Skip to main content
Top
Published in: Radiation Oncology 1/2016

Open Access 01-12-2016 | Research

Methodology for analysis and reporting patterns of failure in the Era of IMRT: head and neck cancer applications

Authors: Abdallah S. R. Mohamed, David I. Rosenthal, Musaddiq J. Awan, Adam S. Garden, Esengul Kocak-Uzel, Abdelaziz M. Belal, Ahmed G. El-Gowily, Jack Phan, Beth M. Beadle, G. Brandon Gunn, Clifton D. Fuller

Published in: Radiation Oncology | Issue 1/2016

Login to get access

Abstract

Background

The aim of this study is to develop a methodology to standardize the analysis and reporting of the patterns of loco-regional failure after IMRT of head and neck cancer.

Material and Methods

Twenty-one patients with evidence of local and/or regional failure following IMRT for head-and-neck cancer were retrospectively reviewed under approved IRB protocol. Manually delineated recurrent gross disease (rGTV) on the diagnostic CT documenting recurrence (rCT) was co-registered with the original planning CT (pCT) using both deformable (DIR) and rigid (RIR) image registration software. Subsequently, mapped rGTVs were compared relative to original planning target volumes (TVs) and dose using a centroid-based approaches. Failures were then classified into five types based on combined spatial and dosimetric criteria; A (central high dose), B (peripheral high dose), C (central elective dose), D (peripheral elective dose), and E (extraneous dose).

Results

A total of 26 recurrences were identified. Using DIR, recurrences were assigned to more central TVs compared to RIR as detected using the spatial centroid-based method (p = 0.0002). rGTVs mapped using DIR had statistically significant higher mean doses when compared to rGTVs mapped rigidly (mean dose 70 vs. 69 Gy, p = 0.03). According to the proposed classification 22 out of 26 failures were of type A (central high dose) as assessed by DIR method compared to 18 out of 26 for the RIR because of the tendencey of RIR to assign failures more peripherally.

Conclusions

RIR tends to assigns failures more peripherally. DIR-based methods showed that the vast majority of failures originated in the high dose target volumes and received full prescribed doses suggesting biological rather than technology-related causes of failure. Validated DIR-based registration is recommended for accurate failure characterization and a novel typology-indicative taxonomy is recommended for failure reporting in the IMRT era.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gregoire V, Coche E, Cosnard G, Hamoir M, Reychler H. Selection and delineation of lymph node target volumes in head and neck conformal radiotherapy. Proposal for standardizing terminology and procedure based on the surgical experience. Radiother Oncol. 2000;56:135–50.CrossRefPubMed Gregoire V, Coche E, Cosnard G, Hamoir M, Reychler H. Selection and delineation of lymph node target volumes in head and neck conformal radiotherapy. Proposal for standardizing terminology and procedure based on the surgical experience. Radiother Oncol. 2000;56:135–50.CrossRefPubMed
2.
go back to reference Eisbruch A, Marsh LH, Dawson LA, Bradford CR, Teknos TN, Chepeha DB, et al. Recurrences near base of skull after IMRT for head-and-neck cancer: implications for target delineation in high neck and for parotid gland sparing. Int J Radiat Oncol Biol Phys. 2004;59:28–42.CrossRefPubMed Eisbruch A, Marsh LH, Dawson LA, Bradford CR, Teknos TN, Chepeha DB, et al. Recurrences near base of skull after IMRT for head-and-neck cancer: implications for target delineation in high neck and for parotid gland sparing. Int J Radiat Oncol Biol Phys. 2004;59:28–42.CrossRefPubMed
3.
go back to reference Suzuki M, Nishimura Y, Nakamatsu K, Okumura M, Hashiba H, Koike R, et al. Analysis of interfractional set-up errors and intrafractional organ motions during IMRT for head and neck tumors to define an appropriate planning target volume (PTV)- and planning organs at risk volume (PRV)-margins. Radiother Oncol. 2006;78:283–90.CrossRefPubMed Suzuki M, Nishimura Y, Nakamatsu K, Okumura M, Hashiba H, Koike R, et al. Analysis of interfractional set-up errors and intrafractional organ motions during IMRT for head and neck tumors to define an appropriate planning target volume (PTV)- and planning organs at risk volume (PRV)-margins. Radiother Oncol. 2006;78:283–90.CrossRefPubMed
4.
go back to reference Schoenfeld GO, Amdur RJ, Morris CG, Li JG, Hinerman RW, Mendenhall WM. Patterns of failure and toxicity after intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys. 2008;71:377–85.CrossRefPubMed Schoenfeld GO, Amdur RJ, Morris CG, Li JG, Hinerman RW, Mendenhall WM. Patterns of failure and toxicity after intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys. 2008;71:377–85.CrossRefPubMed
6.
go back to reference Shakam A, Scrimger R, Liu D, Mohamed M, Parliament M, Field GC, et al. Dose-volume analysis of locoregional recurrences in head and neck IMRT, as determined by deformable registration: a prospective multi-institutional trial. Radiother Oncol. 2011;99:101–7.CrossRefPubMed Shakam A, Scrimger R, Liu D, Mohamed M, Parliament M, Field GC, et al. Dose-volume analysis of locoregional recurrences in head and neck IMRT, as determined by deformable registration: a prospective multi-institutional trial. Radiother Oncol. 2011;99:101–7.CrossRefPubMed
7.
go back to reference Due AK, Vogelius IR, Aznar MC, Bentzen SM, Berthelsen AK, Korreman SS, et al. Methods for estimating the site of origin of locoregional recurrence in head and neck squamous cell carcinoma. Strahlenther Onkol. 2012;188:671–6.CrossRefPubMed Due AK, Vogelius IR, Aznar MC, Bentzen SM, Berthelsen AK, Korreman SS, et al. Methods for estimating the site of origin of locoregional recurrence in head and neck squamous cell carcinoma. Strahlenther Onkol. 2012;188:671–6.CrossRefPubMed
8.
go back to reference Raktoe SA, Dehnad H, Raaijmakers CP, Braunius W, Terhaard CH. Origin of tumor recurrence after intensity modulated radiation therapy for oropharyngeal squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2013;85:136–41.CrossRefPubMed Raktoe SA, Dehnad H, Raaijmakers CP, Braunius W, Terhaard CH. Origin of tumor recurrence after intensity modulated radiation therapy for oropharyngeal squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2013;85:136–41.CrossRefPubMed
9.
go back to reference Dawson LA, Anzai Y, Marsh L, Martel MK, Paulino A, Ship JA, et al. Patterns of local-regional recurrence following parotid-sparing conformal and segmental intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol. 2000;46:1117–26.CrossRef Dawson LA, Anzai Y, Marsh L, Martel MK, Paulino A, Ship JA, et al. Patterns of local-regional recurrence following parotid-sparing conformal and segmental intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol. 2000;46:1117–26.CrossRef
10.
go back to reference Chao KSC, Ozyigit G, Tran BN, Cengiz M, Dempsey JF, Low DA. Patterns of failure in patients receiving definitive and postoperative IMRT for head-and-neck cancer. Int J Radiat Oncol. 2003;55:312–21.CrossRef Chao KSC, Ozyigit G, Tran BN, Cengiz M, Dempsey JF, Low DA. Patterns of failure in patients receiving definitive and postoperative IMRT for head-and-neck cancer. Int J Radiat Oncol. 2003;55:312–21.CrossRef
11.
go back to reference Yao M, Dornfeld KJ, Buatti JM, Skwarchuk M, Tan H, Nguyen T, et al. Intensity-modulated radiation treatment for head-and-neck squamous cell carcinoma--the University of Iowa experience. Int J Radiat Oncol Biol Phys. 2005;63:410–21.CrossRefPubMed Yao M, Dornfeld KJ, Buatti JM, Skwarchuk M, Tan H, Nguyen T, et al. Intensity-modulated radiation treatment for head-and-neck squamous cell carcinoma--the University of Iowa experience. Int J Radiat Oncol Biol Phys. 2005;63:410–21.CrossRefPubMed
12.
go back to reference Daly ME, Lieskovsky Y, Pawlicki T, Yau J, Pinto H, Kaplan M, et al. Evaluation of patterns of failure and subjective salivary function in patients treated with intensity modulated radiotherapy for head and neck squamous cell carcinoma. Head Neck J Sci Spec. 2007;29:211–20.CrossRef Daly ME, Lieskovsky Y, Pawlicki T, Yau J, Pinto H, Kaplan M, et al. Evaluation of patterns of failure and subjective salivary function in patients treated with intensity modulated radiotherapy for head and neck squamous cell carcinoma. Head Neck J Sci Spec. 2007;29:211–20.CrossRef
13.
go back to reference Sanguineti G, Gunn GB, Endres EJ, Chaljub G, Cheruvu P, Parker B. Patterns of locoregional failure after exclusive IMRT for oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2008;72:737–46.CrossRefPubMed Sanguineti G, Gunn GB, Endres EJ, Chaljub G, Cheruvu P, Parker B. Patterns of locoregional failure after exclusive IMRT for oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2008;72:737–46.CrossRefPubMed
14.
go back to reference Crum WR, Hartkens T, Hill DL. Non-rigid image registration: theory and practice. Br J Radiol. 2004;77(Spec No 2):S140–53.CrossRefPubMed Crum WR, Hartkens T, Hill DL. Non-rigid image registration: theory and practice. Br J Radiol. 2004;77(Spec No 2):S140–53.CrossRefPubMed
15.
go back to reference Castadot P, Lee JA, Parraga A, Geets X, Macq B, Gregoire V. Comparison of 12 deformable registration strategies in adaptive radiation therapy for the treatment of head and neck tumors. Radiother Oncol. 2008;89:1–12.CrossRefPubMed Castadot P, Lee JA, Parraga A, Geets X, Macq B, Gregoire V. Comparison of 12 deformable registration strategies in adaptive radiation therapy for the treatment of head and neck tumors. Radiother Oncol. 2008;89:1–12.CrossRefPubMed
16.
go back to reference Lee C, Langen KM, Lu W, Haimerl J, Schnarr E, Ruchala KJ, et al. Evaluation of geometric changes of parotid glands during head and neck cancer radiotherapy using daily MVCT and automatic deformable registration. Radiother Oncol. 2008;89:81–8.CrossRefPubMed Lee C, Langen KM, Lu W, Haimerl J, Schnarr E, Ruchala KJ, et al. Evaluation of geometric changes of parotid glands during head and neck cancer radiotherapy using daily MVCT and automatic deformable registration. Radiother Oncol. 2008;89:81–8.CrossRefPubMed
17.
go back to reference Huger S, Graff P, Harter V, Marchesi V, Royer P, Diaz JC, et al. Evaluation of the Block Matching deformable registration algorithm in the field of head-and-neck adaptive radiotherapy. Phys Med. 2014;30(3):301–8.CrossRefPubMed Huger S, Graff P, Harter V, Marchesi V, Royer P, Diaz JC, et al. Evaluation of the Block Matching deformable registration algorithm in the field of head-and-neck adaptive radiotherapy. Phys Med. 2014;30(3):301–8.CrossRefPubMed
18.
go back to reference Mohamed AS, Ruangskul MN, Awan MJ, Baron CA, Kalpathy-Cramer J, Castillo R, et al. Quality Assurance Assessment of Diagnostic and Radiation Therapy-Simulation CT Image Registration for Head and Neck Radiation Therapy: Anatomic Region of Interest-based Comparison of Rigid and Deformable Algorithms. Radiology. 2015;274(3):752–63.CrossRefPubMed Mohamed AS, Ruangskul MN, Awan MJ, Baron CA, Kalpathy-Cramer J, Castillo R, et al. Quality Assurance Assessment of Diagnostic and Radiation Therapy-Simulation CT Image Registration for Head and Neck Radiation Therapy: Anatomic Region of Interest-based Comparison of Rigid and Deformable Algorithms. Radiology. 2015;274(3):752–63.CrossRefPubMed
19.
go back to reference Johnson B, Sales L, Winston A, Liao J, Laramore G, Parvathaneni U. Fabrication of customized tongue-displacing stents: considerations for use in patients receiving head and neck radiotherapy. J Am Dent Assoc. 2013;144:594–600.CrossRefPubMed Johnson B, Sales L, Winston A, Liao J, Laramore G, Parvathaneni U. Fabrication of customized tongue-displacing stents: considerations for use in patients receiving head and neck radiotherapy. J Am Dent Assoc. 2013;144:594–600.CrossRefPubMed
20.
go back to reference Goel A, Tripathi A, Chand P, Singh SV, Pant MC, Nagar A. Use of positioning stents in lingual carcinoma patients subjected to radiotherapy. Int J Prosthodont. 2010;23:450–2.PubMed Goel A, Tripathi A, Chand P, Singh SV, Pant MC, Nagar A. Use of positioning stents in lingual carcinoma patients subjected to radiotherapy. Int J Prosthodont. 2010;23:450–2.PubMed
21.
go back to reference Tao R, Fuller CD, Gunn GB, Beadle BM, Phan J, Frank SJ, et al. Real-time peer review quality assurance conferences incorporating physical examination for head-and-neck cancer radiation therapy result in clinically meaningful target volume alteration: results of a prospective volumetric analysis. Int J Radiat Oncol Biol Phys. 2012;84:S151.CrossRef Tao R, Fuller CD, Gunn GB, Beadle BM, Phan J, Frank SJ, et al. Real-time peer review quality assurance conferences incorporating physical examination for head-and-neck cancer radiation therapy result in clinically meaningful target volume alteration: results of a prospective volumetric analysis. Int J Radiat Oncol Biol Phys. 2012;84:S151.CrossRef
22.
go back to reference Rosenthal DI, Asper JA, Barker JL, Garden AS, Chao KSC, Morrison WH, et al. Importance of patient examination to clinical quality assurance in head and neck radiation oncology. Head Neck J Sci Spec. 2006;28:967–73.CrossRef Rosenthal DI, Asper JA, Barker JL, Garden AS, Chao KSC, Morrison WH, et al. Importance of patient examination to clinical quality assurance in head and neck radiation oncology. Head Neck J Sci Spec. 2006;28:967–73.CrossRef
23.
go back to reference International Commission on Radiation Units and Measurements. ICRU Report 62. Prescribing, recording, and reporting photon beam therapy (Supplement to ICRU Report 50)ICRU. Bethesda: Oxford University Press, Oxford, United Kingdom; 1999. International Commission on Radiation Units and Measurements. ICRU Report 62. Prescribing, recording, and reporting photon beam therapy (Supplement to ICRU Report 50)ICRU. Bethesda: Oxford University Press, Oxford, United Kingdom; 1999.
24.
go back to reference International Commission on Radiation Units and Measurements. ICRU Report 50. Prescribing, recording, and reporting photon beam therapy ICRU. Bethesda: Oxford University Press, Oxford, United Kingdom; 1993. International Commission on Radiation Units and Measurements. ICRU Report 50. Prescribing, recording, and reporting photon beam therapy ICRU. Bethesda: Oxford University Press, Oxford, United Kingdom; 1993.
25.
go back to reference International Commission on Radiation Units and Measurements. ICRU Report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). J ICRU. 2010;10:1–106. International Commission on Radiation Units and Measurements. ICRU Report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). J ICRU. 2010;10:1–106.
26.
go back to reference Espana S, Paganetti H. Uncertainties in planned dose due to the limited voxel size of the planning CT when treating lung tumors with proton therapy. Phys Med Biol. 2011;56:3843–56.CrossRefPubMed Espana S, Paganetti H. Uncertainties in planned dose due to the limited voxel size of the planning CT when treating lung tumors with proton therapy. Phys Med Biol. 2011;56:3843–56.CrossRefPubMed
Metadata
Title
Methodology for analysis and reporting patterns of failure in the Era of IMRT: head and neck cancer applications
Authors
Abdallah S. R. Mohamed
David I. Rosenthal
Musaddiq J. Awan
Adam S. Garden
Esengul Kocak-Uzel
Abdelaziz M. Belal
Ahmed G. El-Gowily
Jack Phan
Beth M. Beadle
G. Brandon Gunn
Clifton D. Fuller
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2016
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-016-0678-7

Other articles of this Issue 1/2016

Radiation Oncology 1/2016 Go to the issue