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol. 2020;11:508738.CrossRef Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol. 2020;11:508738.CrossRef
280.
go back to reference O’Riordan KJ, Collins MK, Moloney GM, Knox EG, Aburto MR, Fulling C, et al. Short chain fatty acids: microbial metabolites for gut-brain axis signalling. Mol Cell Endocrinol. 2022;546: 111572.PubMedCrossRef O’Riordan KJ, Collins MK, Moloney GM, Knox EG, Aburto MR, Fulling C, et al. Short chain fatty acids: microbial metabolites for gut-brain axis signalling. Mol Cell Endocrinol. 2022;546: 111572.PubMedCrossRef
281.
go back to reference Cheng Y, Liu J, Ling Z. Short-chain fatty acids-producing probiotics: a novel source of psychobiotics. Crit Rev Food Sci Nutr. 2022;62(28):7929–59.PubMedCrossRef Cheng Y, Liu J, Ling Z. Short-chain fatty acids-producing probiotics: a novel source of psychobiotics. Crit Rev Food Sci Nutr. 2022;62(28):7929–59.PubMedCrossRef
282.
go back to reference Li H, Sun J, Du J, Wang F, Fang R, Yu C, et al. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis. Neurogastroenterol Motil. 2018;30(5): e13260.PubMedCrossRef Li H, Sun J, Du J, Wang F, Fang R, Yu C, et al. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis. Neurogastroenterol Motil. 2018;30(5): e13260.PubMedCrossRef
283.
go back to reference Tan M, Zhu J-C, Du J, Zhang L-M, Yin H-H. Effects of probiotics on serum levels of Th1/Th2 cytokine and clinical outcomes in severe traumatic brain-injured patients: a prospective randomized pilot study. Crit Care. 2011;15(6):R290.PubMedPubMedCentralCrossRef Tan M, Zhu J-C, Du J, Zhang L-M, Yin H-H. Effects of probiotics on serum levels of Th1/Th2 cytokine and clinical outcomes in severe traumatic brain-injured patients: a prospective randomized pilot study. Crit Care. 2011;15(6):R290.PubMedPubMedCentralCrossRef
284.
go back to reference Liu J, Tan Y, Cheng H, Zhang D, Feng W, Peng C. Functions of gut microbiota metabolites, current status and future perspectives. Aging Dis. 2022;13(4):1106–26.PubMedPubMedCentralCrossRef Liu J, Tan Y, Cheng H, Zhang D, Feng W, Peng C. Functions of gut microbiota metabolites, current status and future perspectives. Aging Dis. 2022;13(4):1106–26.PubMedPubMedCentralCrossRef
285.
go back to reference Cavaleri F, Bashar E. Potential synergies of beta-hydroxybutyrate and butyrate on the modulation of metabolism, inflammation, cognition, and general health. J Nutr Metab. 2018;2018:7195760.PubMedPubMedCentralCrossRef Cavaleri F, Bashar E. Potential synergies of beta-hydroxybutyrate and butyrate on the modulation of metabolism, inflammation, cognition, and general health. J Nutr Metab. 2018;2018:7195760.PubMedPubMedCentralCrossRef
286.
go back to reference Opeyemi OM, Rogers MB, Firek BA, Janesko-Feldman K, Vagni V, Mullett SJ, et al. Sustained dysbiosis and decreased fecal short-chain fatty acids after traumatic brain injury and impact on neurologic outcome. J Neurotrauma. 2021;38(18):2610–21.PubMedPubMedCentralCrossRef Opeyemi OM, Rogers MB, Firek BA, Janesko-Feldman K, Vagni V, Mullett SJ, et al. Sustained dysbiosis and decreased fecal short-chain fatty acids after traumatic brain injury and impact on neurologic outcome. J Neurotrauma. 2021;38(18):2610–21.PubMedPubMedCentralCrossRef
288.
go back to reference Wu H, Yu N, Wang X, Yang Y, Liang H. Tauroursodeoxycholic acid attenuates neuronal apoptosis via the TGR5/ SIRT3 pathway after subarachnoid hemorrhage in rats. Biol Res. 2020;53(1):56.PubMedPubMedCentralCrossRef Wu H, Yu N, Wang X, Yang Y, Liang H. Tauroursodeoxycholic acid attenuates neuronal apoptosis via the TGR5/ SIRT3 pathway after subarachnoid hemorrhage in rats. Biol Res. 2020;53(1):56.PubMedPubMedCentralCrossRef
289.
go back to reference Rodrigues CM, Spellman SR, Sola S, Grande AW, Linehan-Stieers C, Low WC, Steer CJ. Neuroprotection by a bile acid in an acute stroke model in the rat. J Cereb Blood Flow Metab. 2002;22(4):463–71.PubMedCrossRef Rodrigues CM, Spellman SR, Sola S, Grande AW, Linehan-Stieers C, Low WC, Steer CJ. Neuroprotection by a bile acid in an acute stroke model in the rat. J Cereb Blood Flow Metab. 2002;22(4):463–71.PubMedCrossRef
290.
go back to reference Zhu Y, Zheng P, Lin Y, Wang J, You W, Wang Y, et al. The alteration of serum bile acid profile among traumatic brain injury patients: a small-scale prospective study. J Clin Biochem Nutr. 2023;73(1):97–102.PubMedPubMedCentralCrossRef Zhu Y, Zheng P, Lin Y, Wang J, You W, Wang Y, et al. The alteration of serum bile acid profile among traumatic brain injury patients: a small-scale prospective study. J Clin Biochem Nutr. 2023;73(1):97–102.PubMedPubMedCentralCrossRef
291.
292.
go back to reference Hoarau G, Mukherjee PK, Gower-Rousseau C, Hager C, Chandra J, Retuerto MA, et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. MBio. 2016;7(5):10.CrossRef Hoarau G, Mukherjee PK, Gower-Rousseau C, Hager C, Chandra J, Retuerto MA, et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. MBio. 2016;7(5):10.CrossRef
293.
go back to reference Coker OO, Nakatsu G, Dai RZ, Wu WKK, Wong SH, Ng SC, et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut. 2019;68(4):654–62.PubMedCrossRef Coker OO, Nakatsu G, Dai RZ, Wu WKK, Wong SH, Ng SC, et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut. 2019;68(4):654–62.PubMedCrossRef
294.
go back to reference Botschuijver S, Roeselers G, Levin E, Jonkers DM, Welting O, Heinsbroek SEM, et al. Intestinal fungal dysbiosis is associated with visceral hypersensitivity in patients with irritable bowel syndrome and rats. Gastroenterology. 2017;153(4):1026–39.PubMedCrossRef Botschuijver S, Roeselers G, Levin E, Jonkers DM, Welting O, Heinsbroek SEM, et al. Intestinal fungal dysbiosis is associated with visceral hypersensitivity in patients with irritable bowel syndrome and rats. Gastroenterology. 2017;153(4):1026–39.PubMedCrossRef
295.
296.
297.
go back to reference Mahajan C, Khurana S, Kapoor I, Sokhal S, Kumar S, Prabhakar H, et al. Characteristics of gut microbiome after traumatic brain injury. J Neurosurg Anesthesiol. 2023;35(1):86–90.PubMedCrossRef Mahajan C, Khurana S, Kapoor I, Sokhal S, Kumar S, Prabhakar H, et al. Characteristics of gut microbiome after traumatic brain injury. J Neurosurg Anesthesiol. 2023;35(1):86–90.PubMedCrossRef
298.
go back to reference Pathare N, Sushilkumar S, Haley L, Jain S, Osier NN. The impact of traumatic brain injury on microbiome composition: a systematic review. Biol Res Nurs. 2020;22(4):495–505.PubMedCrossRef Pathare N, Sushilkumar S, Haley L, Jain S, Osier NN. The impact of traumatic brain injury on microbiome composition: a systematic review. Biol Res Nurs. 2020;22(4):495–505.PubMedCrossRef
299.
go back to reference Ritter K, Somnuke P, Hu L, Griemert EV, Schafer MKE. Current state of neuroprotective therapy using antibiotics in human traumatic brain injury and animal models. BMC Neurosci. 2024;25(1):10.PubMedPubMedCentralCrossRef Ritter K, Somnuke P, Hu L, Griemert EV, Schafer MKE. Current state of neuroprotective therapy using antibiotics in human traumatic brain injury and animal models. BMC Neurosci. 2024;25(1):10.PubMedPubMedCentralCrossRef
300.
go back to reference Yanckello LM, Fanelli B, McCulloch S, Xing X, Sun M, Hammond TC, et al. Inulin supplementation mitigates gut dysbiosis and brain impairment induced by mild traumatic brain injury during chronic phase. J Cell Immunol. 2022;4(2):50–64.PubMedPubMedCentral Yanckello LM, Fanelli B, McCulloch S, Xing X, Sun M, Hammond TC, et al. Inulin supplementation mitigates gut dysbiosis and brain impairment induced by mild traumatic brain injury during chronic phase. J Cell Immunol. 2022;4(2):50–64.PubMedPubMedCentral
301.
go back to reference Davis BT, Chen Z, Islam M, Timken ME, Procissi D, Schwulst SJ. Fecal microbiota transfer attenuates gut dysbiosis and functional deficits after traumatic brain injury. Shock. 2022;57(6):251–9.PubMedPubMedCentralCrossRef Davis BT, Chen Z, Islam M, Timken ME, Procissi D, Schwulst SJ. Fecal microbiota transfer attenuates gut dysbiosis and functional deficits after traumatic brain injury. Shock. 2022;57(6):251–9.PubMedPubMedCentralCrossRef
302.
go back to reference Marut D, Shammassian B, McKenzie C, Adamski J, Traeger J. Evaluation of prophylactic antibiotics in penetrating brain injuries at an academic level 1 trauma center. Clin Neurol Neurosurg. 2020;193: 105777.PubMedCrossRef Marut D, Shammassian B, McKenzie C, Adamski J, Traeger J. Evaluation of prophylactic antibiotics in penetrating brain injuries at an academic level 1 trauma center. Clin Neurol Neurosurg. 2020;193: 105777.PubMedCrossRef
303.
go back to reference Flanagan CD, Vallier HA. The polytraumatized patient. In: Flanagan CD, editor. Textbook of musculoskeletal disorders. Rome: Springer; 2023. p. 26–72. Flanagan CD, Vallier HA. The polytraumatized patient. In: Flanagan CD, editor. Textbook of musculoskeletal disorders. Rome: Springer; 2023. p. 26–72.
304.
go back to reference Kim D, Hofstaedter CE, Zhao C, Mattei L, Tanes C, Clarke E, et al. Optimizing methods and dodging pitfalls in microbiome research. Microbiome. 2017;5(1):52.PubMedPubMedCentralCrossRef Kim D, Hofstaedter CE, Zhao C, Mattei L, Tanes C, Clarke E, et al. Optimizing methods and dodging pitfalls in microbiome research. Microbiome. 2017;5(1):52.PubMedPubMedCentralCrossRef
305.
go back to reference Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73.PubMedPubMedCentralCrossRef Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73.PubMedPubMedCentralCrossRef
306.
go back to reference Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16(7):410–22.PubMedCrossRef Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16(7):410–22.PubMedCrossRef
307.
go back to reference Zhu S, Jiang Y, Xu K, Cui M, Ye W, Zhao G, et al. The progress of gut microbiome research related to brain disorders. J Neuroinflammation. 2020;17(1):25.PubMedPubMedCentralCrossRef Zhu S, Jiang Y, Xu K, Cui M, Ye W, Zhao G, et al. The progress of gut microbiome research related to brain disorders. J Neuroinflammation. 2020;17(1):25.PubMedPubMedCentralCrossRef
308.
go back to reference Armistead-Jehle P, Soble JR, Cooper DB, Belanger HG. Unique aspects of traumatic brain injury in military and veteran populations. Phys Med Rehabil Clin N Am. 2017;28(2):323–37.PubMedCrossRef Armistead-Jehle P, Soble JR, Cooper DB, Belanger HG. Unique aspects of traumatic brain injury in military and veteran populations. Phys Med Rehabil Clin N Am. 2017;28(2):323–37.PubMedCrossRef
309.
go back to reference Liu Q, Wang Z, Sun S, Nemes J, Brenner LA, Hoisington A, et al. Association of blast exposure in military breaching with intestinal permeability blood biomarkers associated with leaky gut. Int J Mol Sci. 2024;25(6):3549.PubMedPubMedCentralCrossRef Liu Q, Wang Z, Sun S, Nemes J, Brenner LA, Hoisington A, et al. Association of blast exposure in military breaching with intestinal permeability blood biomarkers associated with leaky gut. Int J Mol Sci. 2024;25(6):3549.PubMedPubMedCentralCrossRef
311.
go back to reference Janulewicz PA, Seth RK, Carlson JM, Ajama J, Quinn E, Heeren T, et al. The gut-microbiome in gulf war veterans: a preliminary report. Int J Environ Res Public Health. 2019;16(19):3751.PubMedPubMedCentralCrossRef Janulewicz PA, Seth RK, Carlson JM, Ajama J, Quinn E, Heeren T, et al. The gut-microbiome in gulf war veterans: a preliminary report. Int J Environ Res Public Health. 2019;16(19):3751.PubMedPubMedCentralCrossRef
312.
go back to reference Stanislawski MA, Stamper CE, Stearns-Yoder KA, Hoisington AJ, Brostow DP, Forster JE, et al. Characterization of the gut microbiota among Veterans with unique military-related exposures and high prevalence of chronic health conditions: a United States-Veteran Microbiome Project (US-VMP) study. Brain Behav Immun Health. 2021;18: 100346.PubMedPubMedCentralCrossRef Stanislawski MA, Stamper CE, Stearns-Yoder KA, Hoisington AJ, Brostow DP, Forster JE, et al. Characterization of the gut microbiota among Veterans with unique military-related exposures and high prevalence of chronic health conditions: a United States-Veteran Microbiome Project (US-VMP) study. Brain Behav Immun Health. 2021;18: 100346.PubMedPubMedCentralCrossRef
313.
go back to reference Brenner LA, Stamper CE, Hoisington AJ, Stearns-Yoder KA, Stanislawksi MA, Brostow DP, et al. Microbial diversity and community structures among those with moderate to severe TBI: a United States-Veteran microbiome project study. J Head Trauma Rehabil. 2020;35(5):332–41.PubMedCrossRef Brenner LA, Stamper CE, Hoisington AJ, Stearns-Yoder KA, Stanislawksi MA, Brostow DP, et al. Microbial diversity and community structures among those with moderate to severe TBI: a United States-Veteran microbiome project study. J Head Trauma Rehabil. 2020;35(5):332–41.PubMedCrossRef
314.
go back to reference Varanoske AN, McClung HL, Sepowitz JJ, Halagarda CJ, Farina EK, Berryman CE, et al. Stress and the gut-brain axis: cognitive performance, mood state, and biomarkers of blood-brain barrier and intestinal permeability following severe physical and psychological stress. Brain Behav Immun. 2022;101:383–93.PubMedCrossRef Varanoske AN, McClung HL, Sepowitz JJ, Halagarda CJ, Farina EK, Berryman CE, et al. Stress and the gut-brain axis: cognitive performance, mood state, and biomarkers of blood-brain barrier and intestinal permeability following severe physical and psychological stress. Brain Behav Immun. 2022;101:383–93.PubMedCrossRef
315.
go back to reference El-Swaify ST, Refaat MA, Ali SH, Abdelrazek AEM, Beshay PW, Kamel M, et al. Controversies and evidence gaps in the early management of severe traumatic brain injury: back to the ABCs. Trauma Surg Acute Care Open. 2022;7(1): e000859.PubMedPubMedCentralCrossRef El-Swaify ST, Refaat MA, Ali SH, Abdelrazek AEM, Beshay PW, Kamel M, et al. Controversies and evidence gaps in the early management of severe traumatic brain injury: back to the ABCs. Trauma Surg Acute Care Open. 2022;7(1): e000859.PubMedPubMedCentralCrossRef
316.
go back to reference Alves JL, Rato J, Silva V. Why does brain trauma research fail? World Neurosurg. 2019;130:115–21.PubMedCrossRef Alves JL, Rato J, Silva V. Why does brain trauma research fail? World Neurosurg. 2019;130:115–21.PubMedCrossRef
317.
go back to reference Thapa K, Khan H, Singh TG, Kaur A. Traumatic brain injury: mechanistic insight on pathophysiology and potential therapeutic targets. J Mol Neurosci. 2021;71(9):1725–42.PubMedCrossRef Thapa K, Khan H, Singh TG, Kaur A. Traumatic brain injury: mechanistic insight on pathophysiology and potential therapeutic targets. J Mol Neurosci. 2021;71(9):1725–42.PubMedCrossRef
319.
go back to reference Mendez MF, Owens EM, Reza Berenji G, Peppers DC, Liang LJ, Licht EA. Mild traumatic brain injury from primary blast vs. blunt forces: post-concussion consequences and functional neuroimaging. NeuroRehabilitation. 2013;32(2):397–407.PubMedCrossRef Mendez MF, Owens EM, Reza Berenji G, Peppers DC, Liang LJ, Licht EA. Mild traumatic brain injury from primary blast vs. blunt forces: post-concussion consequences and functional neuroimaging. NeuroRehabilitation. 2013;32(2):397–407.PubMedCrossRef
320.
go back to reference Sussman ES, Pendharkar AV, Ho AL, Ghajar J. Mild traumatic brain injury and concussion: terminology and classification. Handb Clin Neurol. 2018;158:21–4.PubMedCrossRef Sussman ES, Pendharkar AV, Ho AL, Ghajar J. Mild traumatic brain injury and concussion: terminology and classification. Handb Clin Neurol. 2018;158:21–4.PubMedCrossRef
321.
go back to reference Gupte R, Brooks W, Vukas R, Pierce J, Harris J. Sex differences in traumatic brain injury: what we know and what we should know. J Neurotrauma. 2019;36(22):3063–91.PubMedPubMedCentralCrossRef Gupte R, Brooks W, Vukas R, Pierce J, Harris J. Sex differences in traumatic brain injury: what we know and what we should know. J Neurotrauma. 2019;36(22):3063–91.PubMedPubMedCentralCrossRef
323.
go back to reference Shobeiri P, Kalantari A, Teixeira AL, Rezaei N. Shedding light on biological sex differences and microbiota-gut-brain axis: a comprehensive review of its roles in neuropsychiatric disorders. Biol Sex Differ. 2022;13(1):12.PubMedPubMedCentralCrossRef Shobeiri P, Kalantari A, Teixeira AL, Rezaei N. Shedding light on biological sex differences and microbiota-gut-brain axis: a comprehensive review of its roles in neuropsychiatric disorders. Biol Sex Differ. 2022;13(1):12.PubMedPubMedCentralCrossRef
324.
go back to reference Jasarevic E, Morrison KE, Bale TL. Sex differences in the gut microbiome-brain axis across the lifespan. Philos Trans R Soc Lond B Biol Sci. 2016;371(1688):20150122.PubMedPubMedCentralCrossRef Jasarevic E, Morrison KE, Bale TL. Sex differences in the gut microbiome-brain axis across the lifespan. Philos Trans R Soc Lond B Biol Sci. 2016;371(1688):20150122.PubMedPubMedCentralCrossRef
325.
go back to reference Haro C, Rangel-Zuniga OA, Alcala-Diaz JF, Gomez-Delgado F, Perez-Martinez P, Delgado-Lista J, et al. Intestinal microbiota is influenced by gender and body mass index. PLoS ONE. 2016;11(5): e0154090.PubMedPubMedCentralCrossRef Haro C, Rangel-Zuniga OA, Alcala-Diaz JF, Gomez-Delgado F, Perez-Martinez P, Delgado-Lista J, et al. Intestinal microbiota is influenced by gender and body mass index. PLoS ONE. 2016;11(5): e0154090.PubMedPubMedCentralCrossRef
326.
go back to reference Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol. 2006;72(2):1027–33.PubMedPubMedCentralCrossRef Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol. 2006;72(2):1027–33.PubMedPubMedCentralCrossRef
327.
go back to reference Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339(6123):1084–8.PubMedCrossRef Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339(6123):1084–8.PubMedCrossRef
328.
go back to reference Yurkovetskiy L, Burrows M, Khan AA, Graham L, Volchkov P, Becker L, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39(2):400–12.PubMedCrossRef Yurkovetskiy L, Burrows M, Khan AA, Graham L, Volchkov P, Becker L, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39(2):400–12.PubMedCrossRef
329.
go back to reference Meleine M, Matricon J. Gender-related differences in irritable bowel syndrome: potential mechanisms of sex hormones. World J Gastroenterol. 2014;20(22):6725–43.PubMedPubMedCentralCrossRef Meleine M, Matricon J. Gender-related differences in irritable bowel syndrome: potential mechanisms of sex hormones. World J Gastroenterol. 2014;20(22):6725–43.PubMedPubMedCentralCrossRef
330.
go back to reference Das M, Mohapatra S, Mohapatra SS. New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammation. 2012;9:236.PubMedPubMedCentralCrossRef Das M, Mohapatra S, Mohapatra SS. New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammation. 2012;9:236.PubMedPubMedCentralCrossRef
332.
go back to reference Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J. Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron. 2017;95(6):1246–65.PubMedPubMedCentralCrossRef Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J. Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron. 2017;95(6):1246–65.PubMedPubMedCentralCrossRef
333.
go back to reference Wu J, Vodovotz Y, Abdelhamid S, Guyette FX, Yaffe MB, Gruen DS, et al. Multi-omic analysis in injured humans: patterns align with outcomes and treatment responses. Cell Rep Med. 2021;2(12): 100478.PubMedPubMedCentralCrossRef Wu J, Vodovotz Y, Abdelhamid S, Guyette FX, Yaffe MB, Gruen DS, et al. Multi-omic analysis in injured humans: patterns align with outcomes and treatment responses. Cell Rep Med. 2021;2(12): 100478.PubMedPubMedCentralCrossRef
334.
go back to reference Mohamadpour M, Whitney K, Bergold PJ. The importance of therapeutic time window in the treatment of traumatic brain injury. Front Neurosci. 2019;13:07.PubMedPubMedCentralCrossRef Mohamadpour M, Whitney K, Bergold PJ. The importance of therapeutic time window in the treatment of traumatic brain injury. Front Neurosci. 2019;13:07.PubMedPubMedCentralCrossRef
335.
go back to reference Sullivan PG, Sebastian AH, Hall ED. Therapeutic window analysis of the neuroprotective effects of cyclosporine A after traumatic brain injury. J Neurotrauma. 2011;28(2):311–8.PubMedPubMedCentralCrossRef Sullivan PG, Sebastian AH, Hall ED. Therapeutic window analysis of the neuroprotective effects of cyclosporine A after traumatic brain injury. J Neurotrauma. 2011;28(2):311–8.PubMedPubMedCentralCrossRef
336.
go back to reference Sosin DM, Sniezek JE, Thurman DJ. Incidence of mild and moderate brain injury in the United States, 1991. Brain Inj. 1996;10(1):47–54.PubMedCrossRef Sosin DM, Sniezek JE, Thurman DJ. Incidence of mild and moderate brain injury in the United States, 1991. Brain Inj. 1996;10(1):47–54.PubMedCrossRef
337.
go back to reference Tanielian TL. Invisible wounds of war psychological and cognitive injuries, their consequences, and services to assist recovery. Santa Monica: Rand Corporation; 2008. Tanielian TL. Invisible wounds of war psychological and cognitive injuries, their consequences, and services to assist recovery. Santa Monica: Rand Corporation; 2008.
338.
go back to reference Demakis GJ, Rimland CA. Untreated mild traumatic brain injury in a young adult population. Arch Clin Neuropsychol. 2010;25(3):191–6.PubMedCrossRef Demakis GJ, Rimland CA. Untreated mild traumatic brain injury in a young adult population. Arch Clin Neuropsychol. 2010;25(3):191–6.PubMedCrossRef
339.
go back to reference Schumacher M, Denier C, Oudinet JP, Adams D, Guennoun R. Progesterone neuroprotection: the background of clinical trial failure. J Steroid Biochem Mol Biol. 2016;160:53–66.PubMedCrossRef Schumacher M, Denier C, Oudinet JP, Adams D, Guennoun R. Progesterone neuroprotection: the background of clinical trial failure. J Steroid Biochem Mol Biol. 2016;160:53–66.PubMedCrossRef
340.
go back to reference Stein DG, Howard RB, Sayeed I. Why did the phase III clinical trials for progesterone in TBI fail? An analysis of three potentially critical factors. In: Stein DG, editor. New therapeutics for traumatic brain injury. Amsterdam: Elsevier; 2017. p. 3–18.CrossRef Stein DG, Howard RB, Sayeed I. Why did the phase III clinical trials for progesterone in TBI fail? An analysis of three potentially critical factors. In: Stein DG, editor. New therapeutics for traumatic brain injury. Amsterdam: Elsevier; 2017. p. 3–18.CrossRef
341.
go back to reference Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao LR. Traumatic brain injury: current treatment strategies and future endeavors. Cell Transpl. 2017;26(7):1118–30.CrossRef Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao LR. Traumatic brain injury: current treatment strategies and future endeavors. Cell Transpl. 2017;26(7):1118–30.CrossRef
342.
343.
go back to reference Rogers MB, Simon D, Firek B, Silfies L, Fabio A, Bell MJ, et al. Temporal and spatial changes in the microbiome following pediatric severe traumatic brain injury. Pediatr Crit Care Med. 2022;23(6):425–34.PubMedPubMedCentralCrossRef Rogers MB, Simon D, Firek B, Silfies L, Fabio A, Bell MJ, et al. Temporal and spatial changes in the microbiome following pediatric severe traumatic brain injury. Pediatr Crit Care Med. 2022;23(6):425–34.PubMedPubMedCentralCrossRef
344.
go back to reference Giacino JT, Whyte J, Bagiella E, Kalmar K, Childs N, Khademi A, et al. Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med. 2012;366(9):819–26.PubMedCrossRef Giacino JT, Whyte J, Bagiella E, Kalmar K, Childs N, Khademi A, et al. Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med. 2012;366(9):819–26.PubMedCrossRef
345.
go back to reference Bonds B, Dhanda A, Wade C, Diaz C, Massetti J, Stein DM. Prognostication of mortality and long-term functional outcomes following traumatic brain injury: can we do better? J Neurotrauma. 2021;38(8):1168–76.PubMedCrossRef Bonds B, Dhanda A, Wade C, Diaz C, Massetti J, Stein DM. Prognostication of mortality and long-term functional outcomes following traumatic brain injury: can we do better? J Neurotrauma. 2021;38(8):1168–76.PubMedCrossRef
347.
go back to reference Edwards P, Arango M, Balica L, Cottingham R, El-Sayed H, Farrell B, et al. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months. Lancet. 2005;365(9475):1957–9.PubMedCrossRef Edwards P, Arango M, Balica L, Cottingham R, El-Sayed H, Farrell B, et al. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months. Lancet. 2005;365(9475):1957–9.PubMedCrossRef
348.
go back to reference Annahazi A, Schemann M. The enteric nervous system: “A little brain in the gut.” Neuroforum. 2020;26(1):31–42.CrossRef Annahazi A, Schemann M. The enteric nervous system: “A little brain in the gut.” Neuroforum. 2020;26(1):31–42.CrossRef
Metadata
Title
Dysregulated brain-gut axis in the setting of traumatic brain injury: review of mechanisms and anti-inflammatory pharmacotherapies
Authors
Mahmoud G. El Baassiri
Zachariah Raouf
Sarah Badin
Alejandro Escobosa
Chhinder P. Sodhi
Isam W. Nasr
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03118-3

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue