Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2023

Open Access 01-12-2023 | Back Pain | Research

Predicting decompression surgery by applying multimodal deep learning to patients’ structured and unstructured health data

Authors: Chethan Jujjavarapu, Pradeep Suri, Vikas Pejaver, Janna Friedly, Laura S. Gold, Eric Meier, Trevor Cohen, Sean D. Mooney, Patrick J. Heagerty, Jeffrey G. Jarvik

Published in: BMC Medical Informatics and Decision Making | Issue 1/2023

Login to get access

Abstract

Background

Low back pain (LBP) is a common condition made up of a variety of anatomic and clinical subtypes. Lumbar disc herniation (LDH) and lumbar spinal stenosis (LSS) are two subtypes highly associated with LBP. Patients with LDH/LSS are often started with non-surgical treatments and if those are not effective then go on to have decompression surgery. However, recommendation of surgery is complicated as the outcome may depend on the patient’s health characteristics. We developed a deep learning (DL) model to predict decompression surgery for patients with LDH/LSS.

Materials and method

We used datasets of 8387 and 8620 patients from a prospective study that collected data from four healthcare systems to predict early (within 2 months) and late surgery (within 12 months after a 2 month gap), respectively. We developed a DL model to use patients’ demographics, diagnosis and procedure codes, drug names, and diagnostic imaging reports to predict surgery. For each prediction task, we evaluated the model’s performance using classical and generalizability evaluation. For classical evaluation, we split the data into training (80%) and testing (20%). For generalizability evaluation, we split the data based on the healthcare system. We used the area under the curve (AUC) to assess performance for each evaluation. We compared results to a benchmark model (i.e. LASSO logistic regression).

Results

For classical performance, the DL model outperformed the benchmark model for early surgery with an AUC of 0.725 compared to 0.597. For late surgery, the DL model outperformed the benchmark model with an AUC of 0.655 compared to 0.635. For generalizability performance, the DL model outperformed the benchmark model for early surgery. For late surgery, the benchmark model outperformed the DL model.

Conclusions

For early surgery, the DL model was preferred for classical and generalizability evaluation. However, for late surgery, the benchmark and DL model had comparable performance. Depending on the prediction task, the balance of performance may shift between DL and a conventional ML method. As a result, thorough assessment is needed to quantify the value of DL, a relatively computationally expensive, time-consuming and less interpretable method.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wu A, March L, Zheng X, Huang J, Wang X, Zhao J, et al. Global low back pain prevalence and years lived with disability from 1990 to 2017: estimates from the Global Burden of Disease Study 2017. Ann Transl Medicine. 2020;8(6):299.CrossRef Wu A, March L, Zheng X, Huang J, Wang X, Zhao J, et al. Global low back pain prevalence and years lived with disability from 1990 to 2017: estimates from the Global Burden of Disease Study 2017. Ann Transl Medicine. 2020;8(6):299.CrossRef
2.
go back to reference Martin BI, Deyo RA, Mirza SK, Turner JA, Comstock BA, Hollingworth W, et al. Expenditures and health status among adults with back and neck problems. JAMA. 2008;299(6):656–64.CrossRef Martin BI, Deyo RA, Mirza SK, Turner JA, Comstock BA, Hollingworth W, et al. Expenditures and health status among adults with back and neck problems. JAMA. 2008;299(6):656–64.CrossRef
3.
go back to reference Andersson GB. Epidemiological features of chronic low-back pain. Lancet. 1999;354(9178):581–5.CrossRef Andersson GB. Epidemiological features of chronic low-back pain. Lancet. 1999;354(9178):581–5.CrossRef
4.
go back to reference Urits I, Burshtein A, Sharma M, Testa L, Gold PA, Orhurhu V, et al. Low back pain, a comprehensive review: pathophysiology, diagnosis, and treatment. Curr Pain Headache R. 2019;23(3):23.CrossRef Urits I, Burshtein A, Sharma M, Testa L, Gold PA, Orhurhu V, et al. Low back pain, a comprehensive review: pathophysiology, diagnosis, and treatment. Curr Pain Headache R. 2019;23(3):23.CrossRef
5.
go back to reference Deyo RA, Dworkin SF, Amtmann D, Andersson G, Borenstein D, Carragee E, et al. Report of the NIH task force on research standards for chronic low back pain. J Pain. 2014;15(6):569–85.CrossRef Deyo RA, Dworkin SF, Amtmann D, Andersson G, Borenstein D, Carragee E, et al. Report of the NIH task force on research standards for chronic low back pain. J Pain. 2014;15(6):569–85.CrossRef
6.
go back to reference Dunne L, Murphy E, Rutledge R. “Semenly” harmless back pain: An unusual presentation of a subcutaneous abscess. Irish Med J. 2019;112(1):857. Dunne L, Murphy E, Rutledge R. “Semenly” harmless back pain: An unusual presentation of a subcutaneous abscess. Irish Med J. 2019;112(1):857.
7.
go back to reference Amin RM, Andrade NS, Neuman BJ. Lumbar disc herniation. Curr Rev Musculoskelet Medicine. 2017;10(4):507–16.CrossRef Amin RM, Andrade NS, Neuman BJ. Lumbar disc herniation. Curr Rev Musculoskelet Medicine. 2017;10(4):507–16.CrossRef
8.
go back to reference Jarvik JJ, Hollingworth W, Heagerty P, Haynor DR, Deyo RA. The longitudinal assessment of imaging and disability of the back (LAIDBack) study: baseline data. Spine. 2001;26(10):1158–66.CrossRef Jarvik JJ, Hollingworth W, Heagerty P, Haynor DR, Deyo RA. The longitudinal assessment of imaging and disability of the back (LAIDBack) study: baseline data. Spine. 2001;26(10):1158–66.CrossRef
9.
go back to reference Deyo RA, Mirza SK. Herniated lumbar intervertebral disk. New Engl J Medicine. 2016;374(18):1763–72.CrossRef Deyo RA, Mirza SK. Herniated lumbar intervertebral disk. New Engl J Medicine. 2016;374(18):1763–72.CrossRef
10.
go back to reference Genevay S, Atlas SJ. Lumbar spinal stenosis. Best Pract Res Clin Rheumatology. 2010;24(2):253–65.CrossRef Genevay S, Atlas SJ. Lumbar spinal stenosis. Best Pract Res Clin Rheumatology. 2010;24(2):253–65.CrossRef
11.
go back to reference Katz JN, Harris MB. Lumbar spinal stenosis. New Engl J Med. 2008;358(8):818–25.CrossRef Katz JN, Harris MB. Lumbar spinal stenosis. New Engl J Med. 2008;358(8):818–25.CrossRef
12.
go back to reference Mannion AF, Dvorak J, Müntener M, Grob D. A prospective study of the interrelationship between subjective and objective measures of disability before and 2 months after lumbar decompression surgery for disc herniation. Eur Spine J. 2005;14(5):454–65.CrossRef Mannion AF, Dvorak J, Müntener M, Grob D. A prospective study of the interrelationship between subjective and objective measures of disability before and 2 months after lumbar decompression surgery for disc herniation. Eur Spine J. 2005;14(5):454–65.CrossRef
13.
go back to reference Machado GC, Ferreira PH, Harris IA, Pinheiro MB, Koes BW, van Tulder M, et al. Effectiveness of surgery for lumbar spinal stenosis: a systematic review and meta-analysis. PLoS ONE. 2015;10(3): e0122800.CrossRef Machado GC, Ferreira PH, Harris IA, Pinheiro MB, Koes BW, van Tulder M, et al. Effectiveness of surgery for lumbar spinal stenosis: a systematic review and meta-analysis. PLoS ONE. 2015;10(3): e0122800.CrossRef
14.
go back to reference Peul WC, van Houwelingen HC, van den Hout WB, Brand R, Eekhof JAH, Tans JTJ, et al. Surgery versus prolonged conservative treatment for sciatica. New Engl J Medicine. 2007;356(22):2245–56.CrossRef Peul WC, van Houwelingen HC, van den Hout WB, Brand R, Eekhof JAH, Tans JTJ, et al. Surgery versus prolonged conservative treatment for sciatica. New Engl J Medicine. 2007;356(22):2245–56.CrossRef
15.
go back to reference Peul WC, Hout WB van den, Brand R, Thomeer RTWM, Koes BW, Group LTHSIPS. Prolonged conservative care versus early surgery in patients with sciatica caused by lumbar disc herniation: two year results of a randomised controlled trial. Bmj. 2008;336(7657):1355–8. Peul WC, Hout WB van den, Brand R, Thomeer RTWM, Koes BW, Group LTHSIPS. Prolonged conservative care versus early surgery in patients with sciatica caused by lumbar disc herniation: two year results of a randomised controlled trial. Bmj. 2008;336(7657):1355–8.
16.
go back to reference Malmivaara A, Slätis P, Heliövaara M, Sainio P, Kinnunen H, Kankare J, et al. Surgical or nonoperative treatment for lumbar spinal stenosis? Spine. 2007;32(1):1–8.CrossRef Malmivaara A, Slätis P, Heliövaara M, Sainio P, Kinnunen H, Kankare J, et al. Surgical or nonoperative treatment for lumbar spinal stenosis? Spine. 2007;32(1):1–8.CrossRef
17.
go back to reference Weinstein JN, Lurie JD, Tosteson TD, Tosteson ANA, Blood EA, Abdu WA, et al. Surgical versus nonoperative treatment for lumbar disc herniation. Spine. 2008;33(25):2789–800.CrossRef Weinstein JN, Lurie JD, Tosteson TD, Tosteson ANA, Blood EA, Abdu WA, et al. Surgical versus nonoperative treatment for lumbar disc herniation. Spine. 2008;33(25):2789–800.CrossRef
18.
go back to reference Kovacs FM, Urrútia G, Alarcón JD. Surgery versus conservative treatment for symptomatic lumbar spinal stenosis. Spine. 2011;36(20):E1335–51.CrossRef Kovacs FM, Urrútia G, Alarcón JD. Surgery versus conservative treatment for symptomatic lumbar spinal stenosis. Spine. 2011;36(20):E1335–51.CrossRef
19.
go back to reference Nerland US, Jakola AS, Giannadakis C, Solheim O, Weber C, Nygaard ØP, et al. The risk of getting worse: predictors of deterioration after decompressive surgery for lumbar spinal stenosis: a multicenter observational study. World Neurosurg. 2015;84(4):1095–102.CrossRef Nerland US, Jakola AS, Giannadakis C, Solheim O, Weber C, Nygaard ØP, et al. The risk of getting worse: predictors of deterioration after decompressive surgery for lumbar spinal stenosis: a multicenter observational study. World Neurosurg. 2015;84(4):1095–102.CrossRef
20.
go back to reference Suri P, Hunter DJ, Jouve C, Hartigan C, Limke J, Pena E, et al. Nonsurgical treatment of lumbar disk herniation: are outcomes different in older adults? J Am Geriatr Soc. 2011;59(3):423–9.CrossRef Suri P, Hunter DJ, Jouve C, Hartigan C, Limke J, Pena E, et al. Nonsurgical treatment of lumbar disk herniation: are outcomes different in older adults? J Am Geriatr Soc. 2011;59(3):423–9.CrossRef
21.
go back to reference Steinmetz MP, Mroz T. Value of adding predictive clinical decision tools to spine surgery. Jama Surg. 2018;153(7):643.CrossRef Steinmetz MP, Mroz T. Value of adding predictive clinical decision tools to spine surgery. Jama Surg. 2018;153(7):643.CrossRef
22.
go back to reference Galbusera F, Casaroli G, Bassani T. Artificial intelligence and machine learning in spine research. Jor Spine. 2019;2(1): e1044.CrossRef Galbusera F, Casaroli G, Bassani T. Artificial intelligence and machine learning in spine research. Jor Spine. 2019;2(1): e1044.CrossRef
23.
go back to reference Joshi RS, Lau D, Ames CP. Machine learning in spine surgery: Predictive analytics, imaging applications and next steps. Seminars Spine Surg. 2021;33(2): 100878.CrossRef Joshi RS, Lau D, Ames CP. Machine learning in spine surgery: Predictive analytics, imaging applications and next steps. Seminars Spine Surg. 2021;33(2): 100878.CrossRef
24.
go back to reference Wiens J, Shenoy ES. Machine learning for healthcare: on the verge of a major shift in healthcare epidemiology. Clin Infect Dis. 2017;66(1):149–53.CrossRef Wiens J, Shenoy ES. Machine learning for healthcare: on the verge of a major shift in healthcare epidemiology. Clin Infect Dis. 2017;66(1):149–53.CrossRef
25.
go back to reference Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2017;19(6):1236–46.CrossRef Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2017;19(6):1236–46.CrossRef
26.
go back to reference LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.CrossRef LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.CrossRef
27.
go back to reference Norgeot B, Glicksberg BS, Trupin L, Lituiev D, Gianfrancesco M, Oskotsky B, et al. Assessment of a deep learning model based on electronic health record data to forecast clinical outcomes in patients with rheumatoid arthritis. Jama Netw Open. 2019;2(3): e190606.CrossRef Norgeot B, Glicksberg BS, Trupin L, Lituiev D, Gianfrancesco M, Oskotsky B, et al. Assessment of a deep learning model based on electronic health record data to forecast clinical outcomes in patients with rheumatoid arthritis. Jama Netw Open. 2019;2(3): e190606.CrossRef
28.
go back to reference Choi E, Schuetz A, Stewart WF, Sun J. Using recurrent neural network models for early detection of heart failure onset. J Am Med Inform Assn. 2017;24(2):361–70.CrossRef Choi E, Schuetz A, Stewart WF, Sun J. Using recurrent neural network models for early detection of heart failure onset. J Am Med Inform Assn. 2017;24(2):361–70.CrossRef
29.
go back to reference Huang SC, Pareek A, Seyyedi S, Banerjee I, Lungren MP. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ Digit Med. 2020;3(1):136.CrossRef Huang SC, Pareek A, Seyyedi S, Banerjee I, Lungren MP. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ Digit Med. 2020;3(1):136.CrossRef
30.
go back to reference Zhang D, Yin C, Zeng J, Yuan X, Zhang P. Combining structured and unstructured data for predictive models: a deep learning approach. Bmc Med Inform Decis. 2020;20(1):280.CrossRef Zhang D, Yin C, Zeng J, Yuan X, Zhang P. Combining structured and unstructured data for predictive models: a deep learning approach. Bmc Med Inform Decis. 2020;20(1):280.CrossRef
31.
go back to reference Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med. 2018;1(1):18.CrossRef Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med. 2018;1(1):18.CrossRef
32.
go back to reference Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep. 2016;6(1):26094.CrossRef Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep. 2016;6(1):26094.CrossRef
33.
go back to reference Chen D, Liu S, Kingsbury P, Sohn S, Storlie CB, Habermann EB, et al. Deep learning and alternative learning strategies for retrospective real-world clinical data. NPJ Digit Med. 2019;2(1):43.CrossRef Chen D, Liu S, Kingsbury P, Sohn S, Storlie CB, Habermann EB, et al. Deep learning and alternative learning strategies for retrospective real-world clinical data. NPJ Digit Med. 2019;2(1):43.CrossRef
34.
go back to reference Jarvik JG, Comstock BA, James KT, Avins AL, Bresnahan BW, Deyo RA, et al. Lumbar imaging with reporting of epidemiology (LIRE)—protocol for a pragmatic cluster randomized trial. Contemp Clin Trials. 2015;45(Pt B):157–63.CrossRef Jarvik JG, Comstock BA, James KT, Avins AL, Bresnahan BW, Deyo RA, et al. Lumbar imaging with reporting of epidemiology (LIRE)—protocol for a pragmatic cluster randomized trial. Contemp Clin Trials. 2015;45(Pt B):157–63.CrossRef
35.
go back to reference Hebbring SJ. The challenges, advantages and future of phenome-wide association studies. Immunology. 2014;141(2):157–65.CrossRef Hebbring SJ. The challenges, advantages and future of phenome-wide association studies. Immunology. 2014;141(2):157–65.CrossRef
36.
go back to reference Suri P, Stanaway IB, Zhang Y, Freidin MB, Tsepilov YA, Carrell DS, et al. Genome-wide association studies of low back pain and lumbar spinal disorders using electronic health record data identify a locus associated with lumbar spinal stenosis. Pain. 2021;162(8):2263–72. Suri P, Stanaway IB, Zhang Y, Freidin MB, Tsepilov YA, Carrell DS, et al. Genome-wide association studies of low back pain and lumbar spinal disorders using electronic health record data identify a locus associated with lumbar spinal stenosis. Pain. 2021;162(8):2263–72.
37.
go back to reference Martin BI, Lurie JD, Tosteson ANA, Deyo RA, Tosteson TD, Weinstein JN, et al. Indications for spine surgery. Spine. 2014;39(9):769–79.CrossRef Martin BI, Lurie JD, Tosteson ANA, Deyo RA, Tosteson TD, Weinstein JN, et al. Indications for spine surgery. Spine. 2014;39(9):769–79.CrossRef
38.
go back to reference Deyo RA, Bryan M, Comstock BA, Turner JA, Heagerty P, Friedly J, et al. Trajectories of symptoms and function in older adults with low back disorders. Spine. 2015;40(17):1352–62.CrossRef Deyo RA, Bryan M, Comstock BA, Turner JA, Heagerty P, Friedly J, et al. Trajectories of symptoms and function in older adults with low back disorders. Spine. 2015;40(17):1352–62.CrossRef
39.
go back to reference Kneeman J, Battalio SL, Korpak A, Cherkin DC, Luo G, Rundell SD, et al. Predicting persistent disabling low back pain in veterans affairs primary care using the STarT back tool. PM R. 2021;13:241–9.CrossRef Kneeman J, Battalio SL, Korpak A, Cherkin DC, Luo G, Rundell SD, et al. Predicting persistent disabling low back pain in veterans affairs primary care using the STarT back tool. PM R. 2021;13:241–9.CrossRef
40.
go back to reference Friedly J, Chan L, Deyo R. Increases in lumbosacral injections in the medicare population. Spine. 2007;32(16):1754–60.CrossRef Friedly J, Chan L, Deyo R. Increases in lumbosacral injections in the medicare population. Spine. 2007;32(16):1754–60.CrossRef
41.
go back to reference Friedly J, Nishio I, Bishop MJ, Maynard C. The relationship between repeated epidural steroid injections and subsequent opioid use and lumbar surgery. Arch Phys Med Rehab. 2008;89(6):1011–5.CrossRef Friedly J, Nishio I, Bishop MJ, Maynard C. The relationship between repeated epidural steroid injections and subsequent opioid use and lumbar surgery. Arch Phys Med Rehab. 2008;89(6):1011–5.CrossRef
42.
go back to reference Cartwright DJ. ICD-9-CM to ICD-10-CM codes: What? Why? How? Adv Wound Care. 2013;2(10):588–92.CrossRef Cartwright DJ. ICD-9-CM to ICD-10-CM codes: What? Why? How? Adv Wound Care. 2013;2(10):588–92.CrossRef
43.
go back to reference Bird S, Klein E, Loper E. Natural language processing with Python. Sebastopol: O’Reilly Media, Inc.; 2009. Bird S, Klein E, Loper E. Natural language processing with Python. Sebastopol: O’Reilly Media, Inc.; 2009.
44.
go back to reference Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. arXiv. 2012. arXiv:1201.0490. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. arXiv. 2012. arXiv:​1201.​0490.
45.
go back to reference Řehůřek R, Sojka P. Software framework for topic modelling with large corpora. In: Proceedings of LREC 2010 workshop new challenges for NLP frameworks. 2010; p. 45–50. Řehůřek R, Sojka P. Software framework for topic modelling with large corpora. In: Proceedings of LREC 2010 workshop new challenges for NLP frameworks. 2010; p. 45–50.
46.
go back to reference Banerjee I, Chen MC, Lungren MP, Rubin DL. Radiology report annotation using intelligent word embeddings: applied to multi-institutional chest CT cohort. J Biomed Inform. 2018;77:11–20.CrossRef Banerjee I, Chen MC, Lungren MP, Rubin DL. Radiology report annotation using intelligent word embeddings: applied to multi-institutional chest CT cohort. J Biomed Inform. 2018;77:11–20.CrossRef
47.
go back to reference Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. 2013. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. 2013.
48.
go back to reference Friedman P. Radiologic reporting: structure. Am J Roentgenol. 1983;140(1):171–2.CrossRef Friedman P. Radiologic reporting: structure. Am J Roentgenol. 1983;140(1):171–2.CrossRef
49.
go back to reference Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Statistical Soc Ser B Methodol. 1996;58(1):267–88. Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Statistical Soc Ser B Methodol. 1996;58(1):267–88.
50.
go back to reference Bovelstad HM, Nygard S, Storvold HL, Aldrin M, Borgan O, Frigessi A, et al. Predicting survival from microarray data a comparative study. Bioinformatics. 2007;23(16):2080–7.CrossRef Bovelstad HM, Nygard S, Storvold HL, Aldrin M, Borgan O, Frigessi A, et al. Predicting survival from microarray data a comparative study. Bioinformatics. 2007;23(16):2080–7.CrossRef
51.
go back to reference Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: an imperative style, high-performance deep learning library. arXiv. 2019. arXiv:1912.01703. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: an imperative style, high-performance deep learning library. arXiv. 2019. arXiv:​1912.​01703.
52.
go back to reference Choi E, Bahadori MT, Schuetz A, Stewart WF, Sun J. Doctor AI: predicting clinical events via recurrent neural networks. arXiv. 2015. arXiv:1511.05942. Choi E, Bahadori MT, Schuetz A, Stewart WF, Sun J. Doctor AI: predicting clinical events via recurrent neural networks. arXiv. 2015. arXiv:​1511.​05942.
53.
go back to reference Chung J, Gulcehre C, Cho K, Bengio Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv. 2014. arXiv:1412.3555. Chung J, Gulcehre C, Cho K, Bengio Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv. 2014. arXiv:​1412.​3555.
54.
go back to reference Choi E, Xiao C, Stewart WF, Sun J. MiME: multilevel medical embedding of electronic health records for predictive healthcare. arXiv. 2018. arXiv:1810.09593. Choi E, Xiao C, Stewart WF, Sun J. MiME: multilevel medical embedding of electronic health records for predictive healthcare. arXiv. 2018. arXiv:​1810.​09593.
55.
go back to reference Wang Y, Xu X, Jin T, Li X, Xie G, Wang J. Inpatient2Vec: Medical Representation Learning for Inpatients. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2019; p. 1113–7. Wang Y, Xu X, Jin T, Li X, Xie G, Wang J. Inpatient2Vec: Medical Representation Learning for Inpatients. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2019; p. 1113–7.
56.
go back to reference Steinberg E, Jung K, Fries JA, Corbin CK, Pfohl SR, Shah NH. Language models are an effective representation learning technique for electronic health record data. J Biomed Inform. 2021;113: 103637.CrossRef Steinberg E, Jung K, Fries JA, Corbin CK, Pfohl SR, Shah NH. Language models are an effective representation learning technique for electronic health record data. J Biomed Inform. 2021;113: 103637.CrossRef
57.
go back to reference King G, Zeng L. Logistic regression in rare events data. Polit Anal. 2001;9(2):137–63.CrossRef King G, Zeng L. Logistic regression in rare events data. Polit Anal. 2001;9(2):137–63.CrossRef
58.
go back to reference Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58.
59.
go back to reference Zhang Y, Wallace B. A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification. 2015. Zhang Y, Wallace B. A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification. 2015.
60.
go back to reference André A, Peyrou B, Carpentier A, Vignaux JJ. Feasibility and assessment of a machine learning-based predictive model of outcome after lumbar decompression surgery. Global Spine J. 2022;12:894–908.CrossRef André A, Peyrou B, Carpentier A, Vignaux JJ. Feasibility and assessment of a machine learning-based predictive model of outcome after lumbar decompression surgery. Global Spine J. 2022;12:894–908.CrossRef
61.
go back to reference Wilson B, Gaonkar B, Yoo B, Salehi B, Attiah M, Villaroman D, et al. Predicting spinal surgery candidacy from imaging data using machine learning. Neurosurgery. 2021;89(1):116–21.CrossRef Wilson B, Gaonkar B, Yoo B, Salehi B, Attiah M, Villaroman D, et al. Predicting spinal surgery candidacy from imaging data using machine learning. Neurosurgery. 2021;89(1):116–21.CrossRef
62.
go back to reference Keeney BJ, Fulton-Kehoe D, Turner JA, Wickizer TM, Chan KCG, Franklin GM. Early predictors of lumbar spine surgery after occupational back injury. Spine. 2013;38(11):953–64.CrossRef Keeney BJ, Fulton-Kehoe D, Turner JA, Wickizer TM, Chan KCG, Franklin GM. Early predictors of lumbar spine surgery after occupational back injury. Spine. 2013;38(11):953–64.CrossRef
63.
go back to reference Cherkin DC, Deyo RA, Wheeler K, Ciol MA. Physician views about treating low back pain: the results of a national survey. Spine. 1995;20(1):1–8.CrossRef Cherkin DC, Deyo RA, Wheeler K, Ciol MA. Physician views about treating low back pain: the results of a national survey. Spine. 1995;20(1):1–8.CrossRef
64.
go back to reference Cherkin DC, Deyo RA, Wheeler K, Ciol MA. Physician variation in diagnostic testing for low back pain. Who you see is what you get. Arthr Rheum. 1994;37(1):15–22.CrossRef Cherkin DC, Deyo RA, Wheeler K, Ciol MA. Physician variation in diagnostic testing for low back pain. Who you see is what you get. Arthr Rheum. 1994;37(1):15–22.CrossRef
65.
go back to reference Azad TD, Ehresman J, Ahmed AK, Staartjes VE, Lubelski D, Stienen MN, et al. Fostering reproducibility and generalizability in machine learning for clinical prediction modeling in spine surgery. Spine J. 2021;21(10):1610–6.CrossRef Azad TD, Ehresman J, Ahmed AK, Staartjes VE, Lubelski D, Stienen MN, et al. Fostering reproducibility and generalizability in machine learning for clinical prediction modeling in spine surgery. Spine J. 2021;21(10):1610–6.CrossRef
66.
go back to reference Kwon O, Sim JM. Effects of data set features on the performances of classification algorithms. Expert Syst Appl. 2013;40(5):1847–57.CrossRef Kwon O, Sim JM. Effects of data set features on the performances of classification algorithms. Expert Syst Appl. 2013;40(5):1847–57.CrossRef
67.
go back to reference Milani CJ, Rundell SD, Jarvik JG, Friedly J, Heagerty PJ, Avins A, et al. Associations of race and ethnicity with patient-reported outcomes and health care utilization among older adults initiating a new episode of care for back pain. Spine. 2018;43(14):1007–17.CrossRef Milani CJ, Rundell SD, Jarvik JG, Friedly J, Heagerty PJ, Avins A, et al. Associations of race and ethnicity with patient-reported outcomes and health care utilization among older adults initiating a new episode of care for back pain. Spine. 2018;43(14):1007–17.CrossRef
68.
go back to reference Chen Y, Campbell P, Strauss VY, Foster NE, Jordan KP, Dunn KM. Trajectories and predictors of the long-term course of low back pain: cohort study with 5-year follow-up. Pain. 2018;159(2):252–60.CrossRef Chen Y, Campbell P, Strauss VY, Foster NE, Jordan KP, Dunn KM. Trajectories and predictors of the long-term course of low back pain: cohort study with 5-year follow-up. Pain. 2018;159(2):252–60.CrossRef
69.
go back to reference Harris A, Guadix SW, Riley LH, Jain A, Kebaish KM, Skolasky RL. Changes in racial and ethnic disparities in lumbar spinal surgery associated with the passage of the Affordable Care Act, 2006–2014. Spine J. 2021;21(1):64–70.CrossRef Harris A, Guadix SW, Riley LH, Jain A, Kebaish KM, Skolasky RL. Changes in racial and ethnic disparities in lumbar spinal surgery associated with the passage of the Affordable Care Act, 2006–2014. Spine J. 2021;21(1):64–70.CrossRef
Metadata
Title
Predicting decompression surgery by applying multimodal deep learning to patients’ structured and unstructured health data
Authors
Chethan Jujjavarapu
Pradeep Suri
Vikas Pejaver
Janna Friedly
Laura S. Gold
Eric Meier
Trevor Cohen
Sean D. Mooney
Patrick J. Heagerty
Jeffrey G. Jarvik
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2023
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-022-02096-x

Other articles of this Issue 1/2023

BMC Medical Informatics and Decision Making 1/2023 Go to the issue