Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2024

Open Access 01-12-2024 | Bronchial Asthma | Research

Causal associations between gut microbiota, metabolites and asthma: a two-sample Mendelian randomization study

Authors: Jingli Li, Chunyi Zhang, Jixian Tang, Meng He, Chunxiao He, Guimei Pu, Lingjing Liu, Jian Sun

Published in: BMC Pulmonary Medicine | Issue 1/2024

Login to get access

Abstract

Background

While several traditional observational studies have suggested associations between gut microbiota and asthma, these studies are limited by factors such as participant selection bias, confounders, and reverse causality. Therefore, the causal relationship between gut microbiota and asthma remains uncertain.

Methods

We performed two-sample bi-directional Mendelian randomization (MR) analysis to investigate the potential causal relationships between gut microbiota and asthma as well as its phenotypes. We also conducted MR analysis to evaluate the causal effect of gut metabolites on asthma. Genetic variants for gut microbiota were obtained from the MiBioGen consortium, GWAS summary statistics for metabolites from the TwinsUK study and KORA study, and GWAS summary statistics for asthma from the FinnGen consortium. The causal associations between gut microbiota, gut metabolites and asthma were examined using inverse variance weighted, maximum likelihood, MR-Egger, weighted median, and weighted model and further validated by MR-Egger intercept test, Cochran’s Q test, and “leave-one-out” sensitivity analysis.

Results

We identified nine gut microbes whose genetically predicted relative abundance causally impacted asthma risk. After FDR correction, significant causal relationships were observed for two of these microbes, namely the class Bacilli (OR = 0.84, 95%CI = 0.76–0.94, p = 1.98 × 10−3) and the order Lactobacillales (OR = 0.83, 95%CI = 0.74–0.94, p = 1.92 × 10−3). Additionally, in a reverse MR analysis, we observed a causal effect of genetically predicted asthma risk on the abundance of nine gut microbes, but these associations were no longer significant after FDR correction. No significant causal effect of gut metabolites was found on asthma.

Conclusions

Our study provides insights into the development mechanism of microbiota-mediated asthma, as well as into the prevention and treatment of asthma through targeting specific gut microbiota.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lommatzsch M, Brusselle GG, Levy ML, et al. A (2) BCD: a concise guide for asthma management. Lancet Respir Med. 2023;S2213-2600(22):00490–8. Lommatzsch M, Brusselle GG, Levy ML, et al. A (2) BCD: a concise guide for asthma management. Lancet Respir Med. 2023;S2213-2600(22):00490–8.
2.
go back to reference Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, Abbasi-Kangevari M, Abbastabar H, Abd-Allah F, Abdelalim A, Abdollahi M. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396(10258):1204–22.CrossRef Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, Abbasi-Kangevari M, Abbastabar H, Abd-Allah F, Abdelalim A, Abdollahi M. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396(10258):1204–22.CrossRef
3.
go back to reference Svanes C, Holloway JW, Krauss-Etschmann S. Preconception origins of asthma, allergies and lung function: the influence of previous generations on the respiratory health of our children. J Intern Med. 2023; Svanes C, Holloway JW, Krauss-Etschmann S. Preconception origins of asthma, allergies and lung function: the influence of previous generations on the respiratory health of our children. J Intern Med. 2023;
4.
go back to reference Wang J, Zhang X, Zhang L, et al. Age-related clinical, inflammatory characteristics, phenotypes and treatment response in asthma. J Allergy Clin Immunol Pract. 2023;11(1):210–9.PubMedCrossRef Wang J, Zhang X, Zhang L, et al. Age-related clinical, inflammatory characteristics, phenotypes and treatment response in asthma. J Allergy Clin Immunol Pract. 2023;11(1):210–9.PubMedCrossRef
6.
go back to reference Chen YC, Chen Y, Lasky-Su J, et al. Environmental and genetic associations with aberrant early-life gut microbial maturation in childhood asthma. J Allergy Clin Immunol. 2023;S0091-6749(23):00038–6. Chen YC, Chen Y, Lasky-Su J, et al. Environmental and genetic associations with aberrant early-life gut microbial maturation in childhood asthma. J Allergy Clin Immunol. 2023;S0091-6749(23):00038–6.
7.
go back to reference Chung KF, Wenzel SE, Brozek JL, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–73.PubMedCrossRef Chung KF, Wenzel SE, Brozek JL, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–73.PubMedCrossRef
8.
go back to reference Floch MH. Intestinal microecology in health and wellness. J Clin Gastroenterol. 2011;45(Suppl):S108–10.PubMedCrossRef Floch MH. Intestinal microecology in health and wellness. J Clin Gastroenterol. 2011;45(Suppl):S108–10.PubMedCrossRef
9.
go back to reference Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343–82.CrossRef Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343–82.CrossRef
10.
go back to reference David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.ADSPubMedCrossRef David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.ADSPubMedCrossRef
11.
go back to reference Avery EG, Bartolomaeus H, Maifeld A, et al. The gut microbiome in hypertension: recent advances and future perspectives. Circ Res. 2021;128(7):934–50.PubMedCrossRef Avery EG, Bartolomaeus H, Maifeld A, et al. The gut microbiome in hypertension: recent advances and future perspectives. Circ Res. 2021;128(7):934–50.PubMedCrossRef
12.
go back to reference Canfora EE, Meex RCR, Venema K, et al. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15(5):261–73.PubMedCrossRef Canfora EE, Meex RCR, Venema K, et al. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15(5):261–73.PubMedCrossRef
13.
go back to reference Ajami NJ, Wargo JA. AI finds microbial signatures in tumours and blood across cancer types. Nature. 2020;579(7800):502–3.ADSPubMedCrossRef Ajami NJ, Wargo JA. AI finds microbial signatures in tumours and blood across cancer types. Nature. 2020;579(7800):502–3.ADSPubMedCrossRef
14.
go back to reference Demirci M, Tokman HB, Uysal HK, et al. Reduced Akkermansia muciniphila and Faecalibacterium prausnitzii levels in the gut microbiota of children with allergic asthma. Allergol Immunopathol (Madr). 2019;47(4):365–71.PubMedCrossRef Demirci M, Tokman HB, Uysal HK, et al. Reduced Akkermansia muciniphila and Faecalibacterium prausnitzii levels in the gut microbiota of children with allergic asthma. Allergol Immunopathol (Madr). 2019;47(4):365–71.PubMedCrossRef
16.
go back to reference Smith GD, Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22.PubMedCrossRef Smith GD, Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22.PubMedCrossRef
17.
go back to reference Lawlor DA, Harbord RM, Sterne JA, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63.MathSciNetPubMedCrossRef Lawlor DA, Harbord RM, Sterne JA, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63.MathSciNetPubMedCrossRef
18.
19.
go back to reference Zhang Y, Zhang X, Chen D, et al. Causal associations between gut microbiome and cardiovascular disease: a Mendelian randomization study. Front Cardiovasc Med. 2022;9:971376.PubMedPubMedCentralCrossRef Zhang Y, Zhang X, Chen D, et al. Causal associations between gut microbiome and cardiovascular disease: a Mendelian randomization study. Front Cardiovasc Med. 2022;9:971376.PubMedPubMedCentralCrossRef
20.
go back to reference Xu Q, Ni JJ, Han BX, et al. Causal relationship between gut microbiota and autoimmune diseases: a two-sample Mendelian randomization study. Front Immunol. 2021;12:746998.PubMedCrossRef Xu Q, Ni JJ, Han BX, et al. Causal relationship between gut microbiota and autoimmune diseases: a two-sample Mendelian randomization study. Front Immunol. 2021;12:746998.PubMedCrossRef
21.
go back to reference Ni JJ, Xu Q, Yan SS, et al. Gut microbiota and psychiatric disorders: a two-sample Mendelian randomization study. Front Microbiol. 2021;12:737197.PubMedCrossRef Ni JJ, Xu Q, Yan SS, et al. Gut microbiota and psychiatric disorders: a two-sample Mendelian randomization study. Front Microbiol. 2021;12:737197.PubMedCrossRef
22.
go back to reference Kurilshikov A, Medina-Gomez C, Bacigalupe R, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet. 2021;53(2):156–65.PubMedPubMedCentralCrossRef Kurilshikov A, Medina-Gomez C, Bacigalupe R, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet. 2021;53(2):156–65.PubMedPubMedCentralCrossRef
23.
go back to reference Wang J, Kurilshikov A, Radjabzadeh D, et al. Meta-analysis of human genome-microbiome association studies: the MiBioGen consortium initiative. Microbiome. 2018;6(1):101.PubMedPubMedCentralCrossRef Wang J, Kurilshikov A, Radjabzadeh D, et al. Meta-analysis of human genome-microbiome association studies: the MiBioGen consortium initiative. Microbiome. 2018;6(1):101.PubMedPubMedCentralCrossRef
24.
go back to reference Wei Z, Yang B, Tang T, et al. Gut microbiota and risk of five common cancers: a univariable and multivariable Mendelian randomization study. Cancer Med. 2023;12(9):10393–405.PubMedPubMedCentralCrossRef Wei Z, Yang B, Tang T, et al. Gut microbiota and risk of five common cancers: a univariable and multivariable Mendelian randomization study. Cancer Med. 2023;12(9):10393–405.PubMedPubMedCentralCrossRef
25.
go back to reference Liu K, Wu P, Zou J, et al. Mendelian randomization analysis reveals causal relationships between gut microbiome and optic neuritis. Hum Genet. 2023;142(8):1139–48.PubMedCrossRef Liu K, Wu P, Zou J, et al. Mendelian randomization analysis reveals causal relationships between gut microbiome and optic neuritis. Hum Genet. 2023;142(8):1139–48.PubMedCrossRef
27.
go back to reference Liu SK, Ma LB, Yuan Y, et al. Alanylglutamine relieved asthma symptoms by regulating gut microbiota and the derived metabolites in mice. Oxidative Med Cell Longev. 2020;2020:7101407.CrossRef Liu SK, Ma LB, Yuan Y, et al. Alanylglutamine relieved asthma symptoms by regulating gut microbiota and the derived metabolites in mice. Oxidative Med Cell Longev. 2020;2020:7101407.CrossRef
28.
go back to reference Zhen J, Zhao P, Li Y, et al. The multiomics analyses of gut microbiota, urine metabolome and plasma proteome revealed significant changes in allergy featured with indole derivatives of tryptophan. J Asthma Allergy. 2022;15:117–31.PubMedPubMedCentralCrossRef Zhen J, Zhao P, Li Y, et al. The multiomics analyses of gut microbiota, urine metabolome and plasma proteome revealed significant changes in allergy featured with indole derivatives of tryptophan. J Asthma Allergy. 2022;15:117–31.PubMedPubMedCentralCrossRef
29.
go back to reference Thorburn AN, McKenzie CI, Shen S, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun. 2015;6:7320.ADSPubMedCrossRef Thorburn AN, McKenzie CI, Shen S, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun. 2015;6:7320.ADSPubMedCrossRef
30.
go back to reference Hsu WH, Lin LJ, Lu CK, et al. Effect of you-Gui-wan on house dust mite-induced mouse allergic asthma via regulating amino acid metabolic disorder and gut Dysbiosis. Biomolecules. 2021;11(6) Hsu WH, Lin LJ, Lu CK, et al. Effect of you-Gui-wan on house dust mite-induced mouse allergic asthma via regulating amino acid metabolic disorder and gut Dysbiosis. Biomolecules. 2021;11(6)
32.
go back to reference Sanna S, van Zuydam NR, Mahajan A, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51(4):600–5.PubMedPubMedCentralCrossRef Sanna S, van Zuydam NR, Mahajan A, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51(4):600–5.PubMedPubMedCentralCrossRef
33.
go back to reference Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.ADSPubMedCrossRef Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.ADSPubMedCrossRef
34.
go back to reference Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 2019;35(22):4851–3.PubMedPubMedCentralCrossRef Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 2019;35(22):4851–3.PubMedPubMedCentralCrossRef
35.
go back to reference Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65.PubMedPubMedCentralCrossRef Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65.PubMedPubMedCentralCrossRef
36.
go back to reference Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178(7):1177–84.PubMedPubMedCentralCrossRef Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178(7):1177–84.PubMedPubMedCentralCrossRef
37.
go back to reference Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25.PubMedPubMedCentralCrossRef Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25.PubMedPubMedCentralCrossRef
38.
go back to reference Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.PubMedPubMedCentralCrossRef Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.PubMedPubMedCentralCrossRef
39.
go back to reference Glickman ME, Rao SR, Schultz MR. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J Clin Epidemiol. 2014;67(8):850–7.PubMedCrossRef Glickman ME, Rao SR, Schultz MR. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J Clin Epidemiol. 2014;67(8):850–7.PubMedCrossRef
41.
go back to reference Burgess S, Scott RA, Timpson NJ, et al. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30(7):543–52.PubMedPubMedCentralCrossRef Burgess S, Scott RA, Timpson NJ, et al. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30(7):543–52.PubMedPubMedCentralCrossRef
43.
go back to reference Zou XL, Wu JJ, Ye HX, et al. Associations between gut microbiota and asthma Endotypes: a cross-sectional study in South China based on patients with newly diagnosed asthma. J Asthma Allergy. 2021;14:981–92.PubMedPubMedCentralCrossRef Zou XL, Wu JJ, Ye HX, et al. Associations between gut microbiota and asthma Endotypes: a cross-sectional study in South China based on patients with newly diagnosed asthma. J Asthma Allergy. 2021;14:981–92.PubMedPubMedCentralCrossRef
44.
go back to reference Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy. 2014;44(6):842–50.PubMedCrossRef Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy. 2014;44(6):842–50.PubMedCrossRef
45.
go back to reference Okba AM, Saber SM, Abdel-Rehim AS, et al. Fecal microbiota profile in atopic asthmatic adult patients. Eur Ann Allergy Clin Immunol. 2018;50(3):117–24.PubMedCrossRef Okba AM, Saber SM, Abdel-Rehim AS, et al. Fecal microbiota profile in atopic asthmatic adult patients. Eur Ann Allergy Clin Immunol. 2018;50(3):117–24.PubMedCrossRef
46.
go back to reference Zheng P, Zhang K, Lv X, et al. Gut microbiome and metabolomics profiles of allergic and non-allergic childhood asthma. J Asthma Allergy. 2022;15:419–35.PubMedPubMedCentralCrossRef Zheng P, Zhang K, Lv X, et al. Gut microbiome and metabolomics profiles of allergic and non-allergic childhood asthma. J Asthma Allergy. 2022;15:419–35.PubMedPubMedCentralCrossRef
47.
go back to reference Kozik AJ, Huang YJ. The microbiome in asthma: role in pathogenesis, phenotype, and response to treatment. Ann Allergy Asthma Immunol. 2019;122(3):270–5.PubMedCrossRef Kozik AJ, Huang YJ. The microbiome in asthma: role in pathogenesis, phenotype, and response to treatment. Ann Allergy Asthma Immunol. 2019;122(3):270–5.PubMedCrossRef
48.
go back to reference Hufnagl K, Pali-Schöll I, Roth-Walter F, et al. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin Immunopathol. 2020;42(1):75–93.PubMedPubMedCentralCrossRef Hufnagl K, Pali-Schöll I, Roth-Walter F, et al. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin Immunopathol. 2020;42(1):75–93.PubMedPubMedCentralCrossRef
49.
go back to reference Huang C, Ni Y, Du W, et al. Effect of inhaled corticosteroids on microbiome and microbial correlations in asthma over a 9-month period. Clin Transl Sci. 2022;15(7):1723–36.PubMedPubMedCentralCrossRef Huang C, Ni Y, Du W, et al. Effect of inhaled corticosteroids on microbiome and microbial correlations in asthma over a 9-month period. Clin Transl Sci. 2022;15(7):1723–36.PubMedPubMedCentralCrossRef
50.
go back to reference Sbihi H, Boutin RC, Cutler C, et al. Thinking bigger: how early-life environmental exposures shape the gut microbiome and influence the development of asthma and allergic disease. Allergy. 2019;74(11):2103–15.PubMedCrossRef Sbihi H, Boutin RC, Cutler C, et al. Thinking bigger: how early-life environmental exposures shape the gut microbiome and influence the development of asthma and allergic disease. Allergy. 2019;74(11):2103–15.PubMedCrossRef
51.
go back to reference Verhulst SL, Vael C, Beunckens C, et al. A longitudinal analysis on the association between antibiotic use, intestinal microflora, and wheezing during the first year of life. J Asthma. 2008;45(9):828–32.PubMedCrossRef Verhulst SL, Vael C, Beunckens C, et al. A longitudinal analysis on the association between antibiotic use, intestinal microflora, and wheezing during the first year of life. J Asthma. 2008;45(9):828–32.PubMedCrossRef
52.
go back to reference Begley L, Madapoosi S, Opron K, et al. Gut microbiota relationships to lung function and adult asthma phenotype: a pilot study. BMJ Open Respir Res. 2018;5(1):e000324.PubMedPubMedCentralCrossRef Begley L, Madapoosi S, Opron K, et al. Gut microbiota relationships to lung function and adult asthma phenotype: a pilot study. BMJ Open Respir Res. 2018;5(1):e000324.PubMedPubMedCentralCrossRef
53.
go back to reference Spacova I, Van Beeck W, Seys S, et al. Lactobacillus rhamnosus probiotic prevents airway function deterioration and promotes gut microbiome resilience in a murine asthma model. Gut Microbes. 2020;11(6):1729–44.PubMedPubMedCentralCrossRef Spacova I, Van Beeck W, Seys S, et al. Lactobacillus rhamnosus probiotic prevents airway function deterioration and promotes gut microbiome resilience in a murine asthma model. Gut Microbes. 2020;11(6):1729–44.PubMedPubMedCentralCrossRef
54.
go back to reference Chua HH, Chou HC, Tung YL, et al. Intestinal Dysbiosis featuring abundance of Ruminococcus gnavus associates with allergic diseases in infants. Gastroenterology. 2018;154(1):154–67.PubMedCrossRef Chua HH, Chou HC, Tung YL, et al. Intestinal Dysbiosis featuring abundance of Ruminococcus gnavus associates with allergic diseases in infants. Gastroenterology. 2018;154(1):154–67.PubMedCrossRef
55.
go back to reference Hu C, van Meel ER, Medina-Gomez C, et al. A population-based study on associations of stool microbiota with atopic diseases in school-age children. J Allergy Clin Immunol. 2021;148(2):612–20.PubMedCrossRef Hu C, van Meel ER, Medina-Gomez C, et al. A population-based study on associations of stool microbiota with atopic diseases in school-age children. J Allergy Clin Immunol. 2021;148(2):612–20.PubMedCrossRef
56.
go back to reference Galazzo G, van Best N, Bervoets L, et al. Development of the microbiota and associations with birth mode, diet, and atopic disorders in a longitudinal analysis of stool samples, collected from infancy through early childhood. Gastroenterology. 2020;158(6):1584–96.PubMedCrossRef Galazzo G, van Best N, Bervoets L, et al. Development of the microbiota and associations with birth mode, diet, and atopic disorders in a longitudinal analysis of stool samples, collected from infancy through early childhood. Gastroenterology. 2020;158(6):1584–96.PubMedCrossRef
58.
go back to reference Püngel D, Treveil A, Dalby MJ, et al. Bifidobacterium breve UCC2003 exopolysaccharide modulates the early life microbiota by acting as a potential dietary substrate. Nutrients. 2020;12(4):948.PubMedPubMedCentralCrossRef Püngel D, Treveil A, Dalby MJ, et al. Bifidobacterium breve UCC2003 exopolysaccharide modulates the early life microbiota by acting as a potential dietary substrate. Nutrients. 2020;12(4):948.PubMedPubMedCentralCrossRef
59.
go back to reference Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7(307):307ra152.PubMedCrossRef Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7(307):307ra152.PubMedCrossRef
60.
go back to reference Arrieta MC, Sadarangani M, Brown EM, et al. A humanized microbiota mouse model of ovalbumin-induced lung inflammation. Gut Microbes. 2016;7(4):342–52.PubMedPubMedCentralCrossRef Arrieta MC, Sadarangani M, Brown EM, et al. A humanized microbiota mouse model of ovalbumin-induced lung inflammation. Gut Microbes. 2016;7(4):342–52.PubMedPubMedCentralCrossRef
61.
go back to reference Stiemsma LT, Arrieta MC, Dimitriu PA, et al. Shifts in Lachnospira and Clostridium sp. in the 3-month stool microbiome are associated with preschool age asthma. Clin Sci (Lond). 2016;130(23):2199–207.PubMedCrossRef Stiemsma LT, Arrieta MC, Dimitriu PA, et al. Shifts in Lachnospira and Clostridium sp. in the 3-month stool microbiome are associated with preschool age asthma. Clin Sci (Lond). 2016;130(23):2199–207.PubMedCrossRef
62.
go back to reference Ozerskaia IV, Geppe NA, Romantseva EV, et al. Prospects for the correction of intestinal microbiota in the prevention and treatment of asthma in children. Vopr Pitan. 2021;90(4):74–83.PubMed Ozerskaia IV, Geppe NA, Romantseva EV, et al. Prospects for the correction of intestinal microbiota in the prevention and treatment of asthma in children. Vopr Pitan. 2021;90(4):74–83.PubMed
63.
go back to reference Depner M, Taft DH, Kirjavainen PV, et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat Med. 2020;26(11):1766–75.PubMedCrossRef Depner M, Taft DH, Kirjavainen PV, et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat Med. 2020;26(11):1766–75.PubMedCrossRef
64.
go back to reference Chiu CY, Chan YL, Tsai MH, et al. Cross-talk between airway and gut microbiome links to IgE responses to house dust mites in childhood airway allergies. Sci Rep. 2020;10(1):13449.ADSPubMedPubMedCentralCrossRef Chiu CY, Chan YL, Tsai MH, et al. Cross-talk between airway and gut microbiome links to IgE responses to house dust mites in childhood airway allergies. Sci Rep. 2020;10(1):13449.ADSPubMedPubMedCentralCrossRef
65.
go back to reference Chung KF. Airway microbial dysbiosis in asthmatic patients: a target for prevention and treatment? J Allergy Clin Immunol. 2017;139(4):1071–81.PubMedCrossRef Chung KF. Airway microbial dysbiosis in asthmatic patients: a target for prevention and treatment? J Allergy Clin Immunol. 2017;139(4):1071–81.PubMedCrossRef
66.
go back to reference Perez-Garcia J, González-Carracedo M, Espuela-Ortiz A, et al. The upper-airway microbiome as a biomarker of asthma exacerbations despite inhaled corticosteroid treatment. J Allergy Clin Immunol. 2023;151(3):706–15.PubMedCrossRef Perez-Garcia J, González-Carracedo M, Espuela-Ortiz A, et al. The upper-airway microbiome as a biomarker of asthma exacerbations despite inhaled corticosteroid treatment. J Allergy Clin Immunol. 2023;151(3):706–15.PubMedCrossRef
67.
go back to reference Wlodarska M, Luo C, Kolde R, et al. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe. 2017;22(1):25–37.e26.PubMedPubMedCentralCrossRef Wlodarska M, Luo C, Kolde R, et al. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe. 2017;22(1):25–37.e26.PubMedPubMedCentralCrossRef
68.
go back to reference Morze J, Wittenbecher C, Schwingshackl L, et al. Metabolomics and type 2 diabetes risk: an updated systematic review and Meta-analysis of prospective cohort studies. Diabetes Care. 2022;45(4):1013–24.PubMedPubMedCentralCrossRef Morze J, Wittenbecher C, Schwingshackl L, et al. Metabolomics and type 2 diabetes risk: an updated systematic review and Meta-analysis of prospective cohort studies. Diabetes Care. 2022;45(4):1013–24.PubMedPubMedCentralCrossRef
69.
go back to reference Menni C, Zhu J, Le Roy CI, et al. Serum metabolites reflecting gut microbiome alpha diversity predict type 2 diabetes. Gut Microbes. 2020;11(6):1632–42.PubMedPubMedCentralCrossRef Menni C, Zhu J, Le Roy CI, et al. Serum metabolites reflecting gut microbiome alpha diversity predict type 2 diabetes. Gut Microbes. 2020;11(6):1632–42.PubMedPubMedCentralCrossRef
70.
go back to reference Kemppainen SM, Fernandes Silva L, Lankinen MA, et al. Metabolite signature of physical activity and the risk of type 2 diabetes in 7271 men. Metabolites. 2022;12(1):69.PubMedPubMedCentralCrossRef Kemppainen SM, Fernandes Silva L, Lankinen MA, et al. Metabolite signature of physical activity and the risk of type 2 diabetes in 7271 men. Metabolites. 2022;12(1):69.PubMedPubMedCentralCrossRef
Metadata
Title
Causal associations between gut microbiota, metabolites and asthma: a two-sample Mendelian randomization study
Authors
Jingli Li
Chunyi Zhang
Jixian Tang
Meng He
Chunxiao He
Guimei Pu
Lingjing Liu
Jian Sun
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2024
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-024-02898-x

Other articles of this Issue 1/2024

BMC Pulmonary Medicine 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.