Skip to main content
Top
Published in: Radiation Oncology 1/2022

Open Access 01-12-2022 | Care | Research

Ways to unravel the clinical potential of carbon ions for head and neck cancer reirradiation: dosimetric comparison and local failure pattern analysis as part of the prospective randomized CARE trial

Authors: Thomas Held, Thomas Tessonnier, Henrik Franke, Sebastian Regnery, Lukas Bauer, Katharina Weusthof, Semi Harrabi, Klaus Herfarth, Andrea Mairani, Jürgen Debus, Sebastian Adeberg

Published in: Radiation Oncology | Issue 1/2022

Login to get access

Abstract

Background

Carbon ion radiotherapy (CIRT) yields biophysical advantages compared to photons but randomized studies for the reirradiation setting are pending. The aim of the current project was to evaluate potential clinical benefits and drawbacks of CIRT compared to volumetric modulated arc therapy (VMAT) in recurrent head and neck cancer.

Methods

Dose-volume parameters and local failure patterns of CIRT compared to VMAT were evaluate in 16 patients from the randomized CARE trial on head and neck cancer reirradiation.

Results

Despite an increased target dose, CIRT resulted in significantly reduced organ at risk (OAR) dose across all patients (− 8.7% Dmean). The dose-volume benefits were most pronounced in the brainstem (− 20.7% Dmax) and the optic chiasma (− 13.0% Dmax). The most frequent local failure was type E (extraneous; 50%), followed type B (peripheral; 33%) and type A (central; 17%). In one patient with type A biological and/or dosimetric failure after CIRT, mMKM dose recalculation revealed reduced target coverage.

Conclusions

CIRT resulted in highly improved critical OAR sparing compared to VMAT across all head and neck cancer reirradiation scenarios despite an increased prescription dose. Local failure pattern analysis revealed further potential CIRT specific clinical benefits and potential pitfalls with regard to image-guidance and biological dose-optimization.
Appendix
Available only for authorised users
Literature
1.
go back to reference Durante M, Debus J, Loeffler JS. Physics and biomedical challenges of cancer therapy with accelerated heavy ions. Nat Rev Phys. 2021;3(12):777–90.CrossRef Durante M, Debus J, Loeffler JS. Physics and biomedical challenges of cancer therapy with accelerated heavy ions. Nat Rev Phys. 2021;3(12):777–90.CrossRef
2.
go back to reference Seidensaal K, Harrabi SB, Uhl M, Debus J. Re-irradiation with protons or heavy ions with focus on head and neck, skull base and brain malignancies. Br J Radiol. 2020;93(1107):20190516.CrossRef Seidensaal K, Harrabi SB, Uhl M, Debus J. Re-irradiation with protons or heavy ions with focus on head and neck, skull base and brain malignancies. Br J Radiol. 2020;93(1107):20190516.CrossRef
3.
go back to reference Held T, Lang K, Regnery S, Weusthof K, Hommertgen A, Jäkel C, Tonndorf-Martini E, Krisam J, Plinkert P, Zaoui K, et al. Carbon ion reirradiation compared to intensity-modulated re-radiotherapy for recurrent head and neck cancer (CARE): a randomized controlled trial. Radiat Oncol. 2020;15(1):1–8.CrossRef Held T, Lang K, Regnery S, Weusthof K, Hommertgen A, Jäkel C, Tonndorf-Martini E, Krisam J, Plinkert P, Zaoui K, et al. Carbon ion reirradiation compared to intensity-modulated re-radiotherapy for recurrent head and neck cancer (CARE): a randomized controlled trial. Radiat Oncol. 2020;15(1):1–8.CrossRef
4.
go back to reference Spencer SA, Harris J, Wheeler RH, Machtay M, Schultz C, Spanos W, Rotman M, Meredith R, Ang KK. Final report of RTOG 9610, a multi-institutional trial of reirradiation and chemotherapy for unresectable recurrent squamous cell carcinoma of the head and neck. Head Neck. 2008;30(3):281–8.CrossRef Spencer SA, Harris J, Wheeler RH, Machtay M, Schultz C, Spanos W, Rotman M, Meredith R, Ang KK. Final report of RTOG 9610, a multi-institutional trial of reirradiation and chemotherapy for unresectable recurrent squamous cell carcinoma of the head and neck. Head Neck. 2008;30(3):281–8.CrossRef
5.
go back to reference Langer CJ, Harris J, Horwitz EM, Nicolaou N, Kies M, Curran W, Wong S, Ang K. Phase II study of low-dose paclitaxel and cisplatin in combination with split-course concomitant twice-daily reirradiation in recurrent squamous cell carcinoma of the head and neck: results of Radiation Therapy Oncology Group Protocol 9911. J Clin Oncol. 2007;25(30):4800–5.CrossRef Langer CJ, Harris J, Horwitz EM, Nicolaou N, Kies M, Curran W, Wong S, Ang K. Phase II study of low-dose paclitaxel and cisplatin in combination with split-course concomitant twice-daily reirradiation in recurrent squamous cell carcinoma of the head and neck: results of Radiation Therapy Oncology Group Protocol 9911. J Clin Oncol. 2007;25(30):4800–5.CrossRef
6.
go back to reference Vargo JA, Ward MC, Caudell JJ, Riaz N, Dunlap NE, Isrow D, Zakem SJ, Dault J, Awan MJ, Higgins KA, et al. A multi-institutional comparison of SBRT and IMRT for definitive reirradiation of recurrent or second primary head and neck cancer. Int J Radiat Oncol Biol Phys. 2018;100(3):595–605.CrossRef Vargo JA, Ward MC, Caudell JJ, Riaz N, Dunlap NE, Isrow D, Zakem SJ, Dault J, Awan MJ, Higgins KA, et al. A multi-institutional comparison of SBRT and IMRT for definitive reirradiation of recurrent or second primary head and neck cancer. Int J Radiat Oncol Biol Phys. 2018;100(3):595–605.CrossRef
7.
go back to reference Ng WT, Soong YL, Ahn YC, AlHussain H, Choi HCW, Corry J, Grégoire V, Harrington KJ, Hu CS, Jensen K, et al. International recommendations on reirradiation by intensity modulated radiation therapy for locally recurrent nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2021;110(3):682–95.CrossRef Ng WT, Soong YL, Ahn YC, AlHussain H, Choi HCW, Corry J, Grégoire V, Harrington KJ, Hu CS, Jensen K, et al. International recommendations on reirradiation by intensity modulated radiation therapy for locally recurrent nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2021;110(3):682–95.CrossRef
8.
go back to reference Romesser PB, Cahlon O, Scher ED, Hug EB, Sine K, DeSelm C, Fox JL, Mah D, Garg MK, Han-Chih Chang J, et al. Proton beam reirradiation for recurrent head and neck cancer: multi-institutional report on feasibility and early outcomes. Int J Radiat Oncol Biol Phys. 2016;95(1):386–95.CrossRef Romesser PB, Cahlon O, Scher ED, Hug EB, Sine K, DeSelm C, Fox JL, Mah D, Garg MK, Han-Chih Chang J, et al. Proton beam reirradiation for recurrent head and neck cancer: multi-institutional report on feasibility and early outcomes. Int J Radiat Oncol Biol Phys. 2016;95(1):386–95.CrossRef
9.
go back to reference Hayashi K, Koto M, Ikawa H, Hagiwara Y, Tsuji H, Ogawa K, Kamada T. Feasibility of re-irradiation using carbon ions for recurrent head and neck malignancies after carbon-ion radiotherapy. Radiother Oncol. 2019;136:148–53.CrossRef Hayashi K, Koto M, Ikawa H, Hagiwara Y, Tsuji H, Ogawa K, Kamada T. Feasibility of re-irradiation using carbon ions for recurrent head and neck malignancies after carbon-ion radiotherapy. Radiother Oncol. 2019;136:148–53.CrossRef
10.
go back to reference Held T, Windisch P, Akbaba S, Lang K, El Shafie R, Bernhardt D, Plinkert P, Kargus S, Rieken S, Herfarth K, et al. Carbon ion reirradiation for recurrent head and neck cancer: a single-institutional experience. Int J Radiat Oncol Biol Phys. 2019;105(4):803–11.CrossRef Held T, Windisch P, Akbaba S, Lang K, El Shafie R, Bernhardt D, Plinkert P, Kargus S, Rieken S, Herfarth K, et al. Carbon ion reirradiation for recurrent head and neck cancer: a single-institutional experience. Int J Radiat Oncol Biol Phys. 2019;105(4):803–11.CrossRef
11.
go back to reference Karger CP, Peschke P. RBE and related modeling in carbon-ion therapy. Phys Med Biol. 2017;63(1):01tr02.CrossRef Karger CP, Peschke P. RBE and related modeling in carbon-ion therapy. Phys Med Biol. 2017;63(1):01tr02.CrossRef
12.
go back to reference Scholz M, Kraft G. Track structure and the calculation of biological effects of heavy charged particles. Adv Space Res. 1996;18(1–2):5–14.CrossRef Scholz M, Kraft G. Track structure and the calculation of biological effects of heavy charged particles. Adv Space Res. 1996;18(1–2):5–14.CrossRef
13.
go back to reference Grün R, Friedrich T, Elsässer T, Krämer M, Zink K, Karger CP, Durante M, Engenhart-Cabillic R, Scholz M. Impact of enhancements in the local effect model (LEM) on the predicted RBE-weighted target dose distribution in carbon ion therapy. Phys Med Biol. 2012;57(22):7261–74.CrossRef Grün R, Friedrich T, Elsässer T, Krämer M, Zink K, Karger CP, Durante M, Engenhart-Cabillic R, Scholz M. Impact of enhancements in the local effect model (LEM) on the predicted RBE-weighted target dose distribution in carbon ion therapy. Phys Med Biol. 2012;57(22):7261–74.CrossRef
14.
go back to reference Inaniwa T, Furukawa T, Kase Y, Matsufuji N, Toshito T, Matsumoto Y, Furusawa Y, Noda K. Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model. Phys Med Biol. 2010;55(22):6721–37.CrossRef Inaniwa T, Furukawa T, Kase Y, Matsufuji N, Toshito T, Matsumoto Y, Furusawa Y, Noda K. Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model. Phys Med Biol. 2010;55(22):6721–37.CrossRef
15.
go back to reference Mein S, Klein C, Kopp B, Magro G, Harrabi S, Karger CP, Haberer T, Debus J, Abdollahi A, Dokic I, et al. Assessment of RBE-weighted dose models for carbon ion therapy toward modernization of clinical practice at HIT: in vitro, in vivo, and in patients. Int J Radiat Oncol Biol Phys. 2020;108(3):779–91.CrossRef Mein S, Klein C, Kopp B, Magro G, Harrabi S, Karger CP, Haberer T, Debus J, Abdollahi A, Dokic I, et al. Assessment of RBE-weighted dose models for carbon ion therapy toward modernization of clinical practice at HIT: in vitro, in vivo, and in patients. Int J Radiat Oncol Biol Phys. 2020;108(3):779–91.CrossRef
16.
go back to reference Brouwer CL, Steenbakkers RJ, Bourhis J, Budach W, Grau C, Grégoire V, van Herk M, Lee A, Maingon P, Nutting C, et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines. Radiother Oncol. 2015;117(1):83–90.CrossRef Brouwer CL, Steenbakkers RJ, Bourhis J, Budach W, Grau C, Grégoire V, van Herk M, Lee A, Maingon P, Nutting C, et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines. Radiother Oncol. 2015;117(1):83–90.CrossRef
17.
go back to reference Held T, Harrabi SB, Lang K, Akbaba S, Windisch P, Bernhardt D, Rieken S, Herfarth K, Debus J, Adeberg S. Dose-limiting organs at risk in carbon ion re-irradiation of head and neck malignancies: an individual risk-benefit tradeoff. Cancers (Basel). 2019;11(12):2016.CrossRef Held T, Harrabi SB, Lang K, Akbaba S, Windisch P, Bernhardt D, Rieken S, Herfarth K, Debus J, Adeberg S. Dose-limiting organs at risk in carbon ion re-irradiation of head and neck malignancies: an individual risk-benefit tradeoff. Cancers (Basel). 2019;11(12):2016.CrossRef
18.
go back to reference Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10-19.CrossRef Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10-19.CrossRef
19.
go back to reference Weyrather WK, Kraft G. RBE of carbon ions: experimental data and the strategy of RBE calculation for treatment planning. Radiother Oncol. 2004;73(Suppl 2):S161-169.CrossRef Weyrather WK, Kraft G. RBE of carbon ions: experimental data and the strategy of RBE calculation for treatment planning. Radiother Oncol. 2004;73(Suppl 2):S161-169.CrossRef
20.
go back to reference Karger CP, Jäkel O, Debus J, Kuhn S, Hartmann GH. Three-dimensional accuracy and interfractional reproducibility of patient fixation and positioning using a stereotactic head mask system. Int J Radiat Oncol Biol Phys. 2001;49(5):1493–504.CrossRef Karger CP, Jäkel O, Debus J, Kuhn S, Hartmann GH. Three-dimensional accuracy and interfractional reproducibility of patient fixation and positioning using a stereotactic head mask system. Int J Radiat Oncol Biol Phys. 2001;49(5):1493–504.CrossRef
21.
go back to reference Haberer T, Becher W, Schardt D, Kraft G. Magnetic scanning system for heavy ion therapy. Nucl Instrum Methods Phys Res Sect A. 1993;330(1):296–305.CrossRef Haberer T, Becher W, Schardt D, Kraft G. Magnetic scanning system for heavy ion therapy. Nucl Instrum Methods Phys Res Sect A. 1993;330(1):296–305.CrossRef
22.
go back to reference Kataria T, Sharma K, Subramani V, Karrthick KP, Bisht SS. Homogeneity Index: an objective tool for assessment of conformal radiation treatments. J Med Phys. 2012;37(4):207–13.CrossRef Kataria T, Sharma K, Subramani V, Karrthick KP, Bisht SS. Homogeneity Index: an objective tool for assessment of conformal radiation treatments. J Med Phys. 2012;37(4):207–13.CrossRef
23.
go back to reference Mohamed ASR, Rosenthal DI, Awan MJ, Garden AS, Kocak-Uzel E, Belal AM, El-Gowily AG, Phan J, Beadle BM, Gunn GB, et al. Methodology for analysis and reporting patterns of failure in the Era of IMRT: head and neck cancer applications. Radiat Oncol. 2016;11(1):95.CrossRef Mohamed ASR, Rosenthal DI, Awan MJ, Garden AS, Kocak-Uzel E, Belal AM, El-Gowily AG, Phan J, Beadle BM, Gunn GB, et al. Methodology for analysis and reporting patterns of failure in the Era of IMRT: head and neck cancer applications. Radiat Oncol. 2016;11(1):95.CrossRef
24.
go back to reference Lee AW, Foo W, Law SC, Poon YF, Sze WM, Sk O, Tung SY, Lau WH. Reirradiation for recurrent nasopharyngeal carcinoma: factors affecting the therapeutic ratio and ways for improvement. Int J Radiat Oncol Biol Phys. 1997;38(1):43–52.CrossRef Lee AW, Foo W, Law SC, Poon YF, Sze WM, Sk O, Tung SY, Lau WH. Reirradiation for recurrent nasopharyngeal carcinoma: factors affecting the therapeutic ratio and ways for improvement. Int J Radiat Oncol Biol Phys. 1997;38(1):43–52.CrossRef
25.
go back to reference Tian Y, Zhao C, Guo Y, Huang Y, Huang S-M, Deng X-W, Lin C-G, Lu T, Han F. Effect of total dose and fraction size on survival of patients with locally recurrent nasopharyngeal carcinoma treated with intensity-modulated radiotherapy: a phase 2, single-center, randomized controlled trial. Cancer. 2014;120(22):3502–9.CrossRef Tian Y, Zhao C, Guo Y, Huang Y, Huang S-M, Deng X-W, Lin C-G, Lu T, Han F. Effect of total dose and fraction size on survival of patients with locally recurrent nasopharyngeal carcinoma treated with intensity-modulated radiotherapy: a phase 2, single-center, randomized controlled trial. Cancer. 2014;120(22):3502–9.CrossRef
26.
go back to reference Jensen AD, Nikoghosyan AV, Poulakis M, Höss A, Haberer T, Jäkel O, Münter MW, Schulz-Ertner D, Huber PE, Debus J. Combined intensity-modulated radiotherapy plus raster-scanned carbon ion boost for advanced adenoid cystic carcinoma of the head and neck results in superior locoregional control and overall survival. Cancer. 2015;121(17):3001–9.CrossRef Jensen AD, Nikoghosyan AV, Poulakis M, Höss A, Haberer T, Jäkel O, Münter MW, Schulz-Ertner D, Huber PE, Debus J. Combined intensity-modulated radiotherapy plus raster-scanned carbon ion boost for advanced adenoid cystic carcinoma of the head and neck results in superior locoregional control and overall survival. Cancer. 2015;121(17):3001–9.CrossRef
27.
go back to reference Sulaiman NS, Demizu Y, Koto M, Saitoh JI, Suefuji H, Tsuji H, Ohno T, Shioyama Y, Okimoto T, Daimon T, et al. Multicenter study of carbon-ion radiation therapy for adenoid cystic carcinoma of the head and neck: subanalysis of the Japan Carbon-Ion Radiation Oncology Study Group (J-CROS) Study (1402 HN). Int J Radiat Oncol Biol Phys. 2018;100(3):639–46.CrossRef Sulaiman NS, Demizu Y, Koto M, Saitoh JI, Suefuji H, Tsuji H, Ohno T, Shioyama Y, Okimoto T, Daimon T, et al. Multicenter study of carbon-ion radiation therapy for adenoid cystic carcinoma of the head and neck: subanalysis of the Japan Carbon-Ion Radiation Oncology Study Group (J-CROS) Study (1402 HN). Int J Radiat Oncol Biol Phys. 2018;100(3):639–46.CrossRef
28.
go back to reference Hu J, Huang Q, Gao J, Guan X, Hu W, Yang J, Qiu X, Chen M, Kong L, Lu JJ. Clinical outcomes of carbon-ion radiotherapy for patients with locoregionally recurrent nasopharyngeal carcinoma. Cancer. 2020;126(23):5173–83.CrossRef Hu J, Huang Q, Gao J, Guan X, Hu W, Yang J, Qiu X, Chen M, Kong L, Lu JJ. Clinical outcomes of carbon-ion radiotherapy for patients with locoregionally recurrent nasopharyngeal carcinoma. Cancer. 2020;126(23):5173–83.CrossRef
29.
go back to reference Blanchard P, Garden AS, Gunn GB, Rosenthal DI, Morrison WH, Hernandez M, Crutison J, Lee JJ, Ye R, Fuller CD, et al. Intensity-modulated proton beam therapy (IMPT) versus intensity-modulated photon therapy (IMRT) for patients with oropharynx cancer—a case matched analysis. Radiother Oncol. 2016;120(1):48–55.CrossRef Blanchard P, Garden AS, Gunn GB, Rosenthal DI, Morrison WH, Hernandez M, Crutison J, Lee JJ, Ye R, Fuller CD, et al. Intensity-modulated proton beam therapy (IMPT) versus intensity-modulated photon therapy (IMRT) for patients with oropharynx cancer—a case matched analysis. Radiother Oncol. 2016;120(1):48–55.CrossRef
30.
go back to reference Zhang W, Zhang X, Yang P, Blanchard P, Garden AS, Gunn B, Fuller CD, Chambers M, Hutcheson KA, Ye R, et al. Intensity-modulated proton therapy and osteoradionecrosis in oropharyngeal cancer. Radiother Oncol. 2017;123(3):401–5.CrossRef Zhang W, Zhang X, Yang P, Blanchard P, Garden AS, Gunn B, Fuller CD, Chambers M, Hutcheson KA, Ye R, et al. Intensity-modulated proton therapy and osteoradionecrosis in oropharyngeal cancer. Radiother Oncol. 2017;123(3):401–5.CrossRef
31.
go back to reference Romesser PB, Cahlon O, Scher E, Zhou Y, Berry SL, Rybkin A, Sine KM, Tang S, Sherman EJ, Wong R, et al. Proton beam radiation therapy results in significantly reduced toxicity compared with intensity-modulated radiation therapy for head and neck tumors that require ipsilateral radiation. Radiother Oncol. 2016;118(2):286–92.CrossRef Romesser PB, Cahlon O, Scher E, Zhou Y, Berry SL, Rybkin A, Sine KM, Tang S, Sherman EJ, Wong R, et al. Proton beam radiation therapy results in significantly reduced toxicity compared with intensity-modulated radiation therapy for head and neck tumors that require ipsilateral radiation. Radiother Oncol. 2016;118(2):286–92.CrossRef
32.
go back to reference Ren J, Eriksen JG, Nijkamp J, Korreman SS. Comparing different CT, PET and MRI multi-modality image combinations for deep learning-based head and neck tumor segmentation. Acta Oncol. 2021;60(11):1399–406.CrossRef Ren J, Eriksen JG, Nijkamp J, Korreman SS. Comparing different CT, PET and MRI multi-modality image combinations for deep learning-based head and neck tumor segmentation. Acta Oncol. 2021;60(11):1399–406.CrossRef
33.
go back to reference Elicin O, Vollnberg B, Shelan M, Riggenbach E, Bojaxhiu B, Mathier E, Giger R, Aebersold DM, Klaeser B. Impact of pretreatment second look (18)FDG-PET/CT on stage and treatment changes in head and neck cancer. Clin Transl Radiat Oncol. 2021;31:8–13.CrossRef Elicin O, Vollnberg B, Shelan M, Riggenbach E, Bojaxhiu B, Mathier E, Giger R, Aebersold DM, Klaeser B. Impact of pretreatment second look (18)FDG-PET/CT on stage and treatment changes in head and neck cancer. Clin Transl Radiat Oncol. 2021;31:8–13.CrossRef
34.
go back to reference Chen AM, Daly ME, Cui J, Mathai M, Benedict S, Purdy JA. Clinical outcomes among patients with head and neck cancer treated by intensity-modulated radiotherapy with and without adaptive replanning. Head Neck. 2014;36(11):1541–6.CrossRef Chen AM, Daly ME, Cui J, Mathai M, Benedict S, Purdy JA. Clinical outcomes among patients with head and neck cancer treated by intensity-modulated radiotherapy with and without adaptive replanning. Head Neck. 2014;36(11):1541–6.CrossRef
35.
go back to reference Li Y, Kubota Y, Tashiro M, Ohno T. Value of three-dimensional imaging systems for image-guided carbon ion radiotherapy. Cancers (Basel). 2019;11(3):297.CrossRef Li Y, Kubota Y, Tashiro M, Ohno T. Value of three-dimensional imaging systems for image-guided carbon ion radiotherapy. Cancers (Basel). 2019;11(3):297.CrossRef
36.
go back to reference van Leeuwen CM, Oei AL, Crezee J, Bel A, Franken NAP, Stalpers LJA, Kok HP. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat Oncol. 2018;13(1):96.CrossRef van Leeuwen CM, Oei AL, Crezee J, Bel A, Franken NAP, Stalpers LJA, Kok HP. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat Oncol. 2018;13(1):96.CrossRef
37.
go back to reference Kopp B, Mein S, Dokic I, Harrabi S, Böhlen TT, Haberer T, Debus J, Abdollahi A, Mairani A. Development and validation of single field multi-ion particle therapy treatments. Int J Radiat Oncol Biol Phys. 2020;106(1):194–205.CrossRef Kopp B, Mein S, Dokic I, Harrabi S, Böhlen TT, Haberer T, Debus J, Abdollahi A, Mairani A. Development and validation of single field multi-ion particle therapy treatments. Int J Radiat Oncol Biol Phys. 2020;106(1):194–205.CrossRef
38.
go back to reference Mein S, Tessonnier T, Kopp B, Harrabi S, Abdollahi A, Debus J, Haberer T, Mairani A. Spot-scanning hadron arc (SHArc) therapy: a study with light and heavy ions. Adv Radiat Oncol. 2021;6(3):100661.CrossRef Mein S, Tessonnier T, Kopp B, Harrabi S, Abdollahi A, Debus J, Haberer T, Mairani A. Spot-scanning hadron arc (SHArc) therapy: a study with light and heavy ions. Adv Radiat Oncol. 2021;6(3):100661.CrossRef
39.
go back to reference Tinganelli W, Sokol O, Quartieri M, Puspitasari A, Dokic I, Abdollahi A, Durante M, Haberer T, Debus J, Boscolo D, et al. Ultra-high dose rate (FLASH) carbon ion irradiation: dosimetry and first cell experiments. Int J Radiat Oncol Biol Phys. 2021;112:1012–22.CrossRef Tinganelli W, Sokol O, Quartieri M, Puspitasari A, Dokic I, Abdollahi A, Durante M, Haberer T, Debus J, Boscolo D, et al. Ultra-high dose rate (FLASH) carbon ion irradiation: dosimetry and first cell experiments. Int J Radiat Oncol Biol Phys. 2021;112:1012–22.CrossRef
40.
go back to reference Fukata K, Kawamura H, Kubo N, Kanai T, Torikoshi M, Nakano T, Tashiro M, Ohno T. Retrospective comparison of rectal toxicity between carbon-ion radiotherapy and intensity-modulated radiation therapy based on treatment plan, normal tissue complication probability model, and clinical outcomes in prostate cancer. Phys Med. 2021;90:6–12.CrossRef Fukata K, Kawamura H, Kubo N, Kanai T, Torikoshi M, Nakano T, Tashiro M, Ohno T. Retrospective comparison of rectal toxicity between carbon-ion radiotherapy and intensity-modulated radiation therapy based on treatment plan, normal tissue complication probability model, and clinical outcomes in prostate cancer. Phys Med. 2021;90:6–12.CrossRef
Metadata
Title
Ways to unravel the clinical potential of carbon ions for head and neck cancer reirradiation: dosimetric comparison and local failure pattern analysis as part of the prospective randomized CARE trial
Authors
Thomas Held
Thomas Tessonnier
Henrik Franke
Sebastian Regnery
Lukas Bauer
Katharina Weusthof
Semi Harrabi
Klaus Herfarth
Andrea Mairani
Jürgen Debus
Sebastian Adeberg
Publication date
01-12-2022
Publisher
BioMed Central
Keywords
Care
Radiotherapy
Published in
Radiation Oncology / Issue 1/2022
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-022-02093-4

Other articles of this Issue 1/2022

Radiation Oncology 1/2022 Go to the issue