Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2023

Open Access 01-12-2023 | Central Nervous System Trauma | Research

Prediction performance of the machine learning model in predicting mortality risk in patients with traumatic brain injuries: a systematic review and meta-analysis

Authors: Jue Wang, Ming Jing Yin, Han Chun Wen

Published in: BMC Medical Informatics and Decision Making | Issue 1/2023

Login to get access

Abstract

Purpose

With the in-depth application of machine learning(ML) in clinical practice, it has been used to predict the mortality risk in patients with traumatic brain injuries(TBI). However, there are disputes over its predictive accuracy. Therefore, we implemented this systematic review and meta-analysis, to explore the predictive value of ML for TBI.

Methodology

We systematically retrieved literature published in PubMed, Embase.com, Cochrane, and Web of Science as of November 27, 2022. The prediction model risk of bias(ROB) assessment tool (PROBAST) was used to assess the ROB of models and the applicability of reviewed questions. The random-effects model was adopted for the meta-analysis of the C-index and accuracy of ML models, and a bivariate mixed-effects model for the meta-analysis of the sensitivity and specificity.

Result

A total of 47 papers were eligible, including 156 model, with 122 newly developed ML models and 34 clinically recommended mature tools. There were 98 ML models predicting the in-hospital mortality in patients with TBI; the pooled C-index, sensitivity, and specificity were 0.86 (95% CI: 0.84, 0.87), 0.79 (95% CI: 0.75, 0.82), and 0.89 (95% CI: 0.86, 0.92), respectively. There were 24 ML models predicting the out-of-hospital mortality; the pooled C-index, sensitivity, and specificity were 0.83 (95% CI: 0.81, 0.85), 0.74 (95% CI: 0.67, 0.81), and 0.75 (95% CI: 0.66, 0.82), respectively. According to multivariate analysis, GCS score, age, CT classification, pupil size/light reflex, glucose, and systolic blood pressure (SBP) exerted the greatest impact on the model performance.

Conclusion

According to the systematic review and meta-analysis, ML models are relatively accurate in predicting the mortality of TBI. A single model often outperforms traditional scoring tools, but the pooled accuracy of models is close to that of traditional scoring tools. The key factors related to model performance include the accepted clinical variables of TBI and the use of CT imaging.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, Agrawal A, Adeleye AO, Shrime MG, Rubiano AM et al. Estimating the global incidence of traumatic brain injury. J Neurosurg 2018;130(4):1080–97. Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, Agrawal A, Adeleye AO, Shrime MG, Rubiano AM et al. Estimating the global incidence of traumatic brain injury. J Neurosurg 2018;130(4):1080–97.
2.
go back to reference Collaborators GTBIaSCI. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):56–87.CrossRef Collaborators GTBIaSCI. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):56–87.CrossRef
3.
go back to reference Daugherty J, Waltzman D, Sarmiento K, Xu L. Traumatic Brain Injury-Related Deaths by Race/Ethnicity, Sex, Intent, and Mechanism of Injury - United States, 2000–2017. MMWR Morbidity and mortality weekly report. 2019;68(46):1050–6.PubMedPubMedCentralCrossRef Daugherty J, Waltzman D, Sarmiento K, Xu L. Traumatic Brain Injury-Related Deaths by Race/Ethnicity, Sex, Intent, and Mechanism of Injury - United States, 2000–2017. MMWR Morbidity and mortality weekly report. 2019;68(46):1050–6.PubMedPubMedCentralCrossRef
4.
go back to reference De Silva MJ, Roberts I, Perel P, Edwards P, Kenward MG, Fernandes J, Shakur H, Patel V. Patient outcome after traumatic brain injury in high-, middle- and low-income countries: analysis of data on 8927 patients in 46 countries. Int J Epidemiol. 2009;38(2):452–8.PubMedCrossRef De Silva MJ, Roberts I, Perel P, Edwards P, Kenward MG, Fernandes J, Shakur H, Patel V. Patient outcome after traumatic brain injury in high-, middle- and low-income countries: analysis of data on 8927 patients in 46 countries. Int J Epidemiol. 2009;38(2):452–8.PubMedCrossRef
5.
go back to reference Williamson T, Ryser MD, Abdelgadir J, Lemmon M, Barks MC, Zakare R, Ubel PA. Surgical decision making in the setting of severe traumatic brain injury: A survey of neurosurgeons. PLoS ONE. 2020;15(3):e0228947.PubMedPubMedCentralCrossRef Williamson T, Ryser MD, Abdelgadir J, Lemmon M, Barks MC, Zakare R, Ubel PA. Surgical decision making in the setting of severe traumatic brain injury: A survey of neurosurgeons. PLoS ONE. 2020;15(3):e0228947.PubMedPubMedCentralCrossRef
6.
go back to reference McMillan T, Wilson L, Ponsford J, Levin H, Teasdale G, Bond M. The Glasgow Outcome Scale – 40 years of application and refinement. Nat reviews Neurol. 2016;12(8):477–85.CrossRef McMillan T, Wilson L, Ponsford J, Levin H, Teasdale G, Bond M. The Glasgow Outcome Scale – 40 years of application and refinement. Nat reviews Neurol. 2016;12(8):477–85.CrossRef
7.
go back to reference Degos V, Lescot T, Zouaoui A, Hermann H, Préteux F, Coriat P, Puybasset L. Computed tomography-estimated specific gravity of noncontused brain areas as a marker of severity in human traumatic brain injury. Anesth Analg. 2006;103(5):1229–36.PubMedCrossRef Degos V, Lescot T, Zouaoui A, Hermann H, Préteux F, Coriat P, Puybasset L. Computed tomography-estimated specific gravity of noncontused brain areas as a marker of severity in human traumatic brain injury. Anesth Analg. 2006;103(5):1229–36.PubMedCrossRef
8.
go back to reference Karami Niaz M, Fard Moghadam N, Aghaei A, Mardokhi S. Evaluation of mortality prediction using SOFA and APACHE IV tools in trauma and non-trauma patients admitted to the ICU. Eur J Med Res. 2022;27(1):188.PubMedPubMedCentralCrossRef Karami Niaz M, Fard Moghadam N, Aghaei A, Mardokhi S. Evaluation of mortality prediction using SOFA and APACHE IV tools in trauma and non-trauma patients admitted to the ICU. Eur J Med Res. 2022;27(1):188.PubMedPubMedCentralCrossRef
9.
go back to reference Saika A, Bansal S, Philip M, Devi BI, Shukla DP. Prognostic value of FOUR and GCS scores in determining mortality in patients with traumatic brain injury. Acta Neurochir (Wien). 2015;157(8):1323–8.PubMedCrossRef Saika A, Bansal S, Philip M, Devi BI, Shukla DP. Prognostic value of FOUR and GCS scores in determining mortality in patients with traumatic brain injury. Acta Neurochir (Wien). 2015;157(8):1323–8.PubMedCrossRef
10.
go back to reference Wijdicks EF, Bamlet WR, Maramattom BV, Manno EM, McClelland RL. Validation of a new coma scale: The FOUR score. Ann Neurol. 2005;58(4):585–93.PubMedCrossRef Wijdicks EF, Bamlet WR, Maramattom BV, Manno EM, McClelland RL. Validation of a new coma scale: The FOUR score. Ann Neurol. 2005;58(4):585–93.PubMedCrossRef
11.
go back to reference van der Ploeg T, Nieboer D, Steyerberg EW. Modern modeling techniques had limited external validity in predicting mortality from traumatic brain injury. J Clin Epidemiol. 2016;78:83–9.PubMedCrossRef van der Ploeg T, Nieboer D, Steyerberg EW. Modern modeling techniques had limited external validity in predicting mortality from traumatic brain injury. J Clin Epidemiol. 2016;78:83–9.PubMedCrossRef
12.
go back to reference Rau CS, Kuo PJ, Chien PC, Huang CY, Hsieh HY, Hsieh CH. Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models. PLoS ONE. 2018;13(11):e0207192.PubMedPubMedCentralCrossRef Rau CS, Kuo PJ, Chien PC, Huang CY, Hsieh HY, Hsieh CH. Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models. PLoS ONE. 2018;13(11):e0207192.PubMedPubMedCentralCrossRef
13.
go back to reference Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, Reitsma JB, Kleijnen J, Mallett S. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann Intern Med. 2019;170(1):51–8.PubMedCrossRef Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, Reitsma JB, Kleijnen J, Mallett S. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann Intern Med. 2019;170(1):51–8.PubMedCrossRef
14.
go back to reference Debray TP, Damen JA, Riley RD, Snell K, Reitsma JB, Hooft L, Collins GS, Moons KG. A framework for meta-analysis of prediction model studies with binary and time-to-event outcomes. Stat Methods Med Res. 2019;28(9):2768–86.PubMedCrossRef Debray TP, Damen JA, Riley RD, Snell K, Reitsma JB, Hooft L, Collins GS, Moons KG. A framework for meta-analysis of prediction model studies with binary and time-to-event outcomes. Stat Methods Med Res. 2019;28(9):2768–86.PubMedCrossRef
15.
go back to reference Rostami E, Gustafsson D, Hanell A, Howells T, Lenell S, Lewen A, Enblad P. Prognosis in moderate-severe traumatic brain injury in a Swedish cohort and external validation of the IMPACT models. Acta Neurochir (Wien). 2022;164(3):615–24.PubMedCrossRef Rostami E, Gustafsson D, Hanell A, Howells T, Lenell S, Lewen A, Enblad P. Prognosis in moderate-severe traumatic brain injury in a Swedish cohort and external validation of the IMPACT models. Acta Neurochir (Wien). 2022;164(3):615–24.PubMedCrossRef
16.
go back to reference Nourelahi M, Dadboud F, Khalili H, Niakan A, Parsaei H. A machine learning model for predicting favorable outcome in severe traumatic brain injury patients after 6 months. Acute Crit Care. 2022;37(1):45–52.PubMedPubMedCentralCrossRef Nourelahi M, Dadboud F, Khalili H, Niakan A, Parsaei H. A machine learning model for predicting favorable outcome in severe traumatic brain injury patients after 6 months. Acute Crit Care. 2022;37(1):45–52.PubMedPubMedCentralCrossRef
17.
go back to reference Raj R, Luostarinen T, Pursiainen E, Posti JP, Takala RSK, Bendel S, Konttila T, Korja M. Machine learning-based dynamic mortality prediction after traumatic brain injury. Sci Rep. 2019;9(1):17672.PubMedPubMedCentralCrossRef Raj R, Luostarinen T, Pursiainen E, Posti JP, Takala RSK, Bendel S, Konttila T, Korja M. Machine learning-based dynamic mortality prediction after traumatic brain injury. Sci Rep. 2019;9(1):17672.PubMedPubMedCentralCrossRef
18.
go back to reference Abdelhamid SS, Scioscia J, Vodovotz Y, Wu J, Rosengart A, Sung E, Rahman S, Voinchet R, Bonaroti J, Li S et al. Multi-Omic Admission-Based Prognostic Biomarkers Identified by Machine Learning Algorithms Predict Patient Recovery and 30-Day Survival in Trauma Patients. Metabolites. 2022;12(9):774. Abdelhamid SS, Scioscia J, Vodovotz Y, Wu J, Rosengart A, Sung E, Rahman S, Voinchet R, Bonaroti J, Li S et al. Multi-Omic Admission-Based Prognostic Biomarkers Identified by Machine Learning Algorithms Predict Patient Recovery and 30-Day Survival in Trauma Patients. Metabolites. 2022;12(9):774.
19.
go back to reference Tu KC, Eric Nyam TT, Wang CC, Chen NC, Chen KT, Chen CJ, Liu CF, Kuo JR. A Computer-Assisted System for Early Mortality Risk Prediction in Patients with Traumatic Brain Injury Using Artificial Intelligence Algorithms in Emergency Room Triage. Brain. Sci 2022;12(5):612. Tu KC, Eric Nyam TT, Wang CC, Chen NC, Chen KT, Chen CJ, Liu CF, Kuo JR. A Computer-Assisted System for Early Mortality Risk Prediction in Patients with Traumatic Brain Injury Using Artificial Intelligence Algorithms in Emergency Room Triage. Brain. Sci 2022;12(5):612.
20.
go back to reference Wong TH, Nadkarni NV, Nguyen HV, Lim GH, Matchar DB, Seow DCC, King NKK, Ong MEH. One-year and three-year mortality prediction in adult major blunt trauma survivors: a National Retrospective Cohort Analysis. Scand J Trauma Resusc Emerg Med. 2018;26(1):28.PubMedPubMedCentralCrossRef Wong TH, Nadkarni NV, Nguyen HV, Lim GH, Matchar DB, Seow DCC, King NKK, Ong MEH. One-year and three-year mortality prediction in adult major blunt trauma survivors: a National Retrospective Cohort Analysis. Scand J Trauma Resusc Emerg Med. 2018;26(1):28.PubMedPubMedCentralCrossRef
21.
go back to reference Rau CS, Wu SC, Chien PC, Kuo PJ, Chen YC, Hsieh HY, Hsieh CH. Prediction of Mortality in Patients with Isolated Traumatic Subarachnoid Hemorrhage Using a Decision Tree Classifier: A Retrospective Analysis Based on a Trauma Registry System. Int J Environ Res Public Health. 2017;14(11):1420. Rau CS, Wu SC, Chien PC, Kuo PJ, Chen YC, Hsieh HY, Hsieh CH. Prediction of Mortality in Patients with Isolated Traumatic Subarachnoid Hemorrhage Using a Decision Tree Classifier: A Retrospective Analysis Based on a Trauma Registry System. Int J Environ Res Public Health. 2017;14(11):1420.
22.
go back to reference Abujaber A, Fadlalla A, Gammoh D, Abdelrahman H, Mollazehi M, El-Menyar A. Prediction of in-hospital mortality in patients on mechanical ventilation post traumatic brain injury: machine learning approach. BMC Med Inform Decis Mak. 2020;20(1):336.PubMedPubMedCentralCrossRef Abujaber A, Fadlalla A, Gammoh D, Abdelrahman H, Mollazehi M, El-Menyar A. Prediction of in-hospital mortality in patients on mechanical ventilation post traumatic brain injury: machine learning approach. BMC Med Inform Decis Mak. 2020;20(1):336.PubMedPubMedCentralCrossRef
23.
go back to reference Christie SA, Hubbard AE, Callcut RA, Hameed M, Dissak-Delon FN, Mekolo D, Saidou A, Mefire AC, Nsongoo P, Dicker RA, et al. Machine learning without borders? An adaptable tool to optimize mortality prediction in diverse clinical settings. J Trauma Acute Care Surg. 2018;85(5):921–7.PubMedPubMedCentralCrossRef Christie SA, Hubbard AE, Callcut RA, Hameed M, Dissak-Delon FN, Mekolo D, Saidou A, Mefire AC, Nsongoo P, Dicker RA, et al. Machine learning without borders? An adaptable tool to optimize mortality prediction in diverse clinical settings. J Trauma Acute Care Surg. 2018;85(5):921–7.PubMedPubMedCentralCrossRef
24.
go back to reference Raj R, Wennervirta JM, Tjerkaski J, Luoto TM, Posti JP, Nelson DW, Takala R, Bendel S, Thelin EP, Luostarinen T, et al. Dynamic prediction of mortality after traumatic brain injury using a machine learning algorithm. NPJ Digit Med. 2022;5(1):96.PubMedPubMedCentralCrossRef Raj R, Wennervirta JM, Tjerkaski J, Luoto TM, Posti JP, Nelson DW, Takala R, Bendel S, Thelin EP, Luostarinen T, et al. Dynamic prediction of mortality after traumatic brain injury using a machine learning algorithm. NPJ Digit Med. 2022;5(1):96.PubMedPubMedCentralCrossRef
25.
go back to reference Maeda Y, Ichikawa R, Misawa J, Shibuya A, Hishiki T, Maeda T, Yoshino A, Kondo Y. External validation of the TRISS, CRASH, and IMPACT prognostic models in severe traumatic brain injury in Japan. PLoS ONE. 2019;14(8):e0221791.PubMedPubMedCentralCrossRef Maeda Y, Ichikawa R, Misawa J, Shibuya A, Hishiki T, Maeda T, Yoshino A, Kondo Y. External validation of the TRISS, CRASH, and IMPACT prognostic models in severe traumatic brain injury in Japan. PLoS ONE. 2019;14(8):e0221791.PubMedPubMedCentralCrossRef
26.
go back to reference Hsu SD, Chao E, Chen SJ, Hueng DY, Lan HY, Chiang HH. Machine Learning Algorithms to Predict In-Hospital Mortality in Patients with Traumatic Brain Injury. J Pers Med. 2021;11(11):1144. Hsu SD, Chao E, Chen SJ, Hueng DY, Lan HY, Chiang HH. Machine Learning Algorithms to Predict In-Hospital Mortality in Patients with Traumatic Brain Injury. J Pers Med. 2021;11(11):1144.
27.
go back to reference Zheng RZ, Zhao ZJ, Yang XT, Jiang SW, Li YD, Li WJ, Li XH, Zhou Y, Gao CJ, Ma YB, et al. Initial CT-based radiomics nomogram for predicting in-hospital mortality in patients with traumatic brain injury: a multicenter development and validation study. Neurol Sci. 2022;43(7):4363–72.PubMedCrossRef Zheng RZ, Zhao ZJ, Yang XT, Jiang SW, Li YD, Li WJ, Li XH, Zhou Y, Gao CJ, Ma YB, et al. Initial CT-based radiomics nomogram for predicting in-hospital mortality in patients with traumatic brain injury: a multicenter development and validation study. Neurol Sci. 2022;43(7):4363–72.PubMedCrossRef
28.
go back to reference Wu E, Marthi S, Asaad WF. Predictors of Mortality in Traumatic Intracranial Hemorrhage: A National Trauma Data Bank Study. Front Neurol. 2020;11:587587.PubMedPubMedCentralCrossRef Wu E, Marthi S, Asaad WF. Predictors of Mortality in Traumatic Intracranial Hemorrhage: A National Trauma Data Bank Study. Front Neurol. 2020;11:587587.PubMedPubMedCentralCrossRef
29.
go back to reference Zhang G, Wang M, Cong D, Zeng Y, Fan W. Traumatic injury mortality prediction (TRIMP-ICDX): A new comprehensive evaluation model according to the ICD-10-CM codes. Med (Baltim). 2022;101(31):e29714.CrossRef Zhang G, Wang M, Cong D, Zeng Y, Fan W. Traumatic injury mortality prediction (TRIMP-ICDX): A new comprehensive evaluation model according to the ICD-10-CM codes. Med (Baltim). 2022;101(31):e29714.CrossRef
30.
go back to reference Camarano JG, Ratliff HT, Korst GS, Hrushka JM, Jupiter DC. Predicting in-hospital mortality after traumatic brain injury: External validation of CRASH-basic and IMPACT-core in the national trauma data bank. Injury. 2021;52(2):147–53.PubMedCrossRef Camarano JG, Ratliff HT, Korst GS, Hrushka JM, Jupiter DC. Predicting in-hospital mortality after traumatic brain injury: External validation of CRASH-basic and IMPACT-core in the national trauma data bank. Injury. 2021;52(2):147–53.PubMedCrossRef
31.
go back to reference Matsuo K, Aihara H, Nakai T, Morishita A, Tohma Y, Kohmura E. Machine Learning to Predict In-Hospital Morbidity and Mortality after Traumatic Brain Injury. J Neurotrauma. 2020;37(1):202–10.PubMedCrossRef Matsuo K, Aihara H, Nakai T, Morishita A, Tohma Y, Kohmura E. Machine Learning to Predict In-Hospital Morbidity and Mortality after Traumatic Brain Injury. J Neurotrauma. 2020;37(1):202–10.PubMedCrossRef
32.
go back to reference Morris RS, Tignanelli CJ, deRoon-Cassini T, Laud P, Sparapani R. Improved Prediction of Older Adult Discharge After Trauma Using a Novel Machine Learning Paradigm. J Surg Res. 2022;270:39–48.PubMedCrossRef Morris RS, Tignanelli CJ, deRoon-Cassini T, Laud P, Sparapani R. Improved Prediction of Older Adult Discharge After Trauma Using a Novel Machine Learning Paradigm. J Surg Res. 2022;270:39–48.PubMedCrossRef
33.
go back to reference Gao L, Smielewski P, Li P, Czosnyka M, Ercole A. Signal Information Prediction of Mortality Identifies Unique Patient Subsets after Severe Traumatic Brain Injury: A Decision-Tree Analysis Approach. J Neurotrauma. 2020;37(7):1011–9.PubMedPubMedCentralCrossRef Gao L, Smielewski P, Li P, Czosnyka M, Ercole A. Signal Information Prediction of Mortality Identifies Unique Patient Subsets after Severe Traumatic Brain Injury: A Decision-Tree Analysis Approach. J Neurotrauma. 2020;37(7):1011–9.PubMedPubMedCentralCrossRef
34.
go back to reference Ronning PA, Pedersen T, Skaga NO, Helseth E, Langmoen IA, Stavem K. External validation of a prognostic model for early mortality after traumatic brain injury. J Trauma. 2011;70(4):E56–61.PubMed Ronning PA, Pedersen T, Skaga NO, Helseth E, Langmoen IA, Stavem K. External validation of a prognostic model for early mortality after traumatic brain injury. J Trauma. 2011;70(4):E56–61.PubMed
35.
go back to reference Amorim RL, Oliveira LM, Malbouisson LM, Nagumo MM, Simoes M, Miranda L, Bor-Seng-Shu E, Beer-Furlan A, De Andrade AF, Rubiano AM, et al. Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population. Front Neurol. 2019;10:1366.PubMedCrossRef Amorim RL, Oliveira LM, Malbouisson LM, Nagumo MM, Simoes M, Miranda L, Bor-Seng-Shu E, Beer-Furlan A, De Andrade AF, Rubiano AM, et al. Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population. Front Neurol. 2019;10:1366.PubMedCrossRef
37.
go back to reference Daley M, Cameron S, Ganesan SL, Patel MA, Stewart TC, Miller MR, Alharfi I, Fraser DD. Pediatric severe traumatic brain injury mortality prediction determined with machine learning-based modeling. Injury. 2022;53(3):992–8.PubMedCrossRef Daley M, Cameron S, Ganesan SL, Patel MA, Stewart TC, Miller MR, Alharfi I, Fraser DD. Pediatric severe traumatic brain injury mortality prediction determined with machine learning-based modeling. Injury. 2022;53(3):992–8.PubMedCrossRef
38.
go back to reference Hale AT, Stonko DP, Brown A, Lim J, Voce DJ, Gannon SR, Le TM, Shannon CN. Machine-learning analysis outperforms conventional statistical models and CT classification systems in predicting 6-month outcomes in pediatric patients sustaining traumatic brain injury. Neurosurg Focus. 2018;45(5):E2.PubMedCrossRef Hale AT, Stonko DP, Brown A, Lim J, Voce DJ, Gannon SR, Le TM, Shannon CN. Machine-learning analysis outperforms conventional statistical models and CT classification systems in predicting 6-month outcomes in pediatric patients sustaining traumatic brain injury. Neurosurg Focus. 2018;45(5):E2.PubMedCrossRef
39.
go back to reference Feng JZ, Wang Y, Peng J, Sun MW, Zeng J, Jiang H. Comparison between logistic regression and machine learning algorithms on survival prediction of traumatic brain injuries. J Crit Care. 2019;54:110–6.PubMedCrossRef Feng JZ, Wang Y, Peng J, Sun MW, Zeng J, Jiang H. Comparison between logistic regression and machine learning algorithms on survival prediction of traumatic brain injuries. J Crit Care. 2019;54:110–6.PubMedCrossRef
40.
go back to reference Zhu P, Hussein NM, Tang J, Lin L, Wang Y, Li L, Shu K, Zou P, Xia Y, Bai G, et al. Prediction of Early Mortality Among Children With Moderate or Severe Traumatic Brain Injury Based on a Nomogram Integrating Radiological and Inflammation-Based Biomarkers. Front Neurol. 2022;13:865084.PubMedPubMedCentralCrossRef Zhu P, Hussein NM, Tang J, Lin L, Wang Y, Li L, Shu K, Zou P, Xia Y, Bai G, et al. Prediction of Early Mortality Among Children With Moderate or Severe Traumatic Brain Injury Based on a Nomogram Integrating Radiological and Inflammation-Based Biomarkers. Front Neurol. 2022;13:865084.PubMedPubMedCentralCrossRef
41.
go back to reference Gravesteijn BY, Nieboer D, Ercole A, Lingsma HF, Nelson D, van Calster B, Steyerberg EW. collaborators C-T: Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury. J Clin Epidemiol. 2020;122:95–107.PubMedCrossRef Gravesteijn BY, Nieboer D, Ercole A, Lingsma HF, Nelson D, van Calster B, Steyerberg EW. collaborators C-T: Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury. J Clin Epidemiol. 2020;122:95–107.PubMedCrossRef
42.
go back to reference Han J, King NK, Neilson SJ, Gandhi MP, Ng I. External validation of the CRASH and IMPACT prognostic models in severe traumatic brain injury. J Neurotrauma. 2014;31(13):1146–52.PubMedCrossRef Han J, King NK, Neilson SJ, Gandhi MP, Ng I. External validation of the CRASH and IMPACT prognostic models in severe traumatic brain injury. J Neurotrauma. 2014;31(13):1146–52.PubMedCrossRef
43.
go back to reference Harrison DA, Griggs KA, Prabhu G, Gomes M, Lecky FE, Hutchinson PJ, Menon DK, Rowan KM. Risk Adjustment In Neurocritical care Study I: External Validation and Recalibration of Risk Prediction Models for Acute Traumatic Brain Injury among Critically Ill Adult Patients in the United Kingdom. J Neurotrauma. 2015;32(19):1522–37.PubMedPubMedCentralCrossRef Harrison DA, Griggs KA, Prabhu G, Gomes M, Lecky FE, Hutchinson PJ, Menon DK, Rowan KM. Risk Adjustment In Neurocritical care Study I: External Validation and Recalibration of Risk Prediction Models for Acute Traumatic Brain Injury among Critically Ill Adult Patients in the United Kingdom. J Neurotrauma. 2015;32(19):1522–37.PubMedPubMedCentralCrossRef
44.
go back to reference Lesko MM, Jenks T, O'Brien SJ, Childs C, Bouamra O, Woodford M, Lecky F. Comparing model performance for survival prediction using total Glasgow Coma Scale and its components in traumatic brain injury. J Neurotrauma. 2013;30(1):17–22.PubMedCrossRef Lesko MM, Jenks T, O'Brien SJ, Childs C, Bouamra O, Woodford M, Lecky F. Comparing model performance for survival prediction using total Glasgow Coma Scale and its components in traumatic brain injury. J Neurotrauma. 2013;30(1):17–22.PubMedCrossRef
45.
go back to reference Li X, Lu C, Wang J, Wan Y, Dai SH, Zhang L, Hu XA, Jiang XF, Fei Z. Establishment and validation of a model for brain injury state evaluation and prognosis prediction. Chin J Traumatol. 2020;23(5):284–9.PubMedPubMedCentralCrossRef Li X, Lu C, Wang J, Wan Y, Dai SH, Zhang L, Hu XA, Jiang XF, Fei Z. Establishment and validation of a model for brain injury state evaluation and prognosis prediction. Chin J Traumatol. 2020;23(5):284–9.PubMedPubMedCentralCrossRef
46.
go back to reference Nelson DW, Rudehill A, MacCallum RM, Holst A, Wanecek M, Weitzberg E, Bellander BM. Multivariate outcome prediction in traumatic brain injury with focus on laboratory values. J Neurotrauma. 2012;29(17):2613–24.PubMedCrossRef Nelson DW, Rudehill A, MacCallum RM, Holst A, Wanecek M, Weitzberg E, Bellander BM. Multivariate outcome prediction in traumatic brain injury with focus on laboratory values. J Neurotrauma. 2012;29(17):2613–24.PubMedCrossRef
47.
go back to reference Rached M, Gaudet JG, Delhumeau C, Walder B. Comparison of two simple models for prediction of short term mortality in patients after severe traumatic brain injury. Injury. 2019;50(1):65–72.PubMedCrossRef Rached M, Gaudet JG, Delhumeau C, Walder B. Comparison of two simple models for prediction of short term mortality in patients after severe traumatic brain injury. Injury. 2019;50(1):65–72.PubMedCrossRef
48.
go back to reference Abujaber A, Fadlalla A, Gammoh D, Abdelrahman H, Mollazehi M, El-Menyar A. Prediction of in-hospital mortality in patients with post traumatic brain injury using National Trauma Registry and Machine Learning Approach. Scand J Trauma Resusc Emerg Med. 2020;28(1):44.PubMedPubMedCentralCrossRef Abujaber A, Fadlalla A, Gammoh D, Abdelrahman H, Mollazehi M, El-Menyar A. Prediction of in-hospital mortality in patients with post traumatic brain injury using National Trauma Registry and Machine Learning Approach. Scand J Trauma Resusc Emerg Med. 2020;28(1):44.PubMedPubMedCentralCrossRef
49.
go back to reference Raj R, Siironen J, Kivisaari R, Hernesniemi J, Skrifvars MB. Predicting outcome after traumatic brain injury: development of prognostic scores based on the IMPACT and the APACHE II. J Neurotrauma. 2014;31(20):1721–32.PubMedPubMedCentralCrossRef Raj R, Siironen J, Kivisaari R, Hernesniemi J, Skrifvars MB. Predicting outcome after traumatic brain injury: development of prognostic scores based on the IMPACT and the APACHE II. J Neurotrauma. 2014;31(20):1721–32.PubMedPubMedCentralCrossRef
50.
go back to reference Rughani AI, Dumont TM, Lu Z, Bongard J, Horgan MA, Penar PL, Tranmer BI. Use of an artificial neural network to predict head injury outcome. J Neurosurg. 2010;113(3):585–90.PubMedCrossRef Rughani AI, Dumont TM, Lu Z, Bongard J, Horgan MA, Penar PL, Tranmer BI. Use of an artificial neural network to predict head injury outcome. J Neurosurg. 2010;113(3):585–90.PubMedCrossRef
51.
go back to reference Shi HY, Hwang SL, Lee KT, Lin CL. In-hospital mortality after traumatic brain injury surgery: a nationwide population-based comparison of mortality predictors used in artificial neural network and logistic regression models. J Neurosurg. 2013;118(4):746–52.PubMedCrossRef Shi HY, Hwang SL, Lee KT, Lin CL. In-hospital mortality after traumatic brain injury surgery: a nationwide population-based comparison of mortality predictors used in artificial neural network and logistic regression models. J Neurosurg. 2013;118(4):746–52.PubMedCrossRef
52.
go back to reference Sut N, Simsek O. Comparison of regression tree data mining methods for prediction of mortality in head injury. Expert Syst Appl. 2011;38(12):15534–9.CrossRef Sut N, Simsek O. Comparison of regression tree data mining methods for prediction of mortality in head injury. Expert Syst Appl. 2011;38(12):15534–9.CrossRef
53.
go back to reference Weimer JM, Nowacki AS, Frontera JA. Withdrawal of Life-Sustaining Therapy in Patients With Intracranial Hemorrhage: Self-Fulfilling Prophecy or Accurate Prediction of Outcome? Crit Care Med. 2016;44(6):1161–72.PubMedCrossRef Weimer JM, Nowacki AS, Frontera JA. Withdrawal of Life-Sustaining Therapy in Patients With Intracranial Hemorrhage: Self-Fulfilling Prophecy or Accurate Prediction of Outcome? Crit Care Med. 2016;44(6):1161–72.PubMedCrossRef
54.
go back to reference Kaewborisutsakul A, Tunthanathip T. Development and internal validation of a nomogram for predicting outcomes in children with traumatic subdural hematoma. Acute Crit Care. 2022;37(3):429–37.PubMedPubMedCentralCrossRef Kaewborisutsakul A, Tunthanathip T. Development and internal validation of a nomogram for predicting outcomes in children with traumatic subdural hematoma. Acute Crit Care. 2022;37(3):429–37.PubMedPubMedCentralCrossRef
55.
go back to reference Servia L, Montserrat N, Badia M, Llompart-Pou JA, Barea-Mendoza JA, Chico-Fernandez M, Sanchez-Casado M, Jimenez JM, Mayor DM, Trujillano J. Machine learning techniques for mortality prediction in critical traumatic patients: anatomic and physiologic variables from the RETRAUCI study. BMC Med Res Methodol. 2020;20(1):262.PubMedPubMedCentralCrossRef Servia L, Montserrat N, Badia M, Llompart-Pou JA, Barea-Mendoza JA, Chico-Fernandez M, Sanchez-Casado M, Jimenez JM, Mayor DM, Trujillano J. Machine learning techniques for mortality prediction in critical traumatic patients: anatomic and physiologic variables from the RETRAUCI study. BMC Med Res Methodol. 2020;20(1):262.PubMedPubMedCentralCrossRef
56.
go back to reference Bhattacharyay S, Milosevic I, Wilson L, Menon DK, Stevens RD, Steyerberg EW, Nelson DW, Ercole A. participants C-Ti: The leap to ordinal: Detailed functional prognosis after traumatic brain injury with a flexible modelling approach. PLoS ONE. 2022;17(7):e0270973.PubMedPubMedCentralCrossRef Bhattacharyay S, Milosevic I, Wilson L, Menon DK, Stevens RD, Steyerberg EW, Nelson DW, Ercole A. participants C-Ti: The leap to ordinal: Detailed functional prognosis after traumatic brain injury with a flexible modelling approach. PLoS ONE. 2022;17(7):e0270973.PubMedPubMedCentralCrossRef
57.
go back to reference Hashemi B, Amanat M, Baratloo A, Forouzanfar MM, Rahmati F, Motamedi M, Safari S. Validation of CRASH Model in Prediction of 14-day Mortality and 6-month Unfavorable Outcome of Head Trauma Patients. Emerg (Tehran Iran). 2016;4(4):196–201. Hashemi B, Amanat M, Baratloo A, Forouzanfar MM, Rahmati F, Motamedi M, Safari S. Validation of CRASH Model in Prediction of 14-day Mortality and 6-month Unfavorable Outcome of Head Trauma Patients. Emerg (Tehran Iran). 2016;4(4):196–201.
58.
go back to reference Signorini DF, Andrews PJ, Jones PA, Wardlaw JM, Miller JD. Predicting survival using simple clinical variables: a case study in traumatic brain injury. J Neurol Neurosurg Psychiatry. 1999;66(1):20–5.PubMedPubMedCentralCrossRef Signorini DF, Andrews PJ, Jones PA, Wardlaw JM, Miller JD. Predicting survival using simple clinical variables: a case study in traumatic brain injury. J Neurol Neurosurg Psychiatry. 1999;66(1):20–5.PubMedPubMedCentralCrossRef
59.
go back to reference Andrews PJ, Sleeman DH, Statham PF, McQuatt A, Corruble V, Jones PA, Howells TP, Macmillan CS. Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression. J Neurosurg. 2002;97(2):326–36.PubMedCrossRef Andrews PJ, Sleeman DH, Statham PF, McQuatt A, Corruble V, Jones PA, Howells TP, Macmillan CS. Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression. J Neurosurg. 2002;97(2):326–36.PubMedCrossRef
60.
go back to reference Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728–41.PubMedCrossRef Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728–41.PubMedCrossRef
61.
go back to reference Prasad K. The Glasgow Coma Scale: a critical appraisal of its clinimetric properties. J Clin Epidemiol. 1996;49(7):755–63.PubMedCrossRef Prasad K. The Glasgow Coma Scale: a critical appraisal of its clinimetric properties. J Clin Epidemiol. 1996;49(7):755–63.PubMedCrossRef
62.
go back to reference Chakrabarti D, Ramesh VJ, Manohar N. Brainstem Contusion: A Fallacy of GCS-BIS Synchrony. J Neurosurg Anesthesiol. 2016;28(4):429–30.PubMedCrossRef Chakrabarti D, Ramesh VJ, Manohar N. Brainstem Contusion: A Fallacy of GCS-BIS Synchrony. J Neurosurg Anesthesiol. 2016;28(4):429–30.PubMedCrossRef
63.
go back to reference Nyam TE, Ao KH, Hung SY, Shen ML, Yu TC, Kuo JR. FOUR Score Predicts Early Outcome in Patients After Traumatic Brain Injury. Neurocrit Care. 2017;26(2):225–31.PubMedCrossRef Nyam TE, Ao KH, Hung SY, Shen ML, Yu TC, Kuo JR. FOUR Score Predicts Early Outcome in Patients After Traumatic Brain Injury. Neurocrit Care. 2017;26(2):225–31.PubMedCrossRef
64.
go back to reference Sadaka F, Patel D, Lakshmanan R. The FOUR score predicts outcome in patients after traumatic brain injury. Neurocrit Care. 2012;16(1):95–101.PubMedCrossRef Sadaka F, Patel D, Lakshmanan R. The FOUR score predicts outcome in patients after traumatic brain injury. Neurocrit Care. 2012;16(1):95–101.PubMedCrossRef
65.
go back to reference Ahmadi S, Sarveazad A, Babahajian A, Ahmadzadeh K, Yousefifard M. Comparison of Glasgow Coma Scale and Full Outline of UnResponsiveness score for prediction of in-hospital mortality in traumatic brain injury patients: a systematic review and meta-analysis. Eur J Trauma Emerg Surg 2022. PMID: 36152069. Ahmadi S, Sarveazad A, Babahajian A, Ahmadzadeh K, Yousefifard M. Comparison of Glasgow Coma Scale and Full Outline of UnResponsiveness score for prediction of in-hospital mortality in traumatic brain injury patients: a systematic review and meta-analysis. Eur J Trauma Emerg Surg 2022. PMID: 36152069.
66.
go back to reference Lee S, Reddy Mudireddy A, Kumar Pasupula D, Adhaduk M, Barsotti EJ, Sonka M, Statz GM, Bullis T, Johnston SL, Evans AZ et al. Novel Machine Learning Approach to Predict and Personalize Length of Stay for Patients Admitted with Syncope from the Emergency Department. J Pers Med. 2022;13(1):7. Lee S, Reddy Mudireddy A, Kumar Pasupula D, Adhaduk M, Barsotti EJ, Sonka M, Statz GM, Bullis T, Johnston SL, Evans AZ et al. Novel Machine Learning Approach to Predict and Personalize Length of Stay for Patients Admitted with Syncope from the Emergency Department. J Pers Med. 2022;13(1):7.
67.
go back to reference Sajda P. Machine learning for detection and diagnosis of disease. Annu Rev Biomed Eng. 2006;8:537–65.PubMedCrossRef Sajda P. Machine learning for detection and diagnosis of disease. Annu Rev Biomed Eng. 2006;8:537–65.PubMedCrossRef
68.
go back to reference Shickel B, Tighe PJ, Bihorac A, Rashidi P. Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis. IEEE J biomedical health Inf. 2018;22(5):1589–604.CrossRef Shickel B, Tighe PJ, Bihorac A, Rashidi P. Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis. IEEE J biomedical health Inf. 2018;22(5):1589–604.CrossRef
69.
go back to reference Ansarullah SI, Mohsin Saif S, Abdul Basit Andrabi S, Kumhar SH, Kirmani MM, Kumar DP. An Intelligent and Reliable Hyperparameter Optimization Machine Learning Model for Early Heart Disease Assessment Using Imperative Risk Attributes. J Healthc Eng. 2022;2022:9882288.PubMedPubMedCentralCrossRef Ansarullah SI, Mohsin Saif S, Abdul Basit Andrabi S, Kumhar SH, Kirmani MM, Kumar DP. An Intelligent and Reliable Hyperparameter Optimization Machine Learning Model for Early Heart Disease Assessment Using Imperative Risk Attributes. J Healthc Eng. 2022;2022:9882288.PubMedPubMedCentralCrossRef
70.
go back to reference Adnan M, Alarood AAS, Uddin MI, Ur Rehman I. Utilizing grid search cross-validation with adaptive boosting for augmenting performance of machine learning models. PeerJ Comput Sci. 2022;8:e803.PubMedPubMedCentralCrossRef Adnan M, Alarood AAS, Uddin MI, Ur Rehman I. Utilizing grid search cross-validation with adaptive boosting for augmenting performance of machine learning models. PeerJ Comput Sci. 2022;8:e803.PubMedPubMedCentralCrossRef
71.
go back to reference Bernhardt M, Jones C, Glocker B. Potential sources of dataset bias complicate investigation of underdiagnosis by machine learning algorithms. Nat Med. 2022;28(6):1157–8.PubMedCrossRef Bernhardt M, Jones C, Glocker B. Potential sources of dataset bias complicate investigation of underdiagnosis by machine learning algorithms. Nat Med. 2022;28(6):1157–8.PubMedCrossRef
72.
go back to reference Jennett B, Teasdale G, Braakman R, Minderhoud J, Knill-Jones R. Predicting outcome in individual patients after severe head injury. Lancet (London England). 1976;1(7968):1031–4.PubMedCrossRef Jennett B, Teasdale G, Braakman R, Minderhoud J, Knill-Jones R. Predicting outcome in individual patients after severe head injury. Lancet (London England). 1976;1(7968):1031–4.PubMedCrossRef
73.
go back to reference Majercik S, Bledsoe J, Ryser D, Hopkins RO, Fair JE, Brock Frost R, MacDonald J, Barrett R, Horn S, Pisani D, et al. Volumetric analysis of day of injury computed tomography is associated with rehabilitation outcomes after traumatic brain injury. J Trauma Acute Care Surg. 2017;82(1):80–92.PubMedPubMedCentralCrossRef Majercik S, Bledsoe J, Ryser D, Hopkins RO, Fair JE, Brock Frost R, MacDonald J, Barrett R, Horn S, Pisani D, et al. Volumetric analysis of day of injury computed tomography is associated with rehabilitation outcomes after traumatic brain injury. J Trauma Acute Care Surg. 2017;82(1):80–92.PubMedPubMedCentralCrossRef
74.
go back to reference Hough DM, Yu L, Shiung MM, Carter RE, Geske JR, Leng S, Fidler JL, Huprich JE, Jondal DY, McCollough CH, et al. Individualization of abdominopelvic CT protocols with lower tube voltage to reduce i.v. contrast dose or radiation dose. AJR Am J Roentgenol. 2013;201(1):147–53.PubMedCrossRef Hough DM, Yu L, Shiung MM, Carter RE, Geske JR, Leng S, Fidler JL, Huprich JE, Jondal DY, McCollough CH, et al. Individualization of abdominopelvic CT protocols with lower tube voltage to reduce i.v. contrast dose or radiation dose. AJR Am J Roentgenol. 2013;201(1):147–53.PubMedCrossRef
75.
go back to reference Ahn JC, Noh YK, Rattan P, Buryska S, Wu T, Kezer CA, Choi C, Arunachalam SP, Simonetto DA, Shah VH, et al. Machine Learning Techniques Differentiate Alcohol-Associated Hepatitis From Acute Cholangitis in Patients With Systemic Inflammation and Elevated Liver Enzymes. Mayo Clin Proc. 2022;97(7):1326–36.PubMedCrossRef Ahn JC, Noh YK, Rattan P, Buryska S, Wu T, Kezer CA, Choi C, Arunachalam SP, Simonetto DA, Shah VH, et al. Machine Learning Techniques Differentiate Alcohol-Associated Hepatitis From Acute Cholangitis in Patients With Systemic Inflammation and Elevated Liver Enzymes. Mayo Clin Proc. 2022;97(7):1326–36.PubMedCrossRef
76.
go back to reference Zhang Z, Yang L, Han W, Wu Y, Zhang L, Gao C, Jiang K, Liu Y, Wu H. Machine Learning Prediction Models for Gestational Diabetes Mellitus: Meta-analysis. J Med Internet Res. 2022;24(3):e26634.PubMedPubMedCentralCrossRef Zhang Z, Yang L, Han W, Wu Y, Zhang L, Gao C, Jiang K, Liu Y, Wu H. Machine Learning Prediction Models for Gestational Diabetes Mellitus: Meta-analysis. J Med Internet Res. 2022;24(3):e26634.PubMedPubMedCentralCrossRef
Metadata
Title
Prediction performance of the machine learning model in predicting mortality risk in patients with traumatic brain injuries: a systematic review and meta-analysis
Authors
Jue Wang
Ming Jing Yin
Han Chun Wen
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2023
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-023-02247-8

Other articles of this Issue 1/2023

BMC Medical Informatics and Decision Making 1/2023 Go to the issue