Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2024

Open Access 01-12-2024 | Myocardial Infarction | Research

Injectable hydrogel-based combination therapy for myocardial infarction: a systematic review and Meta-analysis of preclinical trials

Authors: Han Gao, Song Liu, Shanshan Qin, Jiali Yang, Tian Yue, Bengui Ye, Yue Tang, Jie Feng, Jun Hou, Dunzhu Danzeng

Published in: BMC Cardiovascular Disorders | Issue 1/2024

Login to get access

Abstract

Introduction

This study evaluates the effectiveness of a combined regimen involving injectable hydrogels for the treatment of experimental myocardial infarction.

Patient concerns

Myocardial infarction is an acute illness that negatively affects quality of life and increases mortality rates. Experimental models of myocardial infarction can aid in disease research by allowing for the development of therapies that effectively manage disease progression and promote tissue repair.

Diagnosis

Experimental animal models of myocardial infarction were established using the ligation method on the anterior descending branch of the left coronary artery (LAD).

Interventions

The efficacy of intracardiac injection of hydrogels, combined with cells, drugs, cytokines, extracellular vesicles, or nucleic acid therapies, was evaluated to assess the functional and morphological improvements in the post-infarction heart achieved through the combined hydrogel regimen.

Outcomes

A literature review was conducted using PubMed, Web of Science, Scopus, and Cochrane databases. A total of 83 papers, including studies on 1332 experimental animals (rats, mice, rabbits, sheep, and pigs), were included in the meta-analysis based on the inclusion and exclusion criteria.
The overall effect size observed in the group receiving combined hydrogel therapy, compared to the group receiving hydrogel treatment alone, resulted in an ejection fraction (EF) improvement of 8.87% [95% confidence interval (CI): 7.53, 10.21] and a fractional shortening (FS) improvement of 6.31% [95% CI: 5.94, 6.67] in rat models, while in mice models, the improvements were 16.45% [95% CI: 11.29, 21.61] for EF and 5.68% [95% CI: 5.15, 6.22] for FS.
The most significant improvements in EF (rats: MD = 9.63% [95% CI: 4.02, 15.23]; mice: MD = 23.93% [95% CI: 17.52, 30.84]) and FS (rats: MD = 8.55% [95% CI: 2.54, 14.56]; mice: MD = 5.68% [95% CI: 5.15, 6.22]) were observed when extracellular vesicle therapy was used. Although there have been significant results in large animal experiments, the number of studies conducted in this area is limited.

Conclusion

The present study demonstrates that combining hydrogel with other therapies effectively improves heart function and morphology. Further preclinical research using large animal models is necessary for additional study and validation.

Graphical abstract

Appendix
Available only for authorised users
Literature
10.
go back to reference Rao SV, Zeymer U, Douglas PS, Al-Khalidi H, Liu J, Gibson CM, et al. A randomized, double-blind, placebo-controlled trial to evaluate the safety and effectiveness of intracoronary application of a novel bioabsorbable cardiac matrix for the prevention of ventricular remodeling after large ST-segment elevation myocardial infarction: rationale and design of the PRESERVATION I trial. Am Heart J. 2015;170(5):929–37. https://doi.org/10.1016/j.ahj.2015.08.017.CrossRefPubMed Rao SV, Zeymer U, Douglas PS, Al-Khalidi H, Liu J, Gibson CM, et al. A randomized, double-blind, placebo-controlled trial to evaluate the safety and effectiveness of intracoronary application of a novel bioabsorbable cardiac matrix for the prevention of ventricular remodeling after large ST-segment elevation myocardial infarction: rationale and design of the PRESERVATION I trial. Am Heart J. 2015;170(5):929–37. https://​doi.​org/​10.​1016/​j.​ahj.​2015.​08.​017.CrossRefPubMed
14.
go back to reference Diaz JH. Should Immunonutrition become routine in critically ill patients? A systematic review of the evidence. Surv Anesthesiol. 2002;46(3):129–30.CrossRef Diaz JH. Should Immunonutrition become routine in critically ill patients? A systematic review of the evidence. Surv Anesthesiol. 2002;46(3):129–30.CrossRef
15.
go back to reference Chen KY, Ma B, Wang YN, Chen CH, Zhao YQ, Zheng JX, et al. SYRCLE's risk of Bias tool for animal studies. Chin J Evid-Based Med. 2014;14(10):1281–5. Chen KY, Ma B, Wang YN, Chen CH, Zhao YQ, Zheng JX, et al. SYRCLE's risk of Bias tool for animal studies. Chin J Evid-Based Med. 2014;14(10):1281–5.
22.
go back to reference Cohen JE, Goldstone AB, Wang H, Purcell BP, Shudo Y, MacArthur JW, et al. A bioengineered Neuregulin-hydrogel therapy reduces scar size and enhances post-infarct ventricular contractility in an ovine large animal model. J Cardiovasc Dev Dis. 2020;7(4) https://doi.org/10.3390/jcdd7040053. Cohen JE, Goldstone AB, Wang H, Purcell BP, Shudo Y, MacArthur JW, et al. A bioengineered Neuregulin-hydrogel therapy reduces scar size and enhances post-infarct ventricular contractility in an ovine large animal model. J Cardiovasc Dev Dis. 2020;7(4) https://​doi.​org/​10.​3390/​jcdd7040053.
33.
go back to reference Cimenci CE, Blackburn NJR, Sedlakova V, Pupkaite J, Munoz M, Rotstein BH, et al. Combined methylglyoxal scavenger and collagen hydrogel therapy prevents adverse remodeling and improves cardiac function post-myocardial infarction. Adv Funct Mater. 2022;32(1):2108630.CrossRef Cimenci CE, Blackburn NJR, Sedlakova V, Pupkaite J, Munoz M, Rotstein BH, et al. Combined methylglyoxal scavenger and collagen hydrogel therapy prevents adverse remodeling and improves cardiac function post-myocardial infarction. Adv Funct Mater. 2022;32(1):2108630.CrossRef
36.
go back to reference Kim CW, Kim CJ, Park E-H, Ryu S, Lee Y, Kim E, et al. MSC-encapsulating in situ cross-linkable gelatin hydrogels to promote myocardial repair. ACS Applied Bio Materials. 2020;3(3):1646–55.PubMedCrossRef Kim CW, Kim CJ, Park E-H, Ryu S, Lee Y, Kim E, et al. MSC-encapsulating in situ cross-linkable gelatin hydrogels to promote myocardial repair. ACS Applied Bio Materials. 2020;3(3):1646–55.PubMedCrossRef
37.
go back to reference Chen C-H, Wang S-S, Wei EIH, Chu T-Y, Hsieh PCH. Hyaluronan enhances bone marrow cell therapy for myocardial repair after infarction. Mol Ther. 2013;21(3):670–9.PubMedPubMedCentralCrossRef Chen C-H, Wang S-S, Wei EIH, Chu T-Y, Hsieh PCH. Hyaluronan enhances bone marrow cell therapy for myocardial repair after infarction. Mol Ther. 2013;21(3):670–9.PubMedPubMedCentralCrossRef
39.
go back to reference Projahn D, Simsekyilmaz S, Singh S, Kanzler I, Kramp BK, Langer M, et al. Controlled intramyocardial release of engineered chemokines by biodegradable hydrogels as a treatment approach of myocardial infarction. J Cell Mol Med. 2014;18(5):790–800.PubMedPubMedCentralCrossRef Projahn D, Simsekyilmaz S, Singh S, Kanzler I, Kramp BK, Langer M, et al. Controlled intramyocardial release of engineered chemokines by biodegradable hydrogels as a treatment approach of myocardial infarction. J Cell Mol Med. 2014;18(5):790–800.PubMedPubMedCentralCrossRef
40.
go back to reference Mathieu E, Lamirault G, Toquet C, Lhommet P, Rederstorff E, Sourice S, et al. Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction. PLoS One. 2012;7(12):e51991.ADSPubMedPubMedCentralCrossRef Mathieu E, Lamirault G, Toquet C, Lhommet P, Rederstorff E, Sourice S, et al. Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction. PLoS One. 2012;7(12):e51991.ADSPubMedPubMedCentralCrossRef
41.
go back to reference Xu G, Wang X, Deng C, Teng X, Suuronen EJ, Shen Z, et al. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo (acryloyl carbonate)–poly (ethylene glycol)–oligo (acryloyl carbonate) copolymer for functional cardiac regeneration. Acta Biomater. 2015;15:55–64.PubMedCrossRef Xu G, Wang X, Deng C, Teng X, Suuronen EJ, Shen Z, et al. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo (acryloyl carbonate)–poly (ethylene glycol)–oligo (acryloyl carbonate) copolymer for functional cardiac regeneration. Acta Biomater. 2015;15:55–64.PubMedCrossRef
42.
go back to reference Chen G, Li J, Song M, Wu Z, Zhang W, Wang Z, et al. A mixed component supramolecular hydrogel to improve mice cardiac function and alleviate ventricular remodeling after acute myocardial infarction. Adv Funct Mater. 2017;27(34):1701798.CrossRef Chen G, Li J, Song M, Wu Z, Zhang W, Wang Z, et al. A mixed component supramolecular hydrogel to improve mice cardiac function and alleviate ventricular remodeling after acute myocardial infarction. Adv Funct Mater. 2017;27(34):1701798.CrossRef
43.
go back to reference Awada HK, Long DW, Wang Z, Hwang MP, Kim K, Wang Y. A single injection of protein-loaded coacervate-gel significantly improves cardiac function post infarction. Biomaterials. 2017;125:65–80.PubMedPubMedCentralCrossRef Awada HK, Long DW, Wang Z, Hwang MP, Kim K, Wang Y. A single injection of protein-loaded coacervate-gel significantly improves cardiac function post infarction. Biomaterials. 2017;125:65–80.PubMedPubMedCentralCrossRef
44.
go back to reference Wang H, Zhang X, Li Y, Ma Y, Zhang Y, Liu Z, et al. Improved myocardial performance in infarcted rat heart by co-injection of basic fibroblast growth factor with temperature-responsive chitosan hydrogel. J Heart Lung Transplant. 2010;29(8):881–7.PubMedCrossRef Wang H, Zhang X, Li Y, Ma Y, Zhang Y, Liu Z, et al. Improved myocardial performance in infarcted rat heart by co-injection of basic fibroblast growth factor with temperature-responsive chitosan hydrogel. J Heart Lung Transplant. 2010;29(8):881–7.PubMedCrossRef
45.
go back to reference Wang H, Liu Z, Li D, Guo X, Kasper FK, Duan C, et al. Injectable biodegradable hydrogels for embryonic stem cell transplantation: improved cardiac remodelling and function of myocardial infarction. J Cell Mol Med. 2012;16(6):1310–20.PubMedPubMedCentralCrossRef Wang H, Liu Z, Li D, Guo X, Kasper FK, Duan C, et al. Injectable biodegradable hydrogels for embryonic stem cell transplantation: improved cardiac remodelling and function of myocardial infarction. J Cell Mol Med. 2012;16(6):1310–20.PubMedPubMedCentralCrossRef
46.
go back to reference Wang H, Shi J, Wang Y, Yin Y, Wang L, Liu J, et al. Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction. Biomaterials. 2014;35(13):3986–98.PubMedCrossRef Wang H, Shi J, Wang Y, Yin Y, Wang L, Liu J, et al. Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction. Biomaterials. 2014;35(13):3986–98.PubMedCrossRef
47.
go back to reference Ding H, Ding J, Liu Q, Lin J, He M, Wu X, et al. Mesenchymal stem cells encapsulated in a reactive oxygen species-scavenging and O2-generating injectable hydrogel for myocardial infarction treatment. Chem Eng J. 2022;433:133511.CrossRef Ding H, Ding J, Liu Q, Lin J, He M, Wu X, et al. Mesenchymal stem cells encapsulated in a reactive oxygen species-scavenging and O2-generating injectable hydrogel for myocardial infarction treatment. Chem Eng J. 2022;433:133511.CrossRef
48.
go back to reference Li H, Gao J, Shang Y, Hua Y, Ye M, Yang Z, et al. Folic acid derived hydrogel enhances the survival and promotes therapeutic efficacy of iPS cells for acute myocardial infarction. ACS Appl Mater Interfaces. 2018;10(29):24459–68.PubMedCrossRef Li H, Gao J, Shang Y, Hua Y, Ye M, Yang Z, et al. Folic acid derived hydrogel enhances the survival and promotes therapeutic efficacy of iPS cells for acute myocardial infarction. ACS Appl Mater Interfaces. 2018;10(29):24459–68.PubMedCrossRef
49.
go back to reference Zhu H, Li X, Yuan M, Wan W, Hu M, Wang X, et al. Intramyocardial delivery of bFGF with a biodegradable and thermosensitive hydrogel improves angiogenesis and cardio-protection in infarcted myocardium. Experimental and therapeutic medicine. 2017;14(4):3609–15.PubMedPubMedCentralCrossRef Zhu H, Li X, Yuan M, Wan W, Hu M, Wang X, et al. Intramyocardial delivery of bFGF with a biodegradable and thermosensitive hydrogel improves angiogenesis and cardio-protection in infarcted myocardium. Experimental and therapeutic medicine. 2017;14(4):3609–15.PubMedPubMedCentralCrossRef
50.
go back to reference Cohen JE, Purcell BP, MacArthur JW Jr, Mu A, Shudo Y, Patel JB, et al. A bioengineered hydrogel system enables targeted and sustained intramyocardial delivery of neuregulin, activating the cardiomyocyte cell cycle and enhancing ventricular function in a murine model of ischemic cardiomyopathy. Circ Heart Fail. 2014;7(4):619–26.PubMedPubMedCentralCrossRef Cohen JE, Purcell BP, MacArthur JW Jr, Mu A, Shudo Y, Patel JB, et al. A bioengineered hydrogel system enables targeted and sustained intramyocardial delivery of neuregulin, activating the cardiomyocyte cell cycle and enhancing ventricular function in a murine model of ischemic cardiomyopathy. Circ Heart Fail. 2014;7(4):619–26.PubMedPubMedCentralCrossRef
51.
go back to reference Ding J, Yao Y, Li J, Duan Y, Nakkala JR, Feng X, et al. A reactive oxygen species scavenging and O2 generating injectable hydrogel for myocardial infarction treatment in vivo. Small. 2020;16(48):2005038.CrossRef Ding J, Yao Y, Li J, Duan Y, Nakkala JR, Feng X, et al. A reactive oxygen species scavenging and O2 generating injectable hydrogel for myocardial infarction treatment in vivo. Small. 2020;16(48):2005038.CrossRef
52.
go back to reference Zhou J, Liu W, Zhao X, Xian Y, Wu W, Zhang X, et al. Natural melanin/alginate hydrogels achieve cardiac repair through ROS scavenging and macrophage polarization. Advanced Science. 2021;8(20):2100505.PubMedPubMedCentralCrossRef Zhou J, Liu W, Zhao X, Xian Y, Wu W, Zhang X, et al. Natural melanin/alginate hydrogels achieve cardiac repair through ROS scavenging and macrophage polarization. Advanced Science. 2021;8(20):2100505.PubMedPubMedCentralCrossRef
53.
go back to reference Chen J, Han X, Deng J, Zhang J, Li L, Ni J, et al. An injectable hydrogel based on phenylboronic acid hyperbranched macromer encapsulating gold nanorods and Astragaloside IV nanodrug for myocardial infarction. Chem Eng J. 2021;413:127423.CrossRef Chen J, Han X, Deng J, Zhang J, Li L, Ni J, et al. An injectable hydrogel based on phenylboronic acid hyperbranched macromer encapsulating gold nanorods and Astragaloside IV nanodrug for myocardial infarction. Chem Eng J. 2021;413:127423.CrossRef
54.
go back to reference Chen J, Guo R, Zhou Q, Wang T. Injection of composite with bone marrow-derived mesenchymal stem cells and a novel synthetic hydrogel after myocardial infarction: a protective role in left ventricle function. Kaohsiung J Med Sci. 2014;30(4):173–80.PubMedCrossRef Chen J, Guo R, Zhou Q, Wang T. Injection of composite with bone marrow-derived mesenchymal stem cells and a novel synthetic hydrogel after myocardial infarction: a protective role in left ventricle function. Kaohsiung J Med Sci. 2014;30(4):173–80.PubMedCrossRef
55.
go back to reference Wu J, Zeng F, Huang X-P, Chung JCY, Konecny F, Weisel RD, et al. Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials. 2011;32(2):579–86.PubMedCrossRef Wu J, Zeng F, Huang X-P, Chung JCY, Konecny F, Weisel RD, et al. Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials. 2011;32(2):579–86.PubMedCrossRef
56.
go back to reference Khan K, Makhoul G, Yu B, Jalani G, Derish I, Rutman AK, et al. Amniotic stromal stem cell-loaded hydrogel repairs cardiac tissue in infarcted rat hearts via paracrine mediators. J Tissue Eng Regen Med. 2022;16(2):110–27.PubMedCrossRef Khan K, Makhoul G, Yu B, Jalani G, Derish I, Rutman AK, et al. Amniotic stromal stem cell-loaded hydrogel repairs cardiac tissue in infarcted rat hearts via paracrine mediators. J Tissue Eng Regen Med. 2022;16(2):110–27.PubMedCrossRef
57.
go back to reference Cheng K, Blusztajn A, Shen D, Li T-S, Sun B, Galang G, et al. Functional performance of human cardiosphere-derived cells delivered in an in situ polymerizable hyaluronan-gelatin hydrogel. Biomaterials. 2012;33(21):5317–24.PubMedPubMedCentralCrossRef Cheng K, Blusztajn A, Shen D, Li T-S, Sun B, Galang G, et al. Functional performance of human cardiosphere-derived cells delivered in an in situ polymerizable hyaluronan-gelatin hydrogel. Biomaterials. 2012;33(21):5317–24.PubMedPubMedCentralCrossRef
58.
go back to reference Zhu K, Jiang D, Wang K, Zheng D, Zhu Z, Shao F, et al. Conductive nanocomposite hydrogel and mesenchymal stem cells for the treatment of myocardial infarction and non-invasive monitoring via PET/CT. Journal of Nanobiotechnology. 2022;20(1):1–16.CrossRef Zhu K, Jiang D, Wang K, Zheng D, Zhu Z, Shao F, et al. Conductive nanocomposite hydrogel and mesenchymal stem cells for the treatment of myocardial infarction and non-invasive monitoring via PET/CT. Journal of Nanobiotechnology. 2022;20(1):1–16.CrossRef
59.
go back to reference Wu K, Wang Y, Yang H, Chen Y, Lu K, Wu Y, et al. Injectable Decellularized extracellular matrix hydrogel containing stromal cell-derived factor 1 promotes transplanted Cardiomyocyte engraftment and functional regeneration after myocardial infarction. ACS Appl Mater Interfaces. 2023;15(2):2578–89.PubMedCrossRef Wu K, Wang Y, Yang H, Chen Y, Lu K, Wu Y, et al. Injectable Decellularized extracellular matrix hydrogel containing stromal cell-derived factor 1 promotes transplanted Cardiomyocyte engraftment and functional regeneration after myocardial infarction. ACS Appl Mater Interfaces. 2023;15(2):2578–89.PubMedCrossRef
60.
go back to reference Montazeri L, Sobat M, Kowsari-Esfahan R, Rabbani S, Ansari H, Barekat M, et al. Vascular endothelial growth factor sustained delivery augmented cell therapy outcomes of cardiac progenitor cells for myocardial infarction. J Tissue Eng Regen Med. 2020;14(12):1939–44.PubMedCrossRef Montazeri L, Sobat M, Kowsari-Esfahan R, Rabbani S, Ansari H, Barekat M, et al. Vascular endothelial growth factor sustained delivery augmented cell therapy outcomes of cardiac progenitor cells for myocardial infarction. J Tissue Eng Regen Med. 2020;14(12):1939–44.PubMedCrossRef
61.
go back to reference Reis LA, Chiu LLY, Wu J, Feric N, Laschinger C, Momen A, et al. Hydrogels with integrin-binding angiopoietin-1–derived peptide, QHREDGS, for treatment of acute myocardial infarction. Circulation Heart Failure. 2015;8(2):333–41.PubMedCrossRef Reis LA, Chiu LLY, Wu J, Feric N, Laschinger C, Momen A, et al. Hydrogels with integrin-binding angiopoietin-1–derived peptide, QHREDGS, for treatment of acute myocardial infarction. Circulation Heart Failure. 2015;8(2):333–41.PubMedCrossRef
62.
go back to reference Liu Y, Li P, Qiao C, Wu T, Sun X, Wen M, et al. Chitosan hydrogel enhances the therapeutic efficacy of bone marrow–derived mesenchymal stem cells for myocardial infarction by alleviating vascular endothelial cell pyroptosis. J Cardiovasc Pharmacol. 2020;75(1):75.PubMedCrossRef Liu Y, Li P, Qiao C, Wu T, Sun X, Wen M, et al. Chitosan hydrogel enhances the therapeutic efficacy of bone marrow–derived mesenchymal stem cells for myocardial infarction by alleviating vascular endothelial cell pyroptosis. J Cardiovasc Pharmacol. 2020;75(1):75.PubMedCrossRef
63.
go back to reference Vong LB, Bui TQ, Tomita T, Sakamoto H, Hiramatsu Y, Nagasaki Y. Novel angiogenesis therapeutics by redox injectable hydrogel-regulation of local nitric oxide generation for effective cardiovascular therapy. Biomaterials. 2018;167:143–52.PubMedCrossRef Vong LB, Bui TQ, Tomita T, Sakamoto H, Hiramatsu Y, Nagasaki Y. Novel angiogenesis therapeutics by redox injectable hydrogel-regulation of local nitric oxide generation for effective cardiovascular therapy. Biomaterials. 2018;167:143–52.PubMedCrossRef
64.
go back to reference Gao L, Yi M, Xing M, Li H, Zhou Y, Xu Q, et al. In situ activated mesenchymal stem cells (MSCs) by bioactive hydrogels for myocardial infarction treatment. J Mater Chem B. 2020;8(34):7713–22.PubMedCrossRef Gao L, Yi M, Xing M, Li H, Zhou Y, Xu Q, et al. In situ activated mesenchymal stem cells (MSCs) by bioactive hydrogels for myocardial infarction treatment. J Mater Chem B. 2020;8(34):7713–22.PubMedCrossRef
65.
go back to reference Ciuffreda MC, Malpasso G, Chokoza C, Bezuidenhout D, Goetsch KP, Mura M, et al. Synthetic extracellular matrix mimic hydrogel improves efficacy of mesenchymal stromal cell therapy for ischemic cardiomyopathy. Acta Biomater. 2018;70:71–83.PubMedCrossRef Ciuffreda MC, Malpasso G, Chokoza C, Bezuidenhout D, Goetsch KP, Mura M, et al. Synthetic extracellular matrix mimic hydrogel improves efficacy of mesenchymal stromal cell therapy for ischemic cardiomyopathy. Acta Biomater. 2018;70:71–83.PubMedCrossRef
66.
go back to reference Chang M-Y, Huang T-T, Chen C-H, Cheng B, Hwang S-M, Hsieh PCH. Injection of human cord blood cells with hyaluronan improves postinfarction cardiac repair in pigs. Stem Cells Transl Med. 2016;5(1):56–66.PubMedCrossRef Chang M-Y, Huang T-T, Chen C-H, Cheng B, Hwang S-M, Hsieh PCH. Injection of human cord blood cells with hyaluronan improves postinfarction cardiac repair in pigs. Stem Cells Transl Med. 2016;5(1):56–66.PubMedCrossRef
67.
go back to reference Chen MH, Chung JJ, Mealy JE, Zaman S, Li EC, Arisi MF, et al. Injectable supramolecular hydrogel/microgel composites for therapeutic delivery. Macromol Biosci. 2019;19(1):1800248.CrossRef Chen MH, Chung JJ, Mealy JE, Zaman S, Li EC, Arisi MF, et al. Injectable supramolecular hydrogel/microgel composites for therapeutic delivery. Macromol Biosci. 2019;19(1):1800248.CrossRef
68.
go back to reference Song M, Jang H, Lee J, Kim JH, Kim SH, Sun K, et al. Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide ac-SDKP. Biomaterials. 2014;35(8):2436–45.PubMedCrossRef Song M, Jang H, Lee J, Kim JH, Kim SH, Sun K, et al. Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide ac-SDKP. Biomaterials. 2014;35(8):2436–45.PubMedCrossRef
69.
go back to reference Qi Q, Zhu Y, Liu G, Yuan Z, Li H, Zhao Q. Local intramyocardial delivery of bioglass with alginate hydrogels for post-infarct myocardial regeneration. Biomed Pharmacother. 2020;129:110382.PubMedCrossRef Qi Q, Zhu Y, Liu G, Yuan Z, Li H, Zhao Q. Local intramyocardial delivery of bioglass with alginate hydrogels for post-infarct myocardial regeneration. Biomed Pharmacother. 2020;129:110382.PubMedCrossRef
70.
go back to reference Bao R, Tan B, Liang S, Zhang N, Wang W, Liu W. A π-π conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction. Biomaterials. 2017;122:63–71.PubMedCrossRef Bao R, Tan B, Liang S, Zhang N, Wang W, Liu W. A π-π conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction. Biomaterials. 2017;122:63–71.PubMedCrossRef
71.
go back to reference Firoozi S, Pahlavan S, Ghanian M-H, Rabbani S, Tavakol S, Barekat M, et al. A cell-free SDKP-conjugated self-assembling peptide hydrogel sufficient for improvement of myocardial infarction. Biomolecules. 2020;10(2):205.PubMedPubMedCentralCrossRef Firoozi S, Pahlavan S, Ghanian M-H, Rabbani S, Tavakol S, Barekat M, et al. A cell-free SDKP-conjugated self-assembling peptide hydrogel sufficient for improvement of myocardial infarction. Biomolecules. 2020;10(2):205.PubMedPubMedCentralCrossRef
72.
go back to reference Shafei S, Khanmohammadi M, Ghanbari H, Nooshabadi VT, Tafti SHA, Rabbani S, et al. Effectiveness of exosome mediated miR-126 and miR-146a delivery on cardiac tissue regeneration. Cell Tissue Res. 2022;390(1):71–92.PubMedCrossRef Shafei S, Khanmohammadi M, Ghanbari H, Nooshabadi VT, Tafti SHA, Rabbani S, et al. Effectiveness of exosome mediated miR-126 and miR-146a delivery on cardiac tissue regeneration. Cell Tissue Res. 2022;390(1):71–92.PubMedCrossRef
73.
go back to reference Lü S, Wang H, Lu W, Liu S, Lin Q, Li D, et al. Both the transplantation of somatic cell nuclear transfer-and fertilization-derived mouse embryonic stem cells with temperature-responsive chitosan hydrogel improve myocardial performance in infarcted rat hearts. Tissue Eng A. 2010;16(4):1303–15.CrossRef Lü S, Wang H, Lu W, Liu S, Lin Q, Li D, et al. Both the transplantation of somatic cell nuclear transfer-and fertilization-derived mouse embryonic stem cells with temperature-responsive chitosan hydrogel improve myocardial performance in infarcted rat hearts. Tissue Eng A. 2010;16(4):1303–15.CrossRef
74.
go back to reference Bao S, Lu Y, Zhang J, Xue L, Zhang Y, Wang P, et al. Rapid improvement of heart repair in rats after myocardial infarction by precise magnetic stimulation on the vagus nerve with an injectable magnetic hydrogel. Nanoscale. 2023;15(7):3532–41.PubMedCrossRef Bao S, Lu Y, Zhang J, Xue L, Zhang Y, Wang P, et al. Rapid improvement of heart repair in rats after myocardial infarction by precise magnetic stimulation on the vagus nerve with an injectable magnetic hydrogel. Nanoscale. 2023;15(7):3532–41.PubMedCrossRef
75.
go back to reference Wang T, Jiang X-J, Lin T, Ren S, Li X-Y, Zhang X-Z, et al. The inhibition of postinfarct ventricle remodeling without polycythaemia following local sustained intramyocardial delivery of erythropoietin within a supramolecular hydrogel. Biomaterials. 2009;30(25):4161–7.PubMedCrossRef Wang T, Jiang X-J, Lin T, Ren S, Li X-Y, Zhang X-Z, et al. The inhibition of postinfarct ventricle remodeling without polycythaemia following local sustained intramyocardial delivery of erythropoietin within a supramolecular hydrogel. Biomaterials. 2009;30(25):4161–7.PubMedCrossRef
76.
go back to reference Wang T, Jiang X-J, Tang Q-Z, Li X-Y, Lin T, Wu D-Q, et al. Bone marrow stem cells implantation with α-cyclodextrin/MPEG–PCL–MPEG hydrogel improves cardiac function after myocardial infarction. Acta Biomater. 2009;5(8):2939–44.PubMedCrossRef Wang T, Jiang X-J, Tang Q-Z, Li X-Y, Lin T, Wu D-Q, et al. Bone marrow stem cells implantation with α-cyclodextrin/MPEG–PCL–MPEG hydrogel improves cardiac function after myocardial infarction. Acta Biomater. 2009;5(8):2939–44.PubMedCrossRef
77.
go back to reference Vu TD, Pal SN, Ti L-K, Martinez EC, Rufaihah AJ, Ling LH, et al. An autologous platelet-rich plasma hydrogel compound restores left ventricular structure, function and ameliorates adverse remodeling in a minimally invasive large animal myocardial restoration model: a translational approach: Vu and Pal “myocardial repair: PRP, hydrogel and supplements”. Biomaterials. 2015;45:27–35.PubMedCrossRef Vu TD, Pal SN, Ti L-K, Martinez EC, Rufaihah AJ, Ling LH, et al. An autologous platelet-rich plasma hydrogel compound restores left ventricular structure, function and ameliorates adverse remodeling in a minimally invasive large animal myocardial restoration model: a translational approach: Vu and Pal “myocardial repair: PRP, hydrogel and supplements”. Biomaterials. 2015;45:27–35.PubMedCrossRef
78.
go back to reference Kraehenbuehl TP, Ferreira LS, Hayward AM, Nahrendorf M, Van Der Vlies AJ, Vasile E, et al. Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials. 2011;32(4):1102–9.PubMedCrossRef Kraehenbuehl TP, Ferreira LS, Hayward AM, Nahrendorf M, Van Der Vlies AJ, Vasile E, et al. Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials. 2011;32(4):1102–9.PubMedCrossRef
79.
go back to reference Wan WG, Jiang XJ, Li XY, Zhang C, Yi X, Ren S, et al. Enhanced cardioprotective effects mediated by plasmid containing the short-hairpin RNA of angiotensin converting enzyme with a biodegradable hydrogel after myocardial infarction. J Biomed Mater Res A. 2014;102(10):3452–8.PubMedCrossRef Wan WG, Jiang XJ, Li XY, Zhang C, Yi X, Ren S, et al. Enhanced cardioprotective effects mediated by plasmid containing the short-hairpin RNA of angiotensin converting enzyme with a biodegradable hydrogel after myocardial infarction. J Biomed Mater Res A. 2014;102(10):3452–8.PubMedCrossRef
80.
go back to reference Wang W, Tan B, Chen J, Bao R, Zhang X, Liang S, et al. An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction. Biomaterials. 2018;160:69–81.PubMedCrossRef Wang W, Tan B, Chen J, Bao R, Zhang X, Liang S, et al. An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction. Biomaterials. 2018;160:69–81.PubMedCrossRef
81.
go back to reference Lu W-N, Lü S-H, Wang H-B, Li D-X, Duan C-M, Liu Z-Q, et al. Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng A. 2009;15(6):1437–47.CrossRef Lu W-N, Lü S-H, Wang H-B, Li D-X, Duan C-M, Liu Z-Q, et al. Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng A. 2009;15(6):1437–47.CrossRef
82.
go back to reference Li X, Zhou J, Liu Z, Chen J, Lü S, Sun H, et al. A PNIPAAm-based thermosensitive hydrogel containing SWCNTs for stem cell transplantation in myocardial repair. Biomaterials. 2014;35(22):5679–88.PubMedCrossRef Li X, Zhou J, Liu Z, Chen J, Lü S, Sun H, et al. A PNIPAAm-based thermosensitive hydrogel containing SWCNTs for stem cell transplantation in myocardial repair. Biomaterials. 2014;35(22):5679–88.PubMedCrossRef
83.
go back to reference Li X-Y, Wang T, Jiang X-J, Lin T, Wu D-Q, Zhang X-Z, et al. Injectable hydrogel helps bone marrow-derived mononuclear cells restore infarcted myocardium. Cardiology. 2010;115(3):194–9.PubMedCrossRef Li X-Y, Wang T, Jiang X-J, Lin T, Wu D-Q, Zhang X-Z, et al. Injectable hydrogel helps bone marrow-derived mononuclear cells restore infarcted myocardium. Cardiology. 2010;115(3):194–9.PubMedCrossRef
84.
go back to reference Hu X, Ning X, Zhao Q, Zhang Z, Zhang C, Xie M, et al. Islet-1 mesenchymal stem cells-derived exosome-incorporated angiogenin-1 hydrogel for enhanced acute myocardial infarction therapy. ACS Appl Mater Interfaces. 2022;14(32):36289–303.PubMedCrossRef Hu X, Ning X, Zhao Q, Zhang Z, Zhang C, Xie M, et al. Islet-1 mesenchymal stem cells-derived exosome-incorporated angiogenin-1 hydrogel for enhanced acute myocardial infarction therapy. ACS Appl Mater Interfaces. 2022;14(32):36289–303.PubMedCrossRef
85.
go back to reference Li Y, Chen X, Jin R, Chen L, Dang M, Cao H, et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Sci Adv. 2021;7(9):eabd6740.ADSPubMedPubMedCentralCrossRef Li Y, Chen X, Jin R, Chen L, Dang M, Cao H, et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Sci Adv. 2021;7(9):eabd6740.ADSPubMedPubMedCentralCrossRef
86.
go back to reference Liu Y, Zhang X, Wu T, Liu B, Yang J, Liu W. Chinese herb-crosslinked hydrogel bearing rBMSCs-laden polyzwitterion microgels: self-adaptive manipulation of micromilieu and stemness maintenance for restoring infarcted myocardium. Nano Today. 2021;41:101306.CrossRef Liu Y, Zhang X, Wu T, Liu B, Yang J, Liu W. Chinese herb-crosslinked hydrogel bearing rBMSCs-laden polyzwitterion microgels: self-adaptive manipulation of micromilieu and stemness maintenance for restoring infarcted myocardium. Nano Today. 2021;41:101306.CrossRef
87.
go back to reference Wu Y, Chang T, Chen W, Wang X, Li J, Chen Y, et al. Release of VEGF and BMP9 from injectable alginate based composite hydrogel for treatment of myocardial infarction. Bioactive materials. 2021;6(2):520–8.PubMedCrossRef Wu Y, Chang T, Chen W, Wang X, Li J, Chen Y, et al. Release of VEGF and BMP9 from injectable alginate based composite hydrogel for treatment of myocardial infarction. Bioactive materials. 2021;6(2):520–8.PubMedCrossRef
88.
go back to reference Chen Y, Li C, Li C, Chen J, Li Y, Xie H, et al. Tailorable hydrogel improves retention and cardioprotection of intramyocardial transplanted mesenchymal stem cells for the treatment of acute myocardial infarction in mice. J Am Heart Assoc. 2020;9(2):e013784.PubMedPubMedCentralCrossRef Chen Y, Li C, Li C, Chen J, Li Y, Xie H, et al. Tailorable hydrogel improves retention and cardioprotection of intramyocardial transplanted mesenchymal stem cells for the treatment of acute myocardial infarction in mice. J Am Heart Assoc. 2020;9(2):e013784.PubMedPubMedCentralCrossRef
89.
go back to reference Zhang Y, Cai Z, Shen Y, Lu Q, Gao W, Zhong X, et al. Hydrogel-load exosomes derived from dendritic cells improve cardiac function via Treg cells and the polarization of macrophages following myocardial infarction. Journal of nanobiotechnology. 2021;19:1–16.CrossRef Zhang Y, Cai Z, Shen Y, Lu Q, Gao W, Zhong X, et al. Hydrogel-load exosomes derived from dendritic cells improve cardiac function via Treg cells and the polarization of macrophages following myocardial infarction. Journal of nanobiotechnology. 2021;19:1–16.CrossRef
90.
go back to reference Chen Y, Shi J, Zhang Y, Miao J, Zhao Z, Jin X, et al. An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction. J Mater Chem B. 2020;8(5):980–92.PubMedCrossRef Chen Y, Shi J, Zhang Y, Miao J, Zhao Z, Jin X, et al. An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction. J Mater Chem B. 2020;8(5):980–92.PubMedCrossRef
91.
go back to reference Xia Y, Zhu K, Lai H, Lang M, Xiao Y, Lian S, et al. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation. Exp Biol Med. 2015;240(5):593–600.CrossRef Xia Y, Zhu K, Lai H, Lang M, Xiao Y, Lian S, et al. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation. Exp Biol Med. 2015;240(5):593–600.CrossRef
92.
go back to reference Sakakibara Y, Nishimura K, Tambara K, Yamamoto M, Lu F, Tabata Y, et al. Prevascularization with gelatin microspheres containing basic fibroblast growth factor enhances the benefits of cardiomyocyte transplantation. J Thorac Cardiovasc Surg. 2002;124(1):50–6.PubMedCrossRef Sakakibara Y, Nishimura K, Tambara K, Yamamoto M, Lu F, Tabata Y, et al. Prevascularization with gelatin microspheres containing basic fibroblast growth factor enhances the benefits of cardiomyocyte transplantation. J Thorac Cardiovasc Surg. 2002;124(1):50–6.PubMedCrossRef
93.
go back to reference Zheng Z, Guo Z, Zhong F, Wang B, Liu L, Ma W, et al. A dual crosslinked hydrogel-mediated integrated peptides and BMSC therapy for myocardial regeneration. J Control Release. 2022;347:127–42.PubMedCrossRef Zheng Z, Guo Z, Zhong F, Wang B, Liu L, Ma W, et al. A dual crosslinked hydrogel-mediated integrated peptides and BMSC therapy for myocardial regeneration. J Control Release. 2022;347:127–42.PubMedCrossRef
94.
go back to reference Zheng Z, Lei C, Liu H, Jiang M, Zhou Z, Zhao Y, et al. A ROS-responsive liposomal composite hydrogel integrating improved mitochondrial function and pro-angiogenesis for efficient treatment of myocardial infarction. Advanced Healthcare Materials. 2022;11(19):2200990.CrossRef Zheng Z, Lei C, Liu H, Jiang M, Zhou Z, Zhao Y, et al. A ROS-responsive liposomal composite hydrogel integrating improved mitochondrial function and pro-angiogenesis for efficient treatment of myocardial infarction. Advanced Healthcare Materials. 2022;11(19):2200990.CrossRef
95.
go back to reference Liu Z, Wang H, Wang Y, Lin Q, Yao A, Cao F, et al. The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials. 2012;33(11):3093–106.PubMedCrossRef Liu Z, Wang H, Wang Y, Lin Q, Yao A, Cao F, et al. The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials. 2012;33(11):3093–106.PubMedCrossRef
96.
go back to reference Yuan Z, Tsou Y-H, Zhang X-Q, Huang S, Yang Y, Gao M, et al. Injectable citrate-based hydrogel as an angiogenic biomaterial improves cardiac repair after myocardial infarction. ACS Appl Mater Interfaces. 2019;11(42):38429–39.PubMedCrossRef Yuan Z, Tsou Y-H, Zhang X-Q, Huang S, Yang Y, Gao M, et al. Injectable citrate-based hydrogel as an angiogenic biomaterial improves cardiac repair after myocardial infarction. ACS Appl Mater Interfaces. 2019;11(42):38429–39.PubMedCrossRef
97.
go back to reference Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR, et al. The current landscape of nucleic acid therapeutics. Nat Nanotechnol. 2021;16(6):630–43.ADSPubMedCrossRef Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR, et al. The current landscape of nucleic acid therapeutics. Nat Nanotechnol. 2021;16(6):630–43.ADSPubMedCrossRef
98.
go back to reference Huang Q, Zou Y, Arno MC, Chen S, Wang T, Gao J, et al. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev. 2017;46(20):6255–75.PubMedCrossRef Huang Q, Zou Y, Arno MC, Chen S, Wang T, Gao J, et al. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev. 2017;46(20):6255–75.PubMedCrossRef
99.
go back to reference Ma J, Huang C. Composition and mechanism of three-dimensional hydrogel system in regulating stem cell fate. Tissue Eng B Rev. 2020;26(6):498–518.CrossRef Ma J, Huang C. Composition and mechanism of three-dimensional hydrogel system in regulating stem cell fate. Tissue Eng B Rev. 2020;26(6):498–518.CrossRef
100.
go back to reference Fan L, Liu C, Chen X, Zou Y, Zhou Z, Lin C, et al. Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair. ACS Appl Mater Interfaces. 2018;10(21):17742–55.PubMedCrossRef Fan L, Liu C, Chen X, Zou Y, Zhou Z, Lin C, et al. Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair. ACS Appl Mater Interfaces. 2018;10(21):17742–55.PubMedCrossRef
101.
go back to reference Pang Q-M, Deng K-Q, Zhang M, Wu X-C, Yang R-L, Fu S-P, et al. Multiple strategies enhance the efficacy of MSCs transplantation for spinal cord injury. Biomed Pharmacother. 2023;157:114011.PubMedCrossRef Pang Q-M, Deng K-Q, Zhang M, Wu X-C, Yang R-L, Fu S-P, et al. Multiple strategies enhance the efficacy of MSCs transplantation for spinal cord injury. Biomed Pharmacother. 2023;157:114011.PubMedCrossRef
102.
go back to reference Bhattacharjee M, Escobar Ivirico JL, Kan H-M, Shah S, Otsuka T, Bordett R, et al. Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment. Proc Natl Acad Sci. 2022;119(4):e2120968119.PubMedPubMedCentralCrossRef Bhattacharjee M, Escobar Ivirico JL, Kan H-M, Shah S, Otsuka T, Bordett R, et al. Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment. Proc Natl Acad Sci. 2022;119(4):e2120968119.PubMedPubMedCentralCrossRef
103.
go back to reference Huang J-N, Cao H, Liang K-Y, Cui L-P, Li Y. Combination therapy of hydrogel and stem cells for diabetic wound healing. World J Diabetes. 2022;13(11):949.PubMedPubMedCentralCrossRef Huang J-N, Cao H, Liang K-Y, Cui L-P, Li Y. Combination therapy of hydrogel and stem cells for diabetic wound healing. World J Diabetes. 2022;13(11):949.PubMedPubMedCentralCrossRef
104.
go back to reference Goldfracht I, Efraim Y, Shinnawi R, Kovalev E, Huber I, Gepstein A, et al. Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications. Acta Biomater. 2019;92:145–59.PubMedCrossRef Goldfracht I, Efraim Y, Shinnawi R, Kovalev E, Huber I, Gepstein A, et al. Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications. Acta Biomater. 2019;92:145–59.PubMedCrossRef
105.
go back to reference Hong Y, Zhou F, Hua Y, Zhang X, Ni C, Pan D, et al. A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds. Nat Commun. 2019;10(1):2060.ADSPubMedPubMedCentralCrossRef Hong Y, Zhou F, Hua Y, Zhang X, Ni C, Pan D, et al. A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds. Nat Commun. 2019;10(1):2060.ADSPubMedPubMedCentralCrossRef
106.
go back to reference Zhang K, Zhao X, Chen X, Wei Y, Du W, Wang Y, et al. Enhanced therapeutic effects of mesenchymal stem cell-derived exosomes with an injectable hydrogel for hindlimb ischemia treatment. ACS Appl Mater Interfaces. 2018;10(36):30081–91.PubMedCrossRef Zhang K, Zhao X, Chen X, Wei Y, Du W, Wang Y, et al. Enhanced therapeutic effects of mesenchymal stem cell-derived exosomes with an injectable hydrogel for hindlimb ischemia treatment. ACS Appl Mater Interfaces. 2018;10(36):30081–91.PubMedCrossRef
107.
go back to reference Hwang NS, Zhang C, Hwang YS, Varghese S. Mesenchymal stem cell differentiation and roles in regenerative medicine. Wiley Interdiscip Rev Syst Biol Med. 2009;1(1):97–106.PubMedCrossRef Hwang NS, Zhang C, Hwang YS, Varghese S. Mesenchymal stem cell differentiation and roles in regenerative medicine. Wiley Interdiscip Rev Syst Biol Med. 2009;1(1):97–106.PubMedCrossRef
109.
go back to reference Duran JM, Makarewich CA, Sharp TE, Starosta T, Zhu F, Hoffman NE, et al. Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms. Circ Res. 2013;113(5):539–52.PubMedCrossRef Duran JM, Makarewich CA, Sharp TE, Starosta T, Zhu F, Hoffman NE, et al. Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms. Circ Res. 2013;113(5):539–52.PubMedCrossRef
110.
go back to reference Qazi TH, Mooney DJ, Duda GN, Geissler S. Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs. Biomaterials. 2017;140:103–14.PubMedCrossRef Qazi TH, Mooney DJ, Duda GN, Geissler S. Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs. Biomaterials. 2017;140:103–14.PubMedCrossRef
111.
go back to reference Liu L, Gao J, Yuan Y, Chang Q, Liao Y, Lu F. Hypoxia preconditioned human adipose derived mesenchymal stem cells enhance angiogenic potential via secretion of increased VEGF and bFGF. Cell Biol Int. 2013;37(6):551–60.PubMedCrossRef Liu L, Gao J, Yuan Y, Chang Q, Liao Y, Lu F. Hypoxia preconditioned human adipose derived mesenchymal stem cells enhance angiogenic potential via secretion of increased VEGF and bFGF. Cell Biol Int. 2013;37(6):551–60.PubMedCrossRef
112.
go back to reference Zhang J, Chen G-H, Wang Y-w, Zhao J, Duan H-f, Liao L-M, et al. Hydrogen peroxide preconditioning enhances the therapeutic efficacy of Wharton's jelly mesenchymal stem cells after myocardial infarction. Chin Med J. 2012;125(19):3472–8.PubMed Zhang J, Chen G-H, Wang Y-w, Zhao J, Duan H-f, Liao L-M, et al. Hydrogen peroxide preconditioning enhances the therapeutic efficacy of Wharton's jelly mesenchymal stem cells after myocardial infarction. Chin Med J. 2012;125(19):3472–8.PubMed
113.
go back to reference Xie X, Sun A, Zhu W, Huang Z, Hu X, Jia J, et al. Transplantation of mesenchymal stem cells preconditioned with hydrogen sulfide enhances repair of myocardial infarction in rats. Tohoku J Exp Med. 2012;226(1):29–36.PubMedCrossRef Xie X, Sun A, Zhu W, Huang Z, Hu X, Jia J, et al. Transplantation of mesenchymal stem cells preconditioned with hydrogen sulfide enhances repair of myocardial infarction in rats. Tohoku J Exp Med. 2012;226(1):29–36.PubMedCrossRef
114.
go back to reference Wisel S, Khan M, Kuppusamy ML, Mohan IK, Chacko SM, Rivera BK, et al. Pharmacological preconditioning of mesenchymal stem cells with trimetazidine (1-[2, 3, 4-trimethoxybenzyl] piperazine) protects hypoxic cells against oxidative stress and enhances recovery of myocardial function in infarcted heart through Bcl-2 expression. J Pharmacol Exp Ther. 2009;329(2):543–50.PubMedPubMedCentralCrossRef Wisel S, Khan M, Kuppusamy ML, Mohan IK, Chacko SM, Rivera BK, et al. Pharmacological preconditioning of mesenchymal stem cells with trimetazidine (1-[2, 3, 4-trimethoxybenzyl] piperazine) protects hypoxic cells against oxidative stress and enhances recovery of myocardial function in infarcted heart through Bcl-2 expression. J Pharmacol Exp Ther. 2009;329(2):543–50.PubMedPubMedCentralCrossRef
115.
go back to reference Yao Y, Zhang F, Wang L, Zhang G, Wang Z, Chen J, et al. Lipopolysaccharide preconditioning enhances the efficacy of mesenchymal stem cells transplantation in a rat model of acute myocardial infarction. J Biomed Sci. 2009;16:1–11.CrossRef Yao Y, Zhang F, Wang L, Zhang G, Wang Z, Chen J, et al. Lipopolysaccharide preconditioning enhances the efficacy of mesenchymal stem cells transplantation in a rat model of acute myocardial infarction. J Biomed Sci. 2009;16:1–11.CrossRef
116.
go back to reference Zhang D, Fan G-C, Zhou X, Zhao T, Pasha Z, Xu M, et al. Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J Mol Cell Cardiol. 2008;44(2):281–92.PubMedCrossRef Zhang D, Fan G-C, Zhou X, Zhao T, Pasha Z, Xu M, et al. Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J Mol Cell Cardiol. 2008;44(2):281–92.PubMedCrossRef
117.
go back to reference Tang JH-C, Titler MG. Evidence-based practice: residency program in gerontological nursing. SLACK Incorporated Thorofare, NJ; 2003. p. 9. Tang JH-C, Titler MG. Evidence-based practice: residency program in gerontological nursing. SLACK Incorporated Thorofare, NJ; 2003. p. 9.
118.
go back to reference Yang Z-j, Chen B, Sheng Z, Zhang D-g, Jia E-z, Wang W, et al. Improvement of heart function in postinfarct heart failure swine models after hepatocyte growth factor gene transfer: comparison of low-, medium-and high-dose groups. Mol Biol Rep. 2010;37:2075–81.PubMedCrossRef Yang Z-j, Chen B, Sheng Z, Zhang D-g, Jia E-z, Wang W, et al. Improvement of heart function in postinfarct heart failure swine models after hepatocyte growth factor gene transfer: comparison of low-, medium-and high-dose groups. Mol Biol Rep. 2010;37:2075–81.PubMedCrossRef
119.
go back to reference Lyu Y, Xie J, Liu Y, Xiao M, Li Y, Yang J, et al. Injectable hyaluronic acid hydrogel loaded with functionalized human mesenchymal stem cell aggregates for repairing infarcted myocardium. ACS Biomaterials Science & Engineering. 2020;6(12):6926–37.CrossRef Lyu Y, Xie J, Liu Y, Xiao M, Li Y, Yang J, et al. Injectable hyaluronic acid hydrogel loaded with functionalized human mesenchymal stem cell aggregates for repairing infarcted myocardium. ACS Biomaterials Science & Engineering. 2020;6(12):6926–37.CrossRef
120.
go back to reference Charron D, Suberbielle-Boissel C, Al-Daccak R. Immunogenicity and allogenicity: a challenge of stem cell therapy. J Cardiovasc Transl Res. 2009;2:130–8.PubMedCrossRef Charron D, Suberbielle-Boissel C, Al-Daccak R. Immunogenicity and allogenicity: a challenge of stem cell therapy. J Cardiovasc Transl Res. 2009;2:130–8.PubMedCrossRef
123.
go back to reference Van Niel G, d'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.PubMedCrossRef Van Niel G, d'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.PubMedCrossRef
125.
go back to reference Nagelkerke A, Ojansivu M, van der Koog L, Whittaker TE, Cunnane EM, Silva AM, et al. Extracellular vesicles for tissue repair and regeneration: evidence, challenges and opportunities. Adv Drug Deliv Rev. 2021;175:113775.PubMedCrossRef Nagelkerke A, Ojansivu M, van der Koog L, Whittaker TE, Cunnane EM, Silva AM, et al. Extracellular vesicles for tissue repair and regeneration: evidence, challenges and opportunities. Adv Drug Deliv Rev. 2021;175:113775.PubMedCrossRef
127.
go back to reference Wang X, Chen Y, Zhao Z, Meng Q, Yu Y, Sun J, et al. Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. J Am Heart Assoc. 2018;7(15):e008737.PubMedPubMedCentralCrossRef Wang X, Chen Y, Zhao Z, Meng Q, Yu Y, Sun J, et al. Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. J Am Heart Assoc. 2018;7(15):e008737.PubMedPubMedCentralCrossRef
128.
go back to reference Lin J, Li J, Huang B, Liu J, Chen X, Chen X-M, et al. Exosomes: novel biomarkers for clinical diagnosis. Sci World J. 2015;2015 Lin J, Li J, Huang B, Liu J, Chen X, Chen X-M, et al. Exosomes: novel biomarkers for clinical diagnosis. Sci World J. 2015;2015
129.
go back to reference Gao X, Ran N, Dong X, Zuo B, Yang R, Zhou Q, et al. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci Transl Med. 2018;10(444):eaat0195.PubMedCrossRef Gao X, Ran N, Dong X, Zuo B, Yang R, Zhou Q, et al. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci Transl Med. 2018;10(444):eaat0195.PubMedCrossRef
130.
go back to reference Wang C, Li Z, Liu Y, Yuan L. Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Theranostics. 2021;11(8):3996–4010.PubMedPubMedCentralCrossRef Wang C, Li Z, Liu Y, Yuan L. Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Theranostics. 2021;11(8):3996–4010.PubMedPubMedCentralCrossRef
131.
go back to reference Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol. 2011;50(2):280–9.PubMedCrossRef Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol. 2011;50(2):280–9.PubMedCrossRef
132.
go back to reference Uemura R, Xu M, Ahmad N, Ashraf M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res. 2006;98(11):1414–21.PubMedCrossRef Uemura R, Xu M, Ahmad N, Ashraf M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res. 2006;98(11):1414–21.PubMedCrossRef
134.
go back to reference Li H, Sureda A, Devkota HP, Pittalà V, Barreca D, Silva AS, et al. Curcumin, the golden spice in treating cardiovascular diseases. Biotechnol Adv. 2020;38:107343.PubMedCrossRef Li H, Sureda A, Devkota HP, Pittalà V, Barreca D, Silva AS, et al. Curcumin, the golden spice in treating cardiovascular diseases. Biotechnol Adv. 2020;38:107343.PubMedCrossRef
135.
go back to reference Le Thi P, Tran DL, Hoang Thi TT, Lee Y, Park KD. Injectable reactive oxygen and nitrogen species-controlling hydrogels for tissue regeneration: current status and future perspectives. Regenerative Biomaterials. 2022;9:rbac069.PubMedPubMedCentralCrossRef Le Thi P, Tran DL, Hoang Thi TT, Lee Y, Park KD. Injectable reactive oxygen and nitrogen species-controlling hydrogels for tissue regeneration: current status and future perspectives. Regenerative Biomaterials. 2022;9:rbac069.PubMedPubMedCentralCrossRef
136.
go back to reference Yang C, Zhu C, Li Y, Li Z, Zhang Z, Xu J, et al. Injectable selenium-containing polymeric hydrogel formulation for effective treatment of myocardial infarction. Frontiers in Bioengineering and Biotechnology. 2022;10:912562.PubMedPubMedCentralCrossRef Yang C, Zhu C, Li Y, Li Z, Zhang Z, Xu J, et al. Injectable selenium-containing polymeric hydrogel formulation for effective treatment of myocardial infarction. Frontiers in Bioengineering and Biotechnology. 2022;10:912562.PubMedPubMedCentralCrossRef
137.
go back to reference Du G, Sun L, Zhao R, Du L, Song J, Zhang L, et al. Polyphenols: potential source of drugs for the treatment of ischaemic heart disease. Pharmacol Ther. 2016;162:23–34.PubMedCrossRef Du G, Sun L, Zhao R, Du L, Song J, Zhang L, et al. Polyphenols: potential source of drugs for the treatment of ischaemic heart disease. Pharmacol Ther. 2016;162:23–34.PubMedCrossRef
138.
go back to reference Baumann MD, Kang CE, Stanwick JC, Wang Y, Kim H, Lapitsky Y, et al. An injectable drug delivery platform for sustained combination therapy. J Control Release. 2009;138(3):205–13.PubMedCrossRef Baumann MD, Kang CE, Stanwick JC, Wang Y, Kim H, Lapitsky Y, et al. An injectable drug delivery platform for sustained combination therapy. J Control Release. 2009;138(3):205–13.PubMedCrossRef
139.
go back to reference Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.PubMedPubMedCentralCrossRef Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.PubMedPubMedCentralCrossRef
140.
go back to reference Hasan A, Khattab A, Islam MA, Hweij KA, Zeitouny J, Waters R, et al. Injectable hydrogels for cardiac tissue repair after myocardial infarction. Advanced Science. 2015;2(11):1500122.PubMedPubMedCentralCrossRef Hasan A, Khattab A, Islam MA, Hweij KA, Zeitouny J, Waters R, et al. Injectable hydrogels for cardiac tissue repair after myocardial infarction. Advanced Science. 2015;2(11):1500122.PubMedPubMedCentralCrossRef
141.
go back to reference Singh RP, Srivastava AK, Yang Y-J, Manchanda G, Kumar A, Yerpude ST, et al. Nucleic acid nanotechnology: trends, opportunities and challenges. Curr Pharm Biotechnol. 2023;24(1):50–60.PubMedCrossRef Singh RP, Srivastava AK, Yang Y-J, Manchanda G, Kumar A, Yerpude ST, et al. Nucleic acid nanotechnology: trends, opportunities and challenges. Curr Pharm Biotechnol. 2023;24(1):50–60.PubMedCrossRef
143.
go back to reference Mo F, Jiang K, Zhao D, Wang Y, Song J, Tan W. DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Deliv Rev. 2021;168:79–98.PubMedCrossRef Mo F, Jiang K, Zhao D, Wang Y, Song J, Tan W. DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Deliv Rev. 2021;168:79–98.PubMedCrossRef
144.
go back to reference Bheri S, Davis ME. Nanoparticle-hydrogel system for post-myocardial infarction delivery of MicroRNA. ACS Nano. 2019;13(9):9702–6.PubMedCrossRef Bheri S, Davis ME. Nanoparticle-hydrogel system for post-myocardial infarction delivery of MicroRNA. ACS Nano. 2019;13(9):9702–6.PubMedCrossRef
145.
go back to reference Poustchi F, Amani H, Ahmadian Z, Niknezhad SV, Mehrabi S, Santos HA, et al. Combination therapy of killing diseases by injectable hydrogels: from concept to medical applications. Advanced healthcare materials. 2021;10(3):2001571.CrossRef Poustchi F, Amani H, Ahmadian Z, Niknezhad SV, Mehrabi S, Santos HA, et al. Combination therapy of killing diseases by injectable hydrogels: from concept to medical applications. Advanced healthcare materials. 2021;10(3):2001571.CrossRef
146.
go back to reference Almawash S, Osman SK, Mustafa G, El Hamd MA. Current and future prospective of injectable hydrogels—design challenges and limitations. Pharmaceuticals. 2022;15(3):371.PubMedPubMedCentralCrossRef Almawash S, Osman SK, Mustafa G, El Hamd MA. Current and future prospective of injectable hydrogels—design challenges and limitations. Pharmaceuticals. 2022;15(3):371.PubMedPubMedCentralCrossRef
147.
go back to reference Vashist A, Kaushik A, Alexis K, Dev Jayant R, Sagar V, Vashist A, et al. Bioresponsive injectable hydrogels for on-demand drug release and tissue engineering. Curr Pharm Des. 2017;23(24):3595–602.PubMedPubMedCentralCrossRef Vashist A, Kaushik A, Alexis K, Dev Jayant R, Sagar V, Vashist A, et al. Bioresponsive injectable hydrogels for on-demand drug release and tissue engineering. Curr Pharm Des. 2017;23(24):3595–602.PubMedPubMedCentralCrossRef
148.
go back to reference Han X, Alu A, Liu H, Shi Y, Wei X, Cai L, et al. Biomaterial-assisted biotherapy: a brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioactive Materials. 2022;17:29–48.PubMedPubMedCentralCrossRef Han X, Alu A, Liu H, Shi Y, Wei X, Cai L, et al. Biomaterial-assisted biotherapy: a brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioactive Materials. 2022;17:29–48.PubMedPubMedCentralCrossRef
150.
go back to reference Xia B, Chen G. Research progress of natural tissue-derived hydrogels for tissue repair and reconstruction. Int J Biol Macromol. 2022;214:480–91.PubMedCrossRef Xia B, Chen G. Research progress of natural tissue-derived hydrogels for tissue repair and reconstruction. Int J Biol Macromol. 2022;214:480–91.PubMedCrossRef
151.
go back to reference Anker SD, Coats AJS, Cristian G, Dragomir D, Pusineri E, Piredda M, et al. A prospective comparison of alginate-hydrogel with standard medical therapy to determine impact on functional capacity and clinical outcomes in patients with advanced heart failure (AUGMENT-HF trial). Eur Heart J. 2015;36(34):2297–309.PubMedPubMedCentralCrossRef Anker SD, Coats AJS, Cristian G, Dragomir D, Pusineri E, Piredda M, et al. A prospective comparison of alginate-hydrogel with standard medical therapy to determine impact on functional capacity and clinical outcomes in patients with advanced heart failure (AUGMENT-HF trial). Eur Heart J. 2015;36(34):2297–309.PubMedPubMedCentralCrossRef
152.
go back to reference Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regenerative. Biomaterials. 2021;8(6):rbab060. Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regenerative. Biomaterials. 2021;8(6):rbab060.
154.
go back to reference Wang S, Ong PJ, Liu S, Thitsartarn W, Tan MJBH, Suwardi A, et al. Recent advances in host-guest supramolecular hydrogels for biomedical applications. Chemistry–An Asian Journal. 2022;17(18):e202200608.PubMedCrossRef Wang S, Ong PJ, Liu S, Thitsartarn W, Tan MJBH, Suwardi A, et al. Recent advances in host-guest supramolecular hydrogels for biomedical applications. Chemistry–An Asian Journal. 2022;17(18):e202200608.PubMedCrossRef
155.
go back to reference Neves SC, Moroni L, Barrias CC, Granja PL. Leveling up hydrogels: hybrid systems in tissue engineering. Trends Biotechnol. 2020;38(3):292–315.PubMedCrossRef Neves SC, Moroni L, Barrias CC, Granja PL. Leveling up hydrogels: hybrid systems in tissue engineering. Trends Biotechnol. 2020;38(3):292–315.PubMedCrossRef
156.
go back to reference Moon KC, Suh HS, Kim KB, Han SK, Young KW, Lee JW, et al. Potential of allogeneic adipose-derived stem cell-hydrogel complex for treating diabetic foot ulcers. Diabetes. 2019;68(4):837–46.PubMedCrossRef Moon KC, Suh HS, Kim KB, Han SK, Young KW, Lee JW, et al. Potential of allogeneic adipose-derived stem cell-hydrogel complex for treating diabetic foot ulcers. Diabetes. 2019;68(4):837–46.PubMedCrossRef
157.
go back to reference Blume PA, Walters J, Payne W, Ayala J, Lantis J. Comparison of negative pressure wound therapy using vacuum-assisted closure with advanced moist wound therapy in the treatment of diabetic foot ulcers: a multicenter randomized controlled trial. Diabetes Care. 2008;31(4):631–6.PubMedCrossRef Blume PA, Walters J, Payne W, Ayala J, Lantis J. Comparison of negative pressure wound therapy using vacuum-assisted closure with advanced moist wound therapy in the treatment of diabetic foot ulcers: a multicenter randomized controlled trial. Diabetes Care. 2008;31(4):631–6.PubMedCrossRef
158.
go back to reference Hoeeg C, Dolatshahi-Pirouz A, Follin B. Injectable hydrogels for improving cardiac cell therapy-in vivo evidence and translational challenges. Gels. 2021;7(1):7.PubMedPubMedCentralCrossRef Hoeeg C, Dolatshahi-Pirouz A, Follin B. Injectable hydrogels for improving cardiac cell therapy-in vivo evidence and translational challenges. Gels. 2021;7(1):7.PubMedPubMedCentralCrossRef
159.
go back to reference He X, Wang Q, Zhao Y, Zhang H, Wang B, Pan J, et al. Effect of Intramyocardial grafting collagen scaffold with mesenchymal stromal cells in patients with chronic ischemic heart disease: a randomized clinical trial. JAMA Netw Open. 2020;3(9):e2016236.PubMedPubMedCentralCrossRef He X, Wang Q, Zhao Y, Zhang H, Wang B, Pan J, et al. Effect of Intramyocardial grafting collagen scaffold with mesenchymal stromal cells in patients with chronic ischemic heart disease: a randomized clinical trial. JAMA Netw Open. 2020;3(9):e2016236.PubMedPubMedCentralCrossRef
Metadata
Title
Injectable hydrogel-based combination therapy for myocardial infarction: a systematic review and Meta-analysis of preclinical trials
Authors
Han Gao
Song Liu
Shanshan Qin
Jiali Yang
Tian Yue
Bengui Ye
Yue Tang
Jie Feng
Jun Hou
Dunzhu Danzeng
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2024
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-024-03742-0

Other articles of this Issue 1/2024

BMC Cardiovascular Disorders 1/2024 Go to the issue