Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2024

Open Access 01-12-2024 | Cardiomyopathy | Research

A novel pathogenic variant in the carnitine transporter gene, SLC22A5, in association with metabolic carnitine deficiency and cardiomyopathy features

Authors: Amir Ghaffari Jolfayi, Niloofar Naderi, Serwa Ghasemi, Alireza Salmanipour, Sara Adimi, Majid Maleki, Samira Kalayinia

Published in: BMC Cardiovascular Disorders | Issue 1/2024

Login to get access

Abstract

Background

Primary carnitine deficiency (PCD) denotes low carnitine levels with an autosomal recessive pattern of inheritance. Cardiomyopathy is the most common cardiac symptom in patients with PCD, and early diagnosis can prevent complications. Next-generation sequencing can identify genetic variants attributable to PCD efficiently.

Objective

We aimed to detect the genetic cause of the early manifestations of hypertrophic cardiomyopathy and metabolic abnormalities in an Iranian family.

Methods

We herein describe an 8-year-old boy with symptoms of weakness and lethargy diagnosed with PCD through clinical evaluations, lab tests, echocardiography, and cardiac magnetic resonance imaging. The candidate variant was confirmed through whole-exome sequencing, polymerase chain reaction, and direct Sanger sequencing. The binding efficacy of normal and mutant protein-ligand complexes were evaluated via structural modeling and docking studies.

Results

Clinical evaluations, echocardiography, and cardiac magnetic resonance imaging findings revealed hypertrophic cardiomyopathy as a clinical presentation of PCD. Whole-exome sequencing identified a new homozygous variant, SLC22A5 (NM_003060.4), c.821G > A: p.Trp274Ter, associated with carnitine transport. Docking analysis highlighted the impact of the variant on carnitine transport, further indicating its potential role in PCD development.

Conclusions

The c.821G > A: p.Trp274Ter variant in SLC22A5 potentially acted as a pathogenic factor by reducing the binding affinity of organic carnitine transporter type 2 proteins for carnitine. So, the c.821G > A variant may be associated with carnitine deficiency, metabolic abnormalities, and cardiomyopathic characteristics.
Literature
1.
go back to reference Longo N. Primary Carnitine Deficiency and Newborn Screening for disorders of the Carnitine cycle. Ann Nutr Metab. 2016;68(Suppl 3):5–9.CrossRefPubMed Longo N. Primary Carnitine Deficiency and Newborn Screening for disorders of the Carnitine cycle. Ann Nutr Metab. 2016;68(Suppl 3):5–9.CrossRefPubMed
2.
go back to reference Therrell BL Jr., Lloyd-Puryear MA, Camp KM, Mann MY. Inborn errors of metabolism identified via newborn screening: ten-year incidence data and costs of nutritional interventions for research agenda planning. Mol Genet Metab. 2014;113(1–2):14–26.CrossRefPubMedPubMedCentral Therrell BL Jr., Lloyd-Puryear MA, Camp KM, Mann MY. Inborn errors of metabolism identified via newborn screening: ten-year incidence data and costs of nutritional interventions for research agenda planning. Mol Genet Metab. 2014;113(1–2):14–26.CrossRefPubMedPubMedCentral
3.
go back to reference Rasmussen J, Nielsen OW, Janzen N, Duno M, Gislason H, Køber L, et al. Carnitine levels in 26,462 individuals from the nationwide screening program for primary carnitine deficiency in the Faroe Islands. J Inherit Metab Dis. 2014;37(2):215–22.CrossRefPubMed Rasmussen J, Nielsen OW, Janzen N, Duno M, Gislason H, Køber L, et al. Carnitine levels in 26,462 individuals from the nationwide screening program for primary carnitine deficiency in the Faroe Islands. J Inherit Metab Dis. 2014;37(2):215–22.CrossRefPubMed
4.
go back to reference Tomlinson S, Atherton J, Prasad S. Primary Carnitine Deficiency: a rare, reversible metabolic cardiomyopathy. Case Rep Cardiol. 2018;2018:3232105.PubMedPubMedCentral Tomlinson S, Atherton J, Prasad S. Primary Carnitine Deficiency: a rare, reversible metabolic cardiomyopathy. Case Rep Cardiol. 2018;2018:3232105.PubMedPubMedCentral
5.
go back to reference Shibbani K, Fahed AC, Al-Shaar L, Arabi M, Nemer G, Bitar F, et al. Primary carnitine deficiency: novel mutations and insights into the cardiac phenotype. Clin Genet. 2014;85(2):127–37.CrossRefPubMed Shibbani K, Fahed AC, Al-Shaar L, Arabi M, Nemer G, Bitar F, et al. Primary carnitine deficiency: novel mutations and insights into the cardiac phenotype. Clin Genet. 2014;85(2):127–37.CrossRefPubMed
6.
go back to reference Kilic M, Ozgül RK, Coşkun T, Yücel D, Karaca M, Sivri HS, et al. Identification of mutations and evaluation of cardiomyopathy in Turkish patients with primary carnitine deficiency. JIMD Rep. 2012;3:17–23.CrossRefPubMed Kilic M, Ozgül RK, Coşkun T, Yücel D, Karaca M, Sivri HS, et al. Identification of mutations and evaluation of cardiomyopathy in Turkish patients with primary carnitine deficiency. JIMD Rep. 2012;3:17–23.CrossRefPubMed
7.
go back to reference Tamai I. Pharmacological and pathophysiological roles of carnitine/organic cation transporters (OCTNs: SLC22A4, SLC22A5 and Slc22a21). Biopharm Drug Dispos. 2013;34(1):29–44.CrossRefPubMed Tamai I. Pharmacological and pathophysiological roles of carnitine/organic cation transporters (OCTNs: SLC22A4, SLC22A5 and Slc22a21). Biopharm Drug Dispos. 2013;34(1):29–44.CrossRefPubMed
8.
go back to reference (OMIM®) OMIiM. SOLUTE CARRIER FAMILY 22 (ORGANIC CATION TRANSPORTER). MEMBER 5; SLC22A5. (OMIM®) OMIiM. SOLUTE CARRIER FAMILY 22 (ORGANIC CATION TRANSPORTER). MEMBER 5; SLC22A5.
9.
go back to reference Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, et al. Integration of cardiac proteome biology and medicine by a specialized knowledgebase. Circ Res. 2013;113(9):1043–53.CrossRefPubMedPubMedCentral Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, et al. Integration of cardiac proteome biology and medicine by a specialized knowledgebase. Circ Res. 2013;113(9):1043–53.CrossRefPubMedPubMedCentral
11.
go back to reference Mazzaccara C, Lombardi R, Mirra B, Barretta F, Esposito MV, Uomo F et al. Next-generation sequencing gene panels in Inheritable cardiomyopathies and channelopathies: prevalence of pathogenic variants and variants of unknown significance in uncommon genes. Biomolecules. 2022;12(10). Mazzaccara C, Lombardi R, Mirra B, Barretta F, Esposito MV, Uomo F et al. Next-generation sequencing gene panels in Inheritable cardiomyopathies and channelopathies: prevalence of pathogenic variants and variants of unknown significance in uncommon genes. Biomolecules. 2022;12(10).
12.
go back to reference Zhao Y, Fang LT, Shen TW, Choudhari S, Talsania K, Chen X, et al. Whole genome and exome sequencing reference datasets from a multi-center and cross-platform benchmark study. Sci data. 2021;8(1):296.CrossRefPubMedPubMedCentral Zhao Y, Fang LT, Shen TW, Choudhari S, Talsania K, Chen X, et al. Whole genome and exome sequencing reference datasets from a multi-center and cross-platform benchmark study. Sci data. 2021;8(1):296.CrossRefPubMedPubMedCentral
13.
go back to reference Lahrouchi N, Lodder EM, Mansouri M, Tadros R, Zniber L, Adadi N, et al. Exome sequencing identifies primary carnitine deficiency in a family with cardiomyopathy and sudden death. Eur J Hum Genetics: EJHG. 2017;25(6):783–7.CrossRefPubMed Lahrouchi N, Lodder EM, Mansouri M, Tadros R, Zniber L, Adadi N, et al. Exome sequencing identifies primary carnitine deficiency in a family with cardiomyopathy and sudden death. Eur J Hum Genetics: EJHG. 2017;25(6):783–7.CrossRefPubMed
14.
go back to reference Matsuishi T, Hirata K, Terasawa K, Kato H, Yoshino M, Ohtaki E, et al. Successful carnitine treatment in two siblings having lipid storage myopathy with hypertrophic cardiomyopathy. Neuropediatrics. 1985;16(1):6–12.CrossRefPubMed Matsuishi T, Hirata K, Terasawa K, Kato H, Yoshino M, Ohtaki E, et al. Successful carnitine treatment in two siblings having lipid storage myopathy with hypertrophic cardiomyopathy. Neuropediatrics. 1985;16(1):6–12.CrossRefPubMed
15.
go back to reference Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19(6):679–82.CrossRefPubMedPubMedCentral Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19(6):679–82.CrossRefPubMedPubMedCentral
16.
go back to reference Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, et al. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins. 2009;77(Suppl 9):114–22.CrossRefPubMedPubMedCentral Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, et al. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins. 2009;77(Suppl 9):114–22.CrossRefPubMedPubMedCentral
17.
go back to reference Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python Bindings. J Chem Inf Model. 2021;61(8):3891–8.CrossRefPubMedPubMedCentral Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python Bindings. J Chem Inf Model. 2021;61(8):3891–8.CrossRefPubMedPubMedCentral
18.
go back to reference Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61.CrossRefPubMedPubMedCentral Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61.CrossRefPubMedPubMedCentral
19.
go back to reference Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8(2):127–34.CrossRefPubMed Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8(2):127–34.CrossRefPubMed
20.
21.
go back to reference Spiekerkoetter U, Huener G, Baykal T, Demirkol M, Duran M, Wanders R, et al. Silent and symptomatic primary carnitine deficiency within the same family due toidentical mutations in the organic cation/carnitine transporter OCTN2. J Inherit Metab Dis. 2003;26:613–5.CrossRefPubMed Spiekerkoetter U, Huener G, Baykal T, Demirkol M, Duran M, Wanders R, et al. Silent and symptomatic primary carnitine deficiency within the same family due toidentical mutations in the organic cation/carnitine transporter OCTN2. J Inherit Metab Dis. 2003;26:613–5.CrossRefPubMed
22.
go back to reference Kilic M, Özgül RK, Coşkun T, Yücel D, Karaca M, Sivri HS, et al. Identification of mutations and evaluation of Cardiomyopathy in Turkish patients with primary Carnitine Deficiency. JIMD Reports - Case and Research Reports, 2011/3. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. pp. 17–23. Kilic M, Özgül RK, Coşkun T, Yücel D, Karaca M, Sivri HS, et al. Identification of mutations and evaluation of Cardiomyopathy in Turkish patients with primary Carnitine Deficiency. JIMD Reports - Case and Research Reports, 2011/3. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. pp. 17–23.
23.
go back to reference Yamak A, Bitar F, Karam P, Nemer G. Exclusive cardiac dysfunction in familial primary carnitine deficiency cases: a genotype–phenotype correlation. Clin Genet. 2007;72(1):59–62.CrossRefPubMed Yamak A, Bitar F, Karam P, Nemer G. Exclusive cardiac dysfunction in familial primary carnitine deficiency cases: a genotype–phenotype correlation. Clin Genet. 2007;72(1):59–62.CrossRefPubMed
24.
go back to reference Schulze A, Lindner M, Kohlmüller D, Olgemöller K, Mayatepek E, Hoffmann GF. Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: results, outcome, and implications. Pediatrics. 2003;111(6 Pt 1):1399–406.CrossRefPubMed Schulze A, Lindner M, Kohlmüller D, Olgemöller K, Mayatepek E, Hoffmann GF. Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: results, outcome, and implications. Pediatrics. 2003;111(6 Pt 1):1399–406.CrossRefPubMed
25.
go back to reference Longo N, di Amat C, Pasquali M, editors. Disorders of carnitine transport and the carnitine cycle. American Journal of Medical Genetics Part C: seminars in Medical Genetics. Wiley Online Library; 2006. Longo N, di Amat C, Pasquali M, editors. Disorders of carnitine transport and the carnitine cycle. American Journal of Medical Genetics Part C: seminars in Medical Genetics. Wiley Online Library; 2006.
26.
go back to reference Antunes MO, Scudeler TL. Hypertrophic cardiomyopathy. Int J Cardiol Heart Vasculature. 2020;27:100503.CrossRef Antunes MO, Scudeler TL. Hypertrophic cardiomyopathy. Int J Cardiol Heart Vasculature. 2020;27:100503.CrossRef
27.
go back to reference Ino T, Sherwood WG, Benson LN, Wilson GJ, Freedom RM, Rowe RD. Cardiac manifestations in disorders of fat and carnitine metabolism in infancy. J Am Coll Cardiol. 1988;11(6):1301–8.CrossRefPubMed Ino T, Sherwood WG, Benson LN, Wilson GJ, Freedom RM, Rowe RD. Cardiac manifestations in disorders of fat and carnitine metabolism in infancy. J Am Coll Cardiol. 1988;11(6):1301–8.CrossRefPubMed
28.
go back to reference García-Vielma C, Lazalde-Córdova LG, Arzola-Hernández JC, González-Aceves EN, López-Zertuche H, Guzmán-Delgado NE, et al. Identification of variants in genes associated with hypertrophic cardiomyopathy in Mexican patients. Molecular genetics and genomics: MGG; 2023. García-Vielma C, Lazalde-Córdova LG, Arzola-Hernández JC, González-Aceves EN, López-Zertuche H, Guzmán-Delgado NE, et al. Identification of variants in genes associated with hypertrophic cardiomyopathy in Mexican patients. Molecular genetics and genomics: MGG; 2023.
29.
go back to reference Deswal S, Bijarnia-Mahay S, Manocha V, Hara K, Shigematsu Y, Saxena R, et al. Primary Carnitine Deficiency - A Rare Treatable cause of cardiomyopathy and massive hepatomegaly. Indian J Pediatr. 2017;84(1):83–5.CrossRefPubMed Deswal S, Bijarnia-Mahay S, Manocha V, Hara K, Shigematsu Y, Saxena R, et al. Primary Carnitine Deficiency - A Rare Treatable cause of cardiomyopathy and massive hepatomegaly. Indian J Pediatr. 2017;84(1):83–5.CrossRefPubMed
30.
go back to reference Li FY, El-Hattab AW, Bawle EV, Boles RG, Schmitt ES, Scaglia F, et al. Molecular spectrum of SLC22A5 (OCTN2) gene mutations detected in 143 subjects evaluated for systemic carnitine deficiency. Hum Mutat. 2010;31(8):E1632–E51.CrossRefPubMed Li FY, El-Hattab AW, Bawle EV, Boles RG, Schmitt ES, Scaglia F, et al. Molecular spectrum of SLC22A5 (OCTN2) gene mutations detected in 143 subjects evaluated for systemic carnitine deficiency. Hum Mutat. 2010;31(8):E1632–E51.CrossRefPubMed
31.
go back to reference Dobrowolski SF, McKinney JT, Amat C, Giak Sim K, Wilcken B, Longo N. Validation of dye-binding/high‐resolution thermal denaturation for the identification of mutations in the SLC22A5 gene. Human Mutation. 2005;25(3):306 – 13. Dobrowolski SF, McKinney JT, Amat C, Giak Sim K, Wilcken B, Longo N. Validation of dye-binding/high‐resolution thermal denaturation for the identification of mutations in the SLC22A5 gene. Human Mutation. 2005;25(3):306 – 13.
32.
go back to reference Wang Y, Korman SH, Ye J, Gargus JJ, Gutman A, Taroni F, et al. Phenotype and genotype variation in primary carnitine deficiency. Genet Sci. 2001;3(6):387–92. Wang Y, Korman SH, Ye J, Gargus JJ, Gutman A, Taroni F, et al. Phenotype and genotype variation in primary carnitine deficiency. Genet Sci. 2001;3(6):387–92.
33.
go back to reference El-Hattab AW, Li F-Y, Shen J, Powell BR, Bawle EV, Adams DJ, et al. Maternal systemic primary carnitine deficiency uncovered by newborn screening: clinical, biochemical, and molecular aspects. Genet Sci. 2010;12(1):19–24. El-Hattab AW, Li F-Y, Shen J, Powell BR, Bawle EV, Adams DJ, et al. Maternal systemic primary carnitine deficiency uncovered by newborn screening: clinical, biochemical, and molecular aspects. Genet Sci. 2010;12(1):19–24.
34.
go back to reference Frigeni M, Balakrishnan B, Yin X, Calderon FR, Mao R, Pasquali M, et al. Functional and molecular studies in primary carnitine deficiency. Hum Mutat. 2017;38(12):1684–99.CrossRefPubMedPubMedCentral Frigeni M, Balakrishnan B, Yin X, Calderon FR, Mao R, Pasquali M, et al. Functional and molecular studies in primary carnitine deficiency. Hum Mutat. 2017;38(12):1684–99.CrossRefPubMedPubMedCentral
35.
go back to reference Lee N-C, Tang NL-S, Chien Y-H, Chen C-A, Lin S-J, Chiu P-C, et al. Diagnoses of newborns and mothers with carnitine uptake defects through newborn screening. Mol Genet Metab. 2010;100(1):46–50.CrossRefPubMed Lee N-C, Tang NL-S, Chien Y-H, Chen C-A, Lin S-J, Chiu P-C, et al. Diagnoses of newborns and mothers with carnitine uptake defects through newborn screening. Mol Genet Metab. 2010;100(1):46–50.CrossRefPubMed
36.
go back to reference Rose EC, di San Filippo CA, Ndukwe Erlingsson UC, Ardon O, Pasquali M, Longo N. Genotype–phenotype correlation in primary carnitine deficiency. Hum Mutat. 2012;33(1):118–23.CrossRefPubMed Rose EC, di San Filippo CA, Ndukwe Erlingsson UC, Ardon O, Pasquali M, Longo N. Genotype–phenotype correlation in primary carnitine deficiency. Hum Mutat. 2012;33(1):118–23.CrossRefPubMed
37.
go back to reference Rahbeeni Z, Vaz F, Al-Hussein K, Bucknall M, Ruiter J, Wanders R, et al. Identification of two novel mutations in OCTN2 from two Saudi patients with systemic carnitine deficiency. J Inherit Metab Dis. 2002;25:363–9.CrossRefPubMed Rahbeeni Z, Vaz F, Al-Hussein K, Bucknall M, Ruiter J, Wanders R, et al. Identification of two novel mutations in OCTN2 from two Saudi patients with systemic carnitine deficiency. J Inherit Metab Dis. 2002;25:363–9.CrossRefPubMed
38.
go back to reference Lamhonwah AM, Olpin SE, Pollitt RJ, Vianey-Saban C, Divry P, Guffon N, et al. Novel OCTN2 mutations: no genotype–phenotype correlations: early carnitine therapy prevents cardiomyopathy. Am J Med Genet. 2002;111(3):271–84.CrossRefPubMed Lamhonwah AM, Olpin SE, Pollitt RJ, Vianey-Saban C, Divry P, Guffon N, et al. Novel OCTN2 mutations: no genotype–phenotype correlations: early carnitine therapy prevents cardiomyopathy. Am J Med Genet. 2002;111(3):271–84.CrossRefPubMed
39.
go back to reference Rasmussen J, Nielsen OW, Janzen N, Duno M, Køber L, Steuerwald U, et al. Carnitine levels in 26,462 individuals from the nationwide screening program for primary carnitine deficiency in the Faroe Islands. J Inherit Metab Dis. 2014;37:215–22.CrossRefPubMed Rasmussen J, Nielsen OW, Janzen N, Duno M, Køber L, Steuerwald U, et al. Carnitine levels in 26,462 individuals from the nationwide screening program for primary carnitine deficiency in the Faroe Islands. J Inherit Metab Dis. 2014;37:215–22.CrossRefPubMed
40.
go back to reference Schimmenti LA, Crombez EA, Schwahn BC, Heese BA, Wood TC, Schroer RJ, et al. Expanded newborn screening identifies maternal primary carnitine deficiency. Mol Genet Metab. 2007;90(4):441–5.CrossRefPubMed Schimmenti LA, Crombez EA, Schwahn BC, Heese BA, Wood TC, Schroer RJ, et al. Expanded newborn screening identifies maternal primary carnitine deficiency. Mol Genet Metab. 2007;90(4):441–5.CrossRefPubMed
41.
go back to reference Mutlu-Albayrak H, Bene J, Oflaz MB, Tanyalçın T, Çaksen H, Melegh B. Identification of SLC22A5 gene mutation in a family with carnitine uptake defect. Case Reports in Genetics. 2015;2015. Mutlu-Albayrak H, Bene J, Oflaz MB, Tanyalçın T, Çaksen H, Melegh B. Identification of SLC22A5 gene mutation in a family with carnitine uptake defect. Case Reports in Genetics. 2015;2015.
Metadata
Title
A novel pathogenic variant in the carnitine transporter gene, SLC22A5, in association with metabolic carnitine deficiency and cardiomyopathy features
Authors
Amir Ghaffari Jolfayi
Niloofar Naderi
Serwa Ghasemi
Alireza Salmanipour
Sara Adimi
Majid Maleki
Samira Kalayinia
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Cardiomyopathy
Published in
BMC Cardiovascular Disorders / Issue 1/2024
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-023-03676-z

Other articles of this Issue 1/2024

BMC Cardiovascular Disorders 1/2024 Go to the issue