Skip to main content
Top
Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2019

Open Access 01-12-2019 | Central Nervous System Trauma | Original research

A prospective pilot study using metabolomics discloses specific fatty acid, catecholamine and tryptophan metabolic pathways as possible predictors for a negative outcome after severe trauma

Authors: Luis Servià, Mariona Jové, Joaquim Sol, Reinald Pamplona, Mariona Badia, Neus Montserrat, Manuel Portero-Otin, Javier Trujillano

Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | Issue 1/2019

Login to get access

Abstract

Background

We wanted to define metabolomic patterns in plasma to predict a negative outcome in severe trauma patients.

Methods

A prospective pilot study was designed to evaluate plasma metabolomic patterns, established by liquid chromatography coupled to mass spectrometry, in patients allocated to an intensive care unit (in the University Hospital Arnau de Vilanova, Lleida, Spain) in the first hours after a severe trauma (n = 48). Univariate and multivariate statistics were employed to establish potential predictors of mortality.

Results

Plasma of patients non surviving to trauma (n = 5) exhibited a discriminating metabolomic pattern, involving basically metabolites belonging to fatty acid and catecholamine synthesis as well as tryptophan degradation pathways. Thus, concentration of several metabolites exhibited an area under the receiver operating curve (ROC) higher than 0.84, including 3-indolelactic acid, hydroxyisovaleric acid, phenylethanolamine, cortisol, epinephrine and myristic acid. Multivariate binary regression logistic revealed that patients with higher myristic acid concentrations had a non-survival odds ratio of 2.1 (CI 95% 1.1–3.9).

Conclusions

Specific fatty acids, catecholamine synthesis and tryptophan degradation pathways could be implicated in a negative outcome after trauma. The metabolomic study of severe trauma patients could be helpful for biomarker proposal.
Appendix
Available only for authorised users
Literature
12.
go back to reference Baker SP, O’Neill B, Haddon W, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14:187–96.CrossRef Baker SP, O’Neill B, Haddon W, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14:187–96.CrossRef
13.
go back to reference Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, et al. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991;100:1619–36.CrossRef Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, et al. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991;100:1619–36.CrossRef
15.
go back to reference Sana TR, Roark JC, Li X, Waddell K, Fischer SM. Molecular formula and METLIN personal metabolite database matching applied to the identification of compounds generated by LC/TOF-MS. J Biomol Tech. 2008;19:258–66.PubMedPubMedCentral Sana TR, Roark JC, Li X, Waddell K, Fischer SM. Molecular formula and METLIN personal metabolite database matching applied to the identification of compounds generated by LC/TOF-MS. J Biomol Tech. 2008;19:258–66.PubMedPubMedCentral
17.
go back to reference Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.CrossRef Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.CrossRef
26.
go back to reference Pandya U, Polite N, Wood T, Lieber M. Increased total serum random cortisol levels predict mortality in critically ill trauma patients. Am Surg. 2014;80:1112–8.PubMed Pandya U, Polite N, Wood T, Lieber M. Increased total serum random cortisol levels predict mortality in critically ill trauma patients. Am Surg. 2014;80:1112–8.PubMed
28.
go back to reference Gale SC, Sicoutris C, Reilly PM, Schwab CW, Gracias VH. Poor glycemic control is associated with increased mortality in critically ill trauma patients. Am Surg. 2007;73:454–60.PubMed Gale SC, Sicoutris C, Reilly PM, Schwab CW, Gracias VH. Poor glycemic control is associated with increased mortality in critically ill trauma patients. Am Surg. 2007;73:454–60.PubMed
32.
go back to reference Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. High circulating adrenaline levels at admission predict increased mortality after trauma. J Trauma Acute Care Surg. 2012;72:428–36.CrossRef Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. High circulating adrenaline levels at admission predict increased mortality after trauma. J Trauma Acute Care Surg. 2012;72:428–36.CrossRef
34.
go back to reference Shannon HE, Cone EJ, Yousefnejad D. Physiologic effects and plasma kinetics of phenylethanolamine and its N-methyl homolog in the dog. J Pharmacol Exp Ther. 1981;217:379–85.PubMed Shannon HE, Cone EJ, Yousefnejad D. Physiologic effects and plasma kinetics of phenylethanolamine and its N-methyl homolog in the dog. J Pharmacol Exp Ther. 1981;217:379–85.PubMed
35.
go back to reference Morita I, Kawamoto M, Hattori M, Eguchi K, Sekiba K, Yoshida H. Determination of tryptophan and its metabolites in human plasma and serum by high-performance liquid chromatography with automated sample clean-up system. J Chromatogr. 1990;526:367–74.CrossRef Morita I, Kawamoto M, Hattori M, Eguchi K, Sekiba K, Yoshida H. Determination of tryptophan and its metabolites in human plasma and serum by high-performance liquid chromatography with automated sample clean-up system. J Chromatogr. 1990;526:367–74.CrossRef
39.
go back to reference Moyer ED, McMenamy RH, Cerra FB, Reed RA, Yu L, Chenier R, et al. Multiple systems organ failure: III contrasts in plasma amino acid profiles in septic trauma patients who subsequently survive and do not survive-effects of intravenous amino acids. J Trauma. 1981;21:263–74.CrossRef Moyer ED, McMenamy RH, Cerra FB, Reed RA, Yu L, Chenier R, et al. Multiple systems organ failure: III contrasts in plasma amino acid profiles in septic trauma patients who subsequently survive and do not survive-effects of intravenous amino acids. J Trauma. 1981;21:263–74.CrossRef
40.
46.
go back to reference Stoner HB, Frayn KN, Barton RN, Threlfall CJ, Little RA. The relationships between plasma substrates and hormones and the severity of injury in 277 recently injured patients. Clin Sci. 1979;56:563–73.CrossRef Stoner HB, Frayn KN, Barton RN, Threlfall CJ, Little RA. The relationships between plasma substrates and hormones and the severity of injury in 277 recently injured patients. Clin Sci. 1979;56:563–73.CrossRef
47.
go back to reference Nixon JR, Brock-Utne JG. Free fatty acid and arterial oxygen changes following major injury: a correlation between hypoxemia and increased free fatty acid levels. J Trauma. 1978;18:23–6.CrossRef Nixon JR, Brock-Utne JG. Free fatty acid and arterial oxygen changes following major injury: a correlation between hypoxemia and increased free fatty acid levels. J Trauma. 1978;18:23–6.CrossRef
48.
go back to reference Kamolz LP, Andel H, Mittlböck M, Winter W, Haslik W, Meissl G, et al. Serum cholesterol and triglycerides: potential role in mortality prediction. Burns. 2003;29:810–5.CrossRef Kamolz LP, Andel H, Mittlböck M, Winter W, Haslik W, Meissl G, et al. Serum cholesterol and triglycerides: potential role in mortality prediction. Burns. 2003;29:810–5.CrossRef
55.
go back to reference Hardaway RM, Vasquez Y. A shock toxin that produces disseminated intravascular coagulation and multiple organ failure. Am J Med Sci. 2001;322:222–8.CrossRef Hardaway RM, Vasquez Y. A shock toxin that produces disseminated intravascular coagulation and multiple organ failure. Am J Med Sci. 2001;322:222–8.CrossRef
Metadata
Title
A prospective pilot study using metabolomics discloses specific fatty acid, catecholamine and tryptophan metabolic pathways as possible predictors for a negative outcome after severe trauma
Authors
Luis Servià
Mariona Jové
Joaquim Sol
Reinald Pamplona
Mariona Badia
Neus Montserrat
Manuel Portero-Otin
Javier Trujillano
Publication date
01-12-2019
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s13049-019-0631-5

Other articles of this Issue 1/2019

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2019 Go to the issue